
Simulation and Analysis of PDU Traffic Bundled under
Packet Alloying

Juan J Vargas-Morales
Universidad de Costa Rica

Escuela de Ciencias de la Computación e Informática
San José, Costa Rica

jvargas@ecci.ucr.ac.cr

ABSTRACT
Packet Alloying, a technique for the optimized bundling of
packets, is proposed. It produces aggregations that preserve
the internal Protocol Data Unit (PDU) format, allowing the
resulting packets to be subjected to further bundling or com-
pression by conventional techniques. Using logs from vi-
gnettes simulated by the OneSAF Testbed Baseline (OTB),
a simulator is used to analyze PDU traffic over a wireless fly-
ing Local Area Network aboard airplanes, including a satel-
lite and a ground station. Applying Packet Alloying during
the simulation of an example vignette, a reduction in the
magnitude of negative slack time from -75 to -9 seconds for
the worst spike was achieved.

Contributions of this research include the formalization
of a selective PDU bundling scheme, and the study of dif-
ferent predictive algorithms for the next PDU. These re-
sults demonstrate the validity of packet optimizations for
distributed simulation environments and other possible ap-
plications such as TCP/IP transmissions.

Categories and Subject Descriptors
I.6.6 [Simulation and Modeling]: Simulation Output Anal-
ysis; E.4 [Coding and Information Theory]: Data com-
paction and compression

General Terms
Experimentation, Measurement, Performance

Keywords
DIS protocol, PDU, Packet Alloying, bandwidth simulation,
network traffic

1. INTRODUCTION
The Distributed Interactive Simulation (DIS) protocol is

defined in the IEEE family 1278 of Standards [4]. DIS is pri-
marily used for military simulations of synthetic battlefields

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LANC ’07, 10-11 October 2007, San José, Costa Rica
Copyright 2007 ACM 978-1-59593-907-4/07/0010 ...$5.00.

including, weapons, vehicles, terrain information, friend and
enemy forces, etc. such that the final simulation is as re-
alistic as possible. It is a stateless system not based on
servers that utilizes reliable multicast communications with
autonomous nodes using dead reckoning to calculate the po-
sition of all entities in the simulation. Using a workstation
connected to the network, training personnel interact with
each other, playing different roles, either as part of the friend
or the enemy forces. DIS is relatively old. It was developed
in 1993 during a series of workshops held at the Institute for
Simulation and Training of the University of Central Florida.
Its successor, the High Level Architecture (HLA) protocol,
took its place for most military simulations. However, DIS
continues being researched and improved in other areas like
USAF’s Distributed Mission Operations Center (DMOC),
video games, space exploration and medicine.

The fundamental communication packets under DIS are
the Protocol Data Units (PDUs). PDUs carry all the in-
formation relevant to the simulation, like data about posi-
tion, speed, direction of movement, type of vehicle, type of
weapons, damages, status, etc. Due to the intended realism,
the DIS protocol requires high network bandwidths, making
it too heavy for less serious simulations like multi-player on-
line video games. There is a simpler version of DIS called
DIS-Lite [8] which is more appropriate for such applications.
DIS-Lite offers several advanced features, including packet
bundling, latency compensation and enhanced dead reckon-
ing algorithms tailored for air vehicles.

DIS defines 27 types of PDUs. However, the standard is
open for new types. PDUs contain different internal fields,
starting with a header that specifies the exercise identifica-
tion number, protocol version, type of PDU, protocol family,
timestamp and length. Fields following the PDU header are
specific to each type and of a variable size. In the studied
vignette PDU lengths ranged form 26 to 1368 bytes. It was
observed that most transmitted PDUs contained zeros in
many fields, causing a waste of bandwidth due to transmis-
sions of long sequences of zero bits that can be alleviated by
PDU compression and/or bundling.

In 1998, the U. S. Army Simulation, Training and In-
strumentation Command (STRICOM) started to develop
a recommendation of the Semi-Automated Forces (SAF)
system to be used as the baseline for the integration of a
One Semi-Automated Forces (OneSAF) Testbed Baseline
(OTB), which is a computer simulator of the battleground
based on DIS. Detailed information about the historic devel-
opment of OTB is found in [1, 6]. OTB requires high band-
width connections, as in a Local Area Network (LAN), to

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1384117.1384120&domain=pdf&date_stamp=2007-10-10

Figure 1: The flying network.

produce a realistic simulation. However, the usage of OTB
simulations onboard airplanes for mission planning and re-
hearsal while enroute to deployment was considered. The
initiative is called Joint En-route Mission Planning and Re-
hearsal System for Near-Term (JEMPRS-NT). The scenario
includes some airplanes flying in formation carrying a wired
LAN of several workstations onboard and wireless commu-
nications among planes. Also, a CONtinental US (CONUS)
ground station participates in the exercise through a satel-
lite link, involving three types of connections: wired, wire-
less and satellite. Due to its nature, each connection has a
different bandwidth capacity, showing the satellite link the
slowest one. Figure 1 depicts the scenario.

The actual scenario had not been built and tested in 2004,
at the time of this research. Consequently, there was a
consideration about the performance of OTB simulations
through the wireless and satellite connections. A network
simulation of the traffic was conducted to determine the
bandwidth requirements of military mission rehearsal ac-
tivities while enroute to deployment [13, 12, 11, 10]. In
preparation for the simulation, a vignette was defined and
run under OTB, capturing logged packets to be used as in-
put data. The information logged included the type, length,
and timestamp of each PDU. The network simulator was
based on the OMNeT software [9] to asses the bandwidth
in each link. Each simulated workstation includes a PDU
generator module and a sink module that consumes arrived
PDUs. Instead of using a PDU random generator of a prede-
fined probabilistic distribution, PDUs captured from OTB
were arranged in the generator modules of the simulator and
broadcasted to sink destinations at times specified by OTB
timestamps. Hence, the network simulator was reproducing
the OTB traffic behavior as accurate as possible.

By analyzing the traffic behavior, it was possible to ob-
serve bottlenecks in several segments of the network under
different bandwidths. At low speeds of the wireless links,
bottlenecks started to build up in satellite and router queues.
Because the speed of satellite links is considered static, a spe-
cial type of bundling and aggregation of PDUs called Packet
Alloying [10] was proposed and evaluated with success.

2. OFFLINE AND ONLINE ALGORITHMS
General offline and online algorithms for predictive envi-

ronments have been studied in the literature for a consider-
able time [5, 2, 3]. Related to network traffic, all the packets

sent from an origin to a destination form a sequence. If two
or more consecutive PDUs contain the same data in some
fields, they could be bundled into one single packet, saving
header and data bytes during transmission.

Due to the real-time nature of the simulation, once a given
packet is ready for transmission, the decision of waiting and
bundle the next one to it, or send it without delay has to be
taken online, without knowledge of the next PDU content.
Thus, bundling strategies are confronted with the decision
of waiting for the next packet to arrive and bundle it to the
current block, or sending the current block and start a new
collection of packets from scratch. Online algorithms are
characterized by this lack of knowledge about the future.
They decide the next action based only on the already pro-
cessed PDUs. Phillips [7] indicates that an online algorithm
receives each input in sequence and must process it imme-
diately, serving the sequence of requests one item at a time
without having explicit knowledge of the following inputs.

On the other hand, we could capture all the PDUs and,
once the OTB simulation is over, analyze the sequences of
packets, deciding if a PDU can be bundled to other consecu-
tive packets based on a complete knowledge of the sequence.
If the selected action is taken using the complete knowledge
of the whole sequence, the selection process constitutes an
offline algorithm. Offline algorithms have access to all the
past and future sequences of PDUs in advance. Therefore,
it is possible to find the best offline algorithm that makes
only optimal decisions. A decision is optimal if it minimizes
some cost function. In the transmission of network packets,
the cost function could be the total latency time incurred by
all the packets sent from the origin to the final destination,
or the absolute value of the sum of all negative slack times,
as defined below.

If the generator module of the simulator reads the next
PDU at simulation time Tread and is timestamped at time
Tstamp, the difference Tstamp - Tread is called slack time. If
it is positive, the network traffic is light at that moment, the
simulator is ahead of time and can rest until time Tstamp to
send the PDU. But if the difference is negative, the simulator
is in trouble, it is behind the schedule due to a heavy loaded
traffic and needs to send the PDU as soon as possible.

The main application of offline algorithms in this research
lies in the possibility of comparing them to the correspond-
ing online counterparts, with the purpose of assessing online
performances. A measure of comparison of performance for
online algorithms is the competitive ratio [2]. A competitive
ratio of r > 0 means that the performance of an online algo-
rithm is at least a factor of 1/r of the performance achieved
by the best offline algorithm. It is defined as the worst-
case ratio between its cost and that of a hypothetical offline
algorithm which knows the entire sequence of requests in
advance and chooses its actions optimally. Frederiksen [2]
indicates that any reasonable deterministic or uniform ran-
domized algorithm for packet transmission has a competitive
ratio of exactly 2, where an algorithm is called reasonable if
it does not postpone the transmission of a message by more
than the sum of the inter-packet gap and overhead values.

Total Latency Cost and Negative Slack : Given
a sequence σ = {PDU i}i=1,...,n of PDUs, where
each packet i is released and stamped at time
Tstampi, and arrives at the final destination at
time Tarr i, then the cost function for the total

14

latency of the PDU travel time is:

CTtrav (σ) =

n
∑

i=1

(Tarr i − Tstampi) (1)

Similarly, if the simulator is reading PDUs from
a summary log file already captured, and each
PDU i is read for the first time at simulation time
Tread i, the cost function that measures the ab-
solute value of the total negative slack time is:

CTslack (σ) =
n

∑

i=1

(Tstampi−Tread i)×H(Tread i−Tstampi)

(2)

where H represents the Heaviside step function
used to select only the negative slack occurrences:

H(x) =

{

1 if x > 0
0 if x ≤ 0

(3)

2.1 Online Bundling Strategies
The proposed online algorithms try to identify compatible

PDUs P1 and P2 that can be bundled in a block B = P1⊗P2.
A requirement is that the two PDUs should have the same
type and length. Yet, because P2 has not arrived by the
time P1 is being processed, the generating site must decide
whether it will send P1 immediately, or will wait for P2.
Chances are that P2 will not be compatible with P1. So if
the generator could predict the type and the length of P2,
then the prediction could be used in the decision process. It
is more difficult to predict both, type and length, than only
one variable. For decisions based on one variable only, type
is preferred due to its better discrimination among PDUs.

2.2 Always-Wait, Always-Send andNeural-Network On-
line Predictions

Two straightforward online algorithms are proposed to
predict the type of the next PDU: Always-Wait and Always-
Send. The former predicts that the next type will be the
same as the type of the current PDU and takes the decision
of waiting, using a timeout of 100 milliseconds. The latter
predicts a type different from the current PDU type and
never waits. It sends the PDU as soon as the time gap
elapses without bundling it. A third online method is based
on a Neural Network (NN)used to predict the PDU type[12].
A neural network was trained to predict the type of the
next PDU based on the recent history of past PDUs. The
NN architecture contained 44 input nodes, 20 hidden nodes,
and 5 output nodes that specify the predicted type using a
binary representation. The population of PDUs was split in
two equal size sets for training and prediction. The program
run for several days, and after 11,930 epochs, the percentage
of successful predictions reached almost 70%.

2.3 Offline Predictions Based on Type, Length,
and Timestamp

The first offline prediction considers the PDU type only
and is called Type. If two consecutive PDUs are of the same
type, this method predicts Waiting, otherwise it predicts
Sending. The second method Type-Length considers the
type and the length of the PDUs. Waiting is predicted if
two consecutive PDUs agree in both, type and length. The
last method requires the same type, length, and timestamp

for consecutive PDUs and will be called Type-Length-Time.

3. PACKET ALLOYING
Compression and aggregation of network packets are tech-

niques used to reduce the total traffic, requiring less band-
width for sending data. During the bundling process, deci-
sions have to be made about whether to bundle or not con-
secutive packets. Considering that after sending one packet,
a certain minimum time gap must elapse before sending the
next packet, then the decision is not trivial. If the first
packet is sent immediately, the second one could be delayed
more than if the two packets are sent in a single bundle.
This decisions are referred to as the Packet Bundling Prob-
lem [2]. In the case of OTB simulations, the offline bundling
is carried out based the type and length of the PDUs from
the log files, estimating the time gaps.

Several characteristics of the OTB traffic are considered
for bundling purposes. The discussion here applies not only
to PDUs generated under the DIS protocol, but also to pack-
ets from other protocols as well. During the simulation, the
participants interact with each other in real time. For ex-
ample, if one simulated vehicle starts moving, or decelerates,
all the other entities should be informed of the event as soon
as possible. This characteristic impacts bundling in several
aspects. First, the time a PDU waits for the upcoming PDU
creates a delay against the meaning of real time. Therefore,
a small timeout should be introduced to limit that waiting
time. Second, not bundling PDUs could cause that the fol-
lowing PDU will be delayed even more, due to the gap time
that must separate frames. Also, not bundling produces
more traffic and longer router queues, which finally goes in
detriment of the real time properties.

The decision of bundling PDUs must consider the pros and
cons of each alternative. It is possible that for some environ-
ments, bundling is not a necessity. For example, a scenario in
which a few sites are simulating a simple vignette connected
in a LAN not requiring a router, could have enough band-
width to manage the traffic without bundling. Some high
priority PDUs like fire and detonation occur in short bursts,
and they are usually sent at the same time, creating bottle-
necks or negative slack spikes that attempt against the real
time approach. Bursts of PDUs timestamped at the same or
almost the same time encourages benefits of bundling, be-
cause not doing it causes a large negative slack spike at the
transmitting site that delays the following PDUs. Essen-
tially, instantaneous transmissions overwhelm the channel
capacity so that the available bandwidth appears low rela-
tive to the demand. If the bundling operation is not time-
consuming and the waiting timeout is selected appropriately,
bundling a sequence of consecutive PDU and sending a sin-
gle block could take less time than sending the individual
PDUs without bundling them. For instance, if a PDU is
512 bytes long and the bandwidth is 64 Kbps, the trans-
mission time of one single PDU is 64 milliseconds, while
bundling several PDUs could take less than one millisecond.
It is well documented that Embedded Simulation (ES) traffic
contains 70% or more of ES-PDUs. Usually these ES-PDUs
are partially redundant, not urgent and less impacted by
waiting to be bundled than other PDUs of higher priority.
For example, if a vehicle is not moving, it still needs to send
heartbeat ES-PDUs at regular intervals. Because they are so
abundant, bundling and compressing ES-PDUs have a ma-
jor impact on the overall traffic decrease. However, in this

15

research ES-PDUs were not bundled in the majority of cases
because they did not participated in negative slack spikes as
bursts of consecutive ones, as po_fire_parameters did.

PDUs may contain redundant field data, both inside each
PDU and among PDUs. It has been observed PDUs from
the OTB log files containing zeroes in the majority of their
fields, with only two differences from one PDU to the next.
Bundling and compression can take advantage of this high
redundancy. Packet Alloying, the proposed algorithm, would
append only the two differing fields in the second PDU to the
first one. Other bundling algorithms also profit from redun-
dancy, like those based on sending delta PDUs. Determina-
tion of the PDU structure based on its type and length allows
a fast comparison among PDUs for algorithms like Packet
Alloying. In DIS protocol, PDUs are broadcasted, thus sim-
plifying the PDU header since a particular destination is
not needed. Considering that all the PDUs in a bundle are
delivered to the same recipients, bundling and routing pro-
cesses become more straightforward. However, broadcasting
contributes to the proliferation of messages sent to entities
that might not need updated information from all the other
entities, some of which could be very far away in the sim-
ulation field, and the non-reception of such messages is not
going to significantly affect the simulation fidelity. Instead
of broadcasting, multicasting is an alternative proposed by
other protocols like HLA and DIS-Lite.

The slower the connections, the more significant the im-
pact of bundling is. If a connection is slow, bundling and
compression becomes more advantageous. In slow connec-
tions, gap times are larger, and so is the penalty for not
bundling the next PDU. Also, a low bandwidth connection
shows more negative slack times during transmission, caus-
ing bottlenecks and long queues. For instance, in the studied
vignette the satellite connection introduces a propagation
delay of about 0.25 seconds, much higher than the time gap
required to separate frames during transmission. Therefore,
bundling of high priority PDUs like po_fire_parameters

tends to be worthwhile.
The slack time analysis at the ground station shows that

many negative and positive slack spikes are present at reg-
ular time intervals. The size of such spikes depend on the
timestamp and the length of the PDUs, and on the band-
width of the channel. The following definitions and theorem
formalize the occurrence and calculations of such spikes.

Definition 1 : Busy Generator .

The generator of PDUs is in the busy state at
time t if it is transmitting a packet or waiting for
the completion of a time gap separator at that
time.

Definition 2 : Busy Phase.

Given a sequence PDU1, . . ., PDUn of PDUs of
lengths L1, . . ., Ln bits, respectively, and times-
tamped at ascending times T1, . . ., Tn seconds,
respectively, then any subsequence PDUi, PDUi+1,
. . ., PDUi+k constitutes a busy phase if the fol-
lowing conditions are true:

1. The generator is not busy at time Ti when
PDUi is released.

2. For j = 1, 2, . . . , k, when PDUi+j is released
at time Ti+j the generator is busy complet-
ing the transmission of previous PDUs.

3. If PDUi+k+1 exists, the generator is not busy
at time Ti+k+1.

Definition 2 indicates that the entire sequence of PDUs
can be partitioned into disjoint phases of consecutive PDUs,
and each PDU belongs to one and only one phase. The
following theorem calculates the size of negative slack spikes
during a busy phase. A formal proof is found in [10].

Theorem 3.1
The magnitude of a negative slack spike of a busy
phase PDUi, PDUi+1, . . ., PDUi+k transmitted
at a bandwidth B bps with gap intervals of g
seconds can be calculated as:

m = max
0≤ j ≤ k

{mi+j} (4)

where mi+j = Ti+j −

Ti + j · g +

j−1
∑

u=0

Li+u

B

If a busy phase contains only one PDU, then Theorem
3.1 yields zero for the magnitude of the spike, and yields a
strictly positive value for two or more PDUs, accepting by
convention that the summation from index 0 to index -1 is
zero. In other words, phases consisting of only one PDU
produce no negative spike, and phases of two or more PDUs
can produce a negative spike.

Positive spikes are always produced at the end of a phase,
provided that the next phase does not start exactly at the
end of the previous phase, including the gap separators as
part of the phase time. In other words, positive spikes are
produced by the time interval separating busy phases. The
following theorem formalizes the concept.

Theorem 3.2
The magnitude of a positive slack spike between
consecutive busy phases (PDUi, . . ., PDUi+k)
and (PDUi+k+1, . . ., PDUi+k+r) transmitted at
bandwidth B bps with gap intervals of g seconds
is calculated as:

m = Ti+k+1 −

Ti + (k + 1) · g +

k
∑

u=0

Li+u

B

(5)

3.1 Minimum Bandwidth Requirements
An independent analysis of traffic can be carried out with-

out employing simulation by merging the PDUs of all the
sites in one single stream of data sorted according to their
timestamps. Then, the minimum bandwidth requirements
can be estimated by selecting a small time interval (i.e 2
seconds) and calculating the average bandwidth for that in-
terval. The time interval requiring the maximum average
bandwidth is a good estimate of the minimum bandwidth re-
quired for the entire simulation. Although no overheads like

16

retransmissions, packet losses, or collisions are considered
in the calculation of the bandwidth, a time gap separation
between consecutive PDUs was included in accordance with
the IEEE Std. 802.11 Formally, the definition of minimum
local bandwidth and related concepts follow.

Definition 3 : Minimum Local Bandwidth .

Let all the PDUs in the simulation be sorted
in ascending order of timestamp and numbered
PDU1, . . ., PDUn. Let Li and Ti represent the
length in bytes and the timestamp in seconds of
PDUi for all 1 ≤ i ≤ n. Let g denote the mini-
mum separating time gap between PDUs in sec-
onds. If i < j, the minimum local bandwidth for
the time interval [Ti, Tj) is the minimum band-
width in the output channel such that all the con-
secutive PDUs and gaps [PDUi, g, . . ., PDUj−1, g]
can be successfully transmitted during this in-
terval on or after the times Tk, respectively, for
i ≤ k ≤ j − 1.

According to Definition 3, it is allowable to transmit PDUk

on or after the time Tk, provided that at time Tj when the
interval has elapsed, all the preceding PDUs have been trans-
mitted. It should be noted that the time interval [Ti − Tj)
includes PDUi and does not include PDUj . Definition 3
assumes that the timestamps are different for consecutive
PDUs, such that Ti 6= Tj for all i 6= j. If consecutive PDUs
bear the same timestamp, the minimum local bandwidth for
the corresponding time interval would be infinite, and the
PDU sequence is said to be not feasible. If the time interval
tends to be small relative to the simulation time, then the
minimum local bandwidth approaches minimum instanta-
neous bandwidth, as it is in the extreme case that j = i + 1
and only one PDU lies in the interval.

Definition 4 : Minimum Instantaneous Bandwidth .

The minimum local bandwidth is called mini-
mum instantaneous bandwidth if j = i + 1 such
that the time interval over which it is calculated
contains a single PDU.

In practice, any time interval considered short within the
context of the simulation time can lead to the concept of
minimum instantaneous bandwidth. The successful trans-
mission of PDUs mentioned in definition 3 depends on both
the length and the timestamp of all the PDUs. The mini-
mum average bandwidth defined next is an approximation
to the minimum local bandwidth that in practice gives suffi-
ciently precise results. This measure was used in the architecture-
independent analysis of the OTB vignettes.

Definition 5 : Minimum Average Bandwidth .

Under the same notation and conditions of the
definition of minimum local bandwidth, but dis-
regarding the intermediate timestamps Ti+1, . . .,
Tj−1, the minimum average bandwidth is the min-
imum bandwidth in the output channel such that
all the bit volume plus all the gaps separating
participating PDUs can be transmitted during
the time interval [Ti, Tj).

In calculating the minimum average bandwidth, it is con-
venient to select a fixed size of S seconds for the time inter-
vals, and divide the total simulation time into subintervals
of this fixed size. In such a case, the above definitions can be
applied to the time intervals [Ti, Tj), provided that Ti and Tj

are separated by a time distance of at least S seconds, but Ti

and Tj−1 are not. In other words, the time interval [Ti, Tj)
is of minimum length not less than S seconds, for a given
constant S selected a-priori. In the independent analysis of
the said vignettes, S was chosen equal to 2 seconds, and so
the calculated bandwidth was considered instantaneous.

Theorem 3.3
Under the same notation and conditions of the
definition of minimum local bandwidth, and as-
suming the following condition of feasibility:

Tj − Tk − (j − k)g > 0, ∀ k : i ≤ k < j (6)

then, the minimum average bandwidth Bi,j in
bits/second required to transmit the PDUs PDUi,
. . ., PDUj−1 during the time subinterval [Ti, Tj)
is calculated as:

Bi,j =

j−1
∑

k=i

8Lk

Tj − Ti − (j − i)g
(7)

The condition of feasibility in Equation 6 says that the re-
maining time from Ti to Tj should be sufficient to accommo-
date all the gaps between PDUs and still have capacity for
the transmission of content bytes. The average bandwidth
for the interval [Ti − Tb) is the ratio of the total number
of bits transmitted over the remaining time in the interval
once the gaps have been deducted, as stated in Equation 7.

Theorem 3.4
Under the same notation and conditions of the
definition of minimum local bandwidth, and as-
suming the condition of feasibility given in the-
orem 3.3, if a < b and PDUa, . . ., PDUb are
consecutive PDUs in the sequence, then the mini-
mum local bandwidth Ba,b for the interval [Ta, Tb)
is given by:

Ba,b = max
a ≤ k < b

{Bk,b} (8)

According to Theorem 3.4, if the bandwidth for the whole
interval [Ta, Tb) is constant, it should not be less than any

individual average bandwidth Bi,b. Considering that the
starting time for transmitting PDUs can be delayed within
the interval, Equation 8 takes the maximum of all compo-

nents Bi,b representing the minimum bandwidth require-
ment.

3.2 Development of Alloying in Simulation Model
After analyzing all of the PDUs in the log file for a given

vignette, it was observed that the type and the size of a
PDU can adequately determine its internal field structure.
In order to better explain the different flavors of bundling al-
gorithms, we need to formalize some definitions and propose
a conjecture.

17

Definition 6 : Compatible PDUs.

Two PDUs A = (a1, a2, a3, . . . , an) and B =
(b1, b2, . . . , bm) are said to be compatible if and
only if type(A) = type(B) and length(A) = length(B),
assuming that type and length are functions that
return the type and the length in bytes of a PDU,
respectively.

Conjecture 3.1

If the PDUs A = (a1, a2, a3, . . . , an) and B =
(b1, b2, . . . , bm) are compatible, then n = m and
field type(ai) = field type(bi) for all 1 ≤ i ≤ n,
assuming that field type is a function that returns
the type of any field in the PDU.

Conjecture 3.1 cannot be proved unless the formal spec-
ifications of PO PDUs are analyzed and the OTB source
code is examined, items not made available to this research.
However, all of the 60,341 PDUs in the main vignette were
checked, as well as the PDUs in other two vignettes, and
no exceptions to Conjecture 3.1 were found, which empiri-
cally prove the assertion. Because compatible PDUs share a
common internal structure, they are good candidates to be
bundled. The other requirements to deliver the PDUs as a
single packet are that they must be consecutive and sched-
uled within a short time interval. The pseudo-algorithm of
PDU bundling is described in Figure 2.

If several PDUs are scheduled at the same or almost the
same time, and the structure of those PDUs is the same,
with only small but predictable differences, then only one
single PDU needs to be sent along with instructions on how
to recover the other PDUs from the given one. Compar-
isons of po_fire_parameters type of PDUs among other
PDUs involved in the same negative spike showed that the
stated conditions (same timestamp, small differences) can
be exploited. These PDUs differ on consecutive identifica-
tion attributes (like counters), and memory addresses that
change according to the PDU length. The bundling method
called Packet Alloying was proposed after analyzing several
PDUs captured in the log files. In those logs there were
cases of consecutive PDUs almost identical, with zeros in
many fields. In all of the negative spikes studied, compatible
PDUs had similar redundancies. Extraction is the inverse
procedure of alloying. The formal definition of Packet Al-
loying follows, which is taken from [12] and is the basis for
the bundling algorithm proposed in Section 3.2.

Definition 7 : Packet Alloying .

Let N = {1, 2, . . . , n} be a set of indices, and
let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
be two consecutive PDUs, where A and B are of
the same type and the ai and bi represent PDU
fields. For a subset S ⊆ N such that ai = bi for
all i ∈ S, the bundle of A and B is defined as the
PDU A⊗B = (a1, a2, . . . , an, [(bj , j)j∈N\S]). A
is called the reference PDU in the bundle.

In the above definition, the notation N \ S represents the
set difference of N and S. The square brackets [,] denote the
start and end, respectively, of replicated PDUs to be formed
during extraction. The definition can be extended to any

number of PDUs. The said bundle is called Packet Alloying
because it is formed like a metal alloy, bundling PDUs based
on their internal structure.

1. Wait until (next PDU is ready for delivery

Let A denote that PDU;

2. Block = A;

/*This is the first PDU in the bundle*/

3. Set timeout = maximum time PDU A

will wait in Block;

4. While (timeout not expired)

5. {If (next PDU is ready for delivery)

Let B be that PDU;

else Continue at the While loop;

6. If (A and B are compatible PDUs)

/* Packet Alloying bundle*/

{Block = Block (x) B;

B = empty;

}

else break the While loop;

} /* End While */

7. Send Block as a single packet;

8. If (B is empty)

Continue at Step 1;

else {A = B;

Continue at Step 2;

}

Figure 2: Pseudo-Algorithm of PDU Bundling. Op-
erator (x) in Step 6 represents the Packet Alloying
operation

A performance issue deals with the convenience of bundling
compatible PDUs in all situations. According to Definition
7, each field in the new PDU that differs from the corre-
sponding field in the reference PDU is appended to the bun-
dle along with an index. In the extreme case that all the
fields in the new PDU are different from the corresponding
fields in the reference PDU, the new PDU will be bundled
with no reduction in size due to a lack of redundancy elimi-
nation. Moreover, the inclusion of indices in this case would
make the bundle larger than the sum of the sizes in the two
individual PDUs. A threshold parameter could be used for
comparing the size of the bundled fields and indices to the
size of the unbundled PDUs and decide whether the bundle
is worth or not.

If a bundling operation is performed, some time should
be spent in the bundle operation itself. In other words,
it is not possible to process a PDU (read and bundle it)
in zero time. It was estimated that each bundle operation
requires 5 microseconds of simulation time. This time could
be considered as generator service time. The generator busy
time is then computed as the transmission time, plus the gap
time, plus any service time if a bundling operation is carried
out.

4. RESULTS OF THE SIMULATION
The analysis of negative spikes motivated the concept of

a possible solution to eliminate or reduce those spikes by
means of aggregating the participating PDUs. An analy-
sis of all the logged PDUs revealed that if two PDUs are

18

Figure 3: Slack Time at Ground Station for the 6
Predictive Strategies (64 Kbps).

of the same type and length then they have identical field
structure. This observation constitutes a key point in the
proposed bundling algorithm. Logged PDUs also revealed
that OTB schedules some sequences of consecutive PDUs at
exactly the same timestamp, which causes a bottleneck in
generators due to the infeasibility of sending several packets
at the same time. In most cases, consecutive PDUs of equal
type and length differed in the contents of only a few fields,
presenting the possibility of merging them.

4.1 Slack Time Analysis
Figure 3 shows the slack time of the generator at the

CONUS ground station for 6 different predictive algorithms.
The graph was created assigning 64 Kbps to all the wire-
less links and 100 milliseconds to the timeout period. As
seen in the diagram, up to the second 1,600, all of the algo-
rithms behaved alike, but afterwards negative slack started
to build up. The Always-Send algorithm, equivalent to the
non-bundling option, incurred in the largest negative slack,
followed by the Type-Length-Time strategy. The NN ap-
proach performed relatively well, considering that its pre-
dictions are not perfectly accurate. The other 4 algorithms
are among the best in this simulation, and a closer exam-
ination reveals that the NN approach could be improved.
NN predicts the PDU type based only on the time series of
the past 44 PDUs. Comparing its performance against the
optimal Type algorithm, its competitive ratio for the cost
function negative slack time was c = 3.75.

It was also observed that the decision of sending the cur-
rent bundle based solely on the upcoming PDU type, per-
forms as well as the one that considers the type and the
length of each PDU. Therefore, a neural network approach
could benefit from this fact by concentrating the effort in
predicting the type only, instead of the type and the length.

However, the most interesting observation is that the sim-
plest Always-Wait is almost as good as Type-Length. The
reason is that there is a high probability that the prediction
based solely on the type agrees with the prediction based on
the type and length. For example, an offline examination of
the PDUs indicated that from the 50,230 PDUs sent by the
CONUS ground station, 42,911 (85.4%) implied the same
action (wait or send) for both algorithms.

Table 1 shows the slack time average and standard de-
viation for all combinations of algorithms and bandwidths
measured at the ground station. The average is a signed
number calculated from all the PDUs generated during the
simulation.

Table 1: Slack Time Average and Standard De-
viation for All the Studied Algorithms and Band-
width Combinations Measured at the Ground Sta-
tion. Best offline and online values are underlined.

Average 64 128 256 512

Std. Deviation Kbps Kbps Kbps Kbps

Type -0.758 -0.017 0.015 0.024

1.600 0.109 0.073 0.066

Type- -0.760 -0.018 0.015 0.024

Length 1.601 0.110 0.073 0.066

Type-Length -10.659 -0.027 0.013 0.023

-Timestamp 11.711 0.115 0.073 0.066

Always- -0.802 -0.017 0.016 0.024

Wait 1.689 0.109 0.073 0.066

Neural- -1.579 -0.044 0.008 0.022

Network 2.638 0.162 0.085 0.069

Always- -26.181 -0.054 0.006 0.021

Send 26.033 0.176 0.085 0.069

From Table 1 it is concluded that Always-Send is the
worst of the 6 algorithms, and Always-Wait is among the
best ones. Because, Always-Send corresponds to the non-
bundling option, it is clear that the proposed bundling is
advantageous when compared to DIS protocol.

Also, at 64 and 128 Kbps, the average slack time was
negative in all cases. A negative average indicates that the
corresponding bandwidth is insufficient to handle the PDU
traffic. Therefore, for this vignette the wireless bandwidth
should be at least 256 Kbps.

4.2 Travel Time Analysis
To enable analysis, each sent bundle includes the current

time (Tsend) attached to it, allowing the destinations to cal-
culate the travel time Ttrav . Figure 4 shows the travel time
of Always-Wait measured at a given site onboard one of the
planes, using 64 Kbps, and latter 128 Kbps in wireless links.
It is clear from the graph that 64 Kbps is not enough to han-
dle the required traffic, even with bundling. As seen, during
the interval from second 2000 to second 2400, many of the
PDUs took almost 40 seconds to arrive at their destinations,
exceeding the fidelity requirements of the OTB simulation.
However, a big improvement is obtained just by duplicating
the bandwidth. At 128 Kbps, the latency was close to 0.8
seconds, and most of the PDUs took less than 0.4 seconds to
reach their destinations. There was a large concentration of
PDUs taking near 0.25 seconds of travel time, correspond-
ing to the propagation delay of satellite signals. However,
some PDUs took less than 0.1 seconds of travel time, cor-
responding to messages sent from other airplanes not using
the satellite.

Table 2 shows the average and standard deviation of the
travel time for each combination of algorithm and band-
width, measured at sink 0 onboard plane 0. Considering
that approximately 83% of the PDU traffic arriving at sink
0 comes from the ground station via satellite, and that for
those PDUs, 0.255 seconds is an unavoidable delay, the table

19

Figure 4: Travel Time for the Always-Wait strategy,
at 64 Kbps and 128 Kbps.

shows a very good behavior of the algorithms at 256 Kbps or
more, giving a slight advantage to Always-Wait and Neural-
Network over Always-Send.

Table 2: Average and Standard Deviation of Travel
Time Measured at Sink 0

Avgerage 64 128 256 512

Std. Deviation Kbps Kbps Kbps Kbps

Type 9.20 0.304 0.262 0.249

13.2 0.099 0.069 0.064

Type- 9.24 0.306 0.262 0.249

Length 13.2 0.101 0.069 0.064

Always- 9.43 0.303 0.261 0.249

Wait 13.5 0.099 0.069 0.064

Neural- 28.7 0.314 0.261 0.248

Network 33.2 0.119 0.069 0.064

Always- 64.0 0.333 0.263 0.251

Send 58.0 0.153 0.062 0.057

Table 3 shows the total travel time for all the PDU bun-
dles that arrived at a particular node in an aircraft. The
sum of travel times over all the bundles can be a possible
cost function used to estimate competitiveness of the online
algorithms. According to Table 3, at 64 Kbps the best of-
fline algorithm is Type-Length. Based on it, Neural-Network
would have c = 3.75 and Always-Wait would have c = 1.03.
However, we cannot assume that Type-Length is the optimal
offline algorithm. In fact, Type-Length can be improved as
follows. After processing a given PDU, if Type-Length pre-
dicts W (wait), but the next PDU arrives after the timeout
of the current bundle, then the waiting time was wasted. A
better offline algorithm could have analyzed this case and
predicted S (send).

At 256 Kbps, Type appears better than Type-Length, and
the online algorithm Always-Wait seems to win. This in-
formation is contradictory, and we explain it by saying that
there is a better offline algorithm that overcomes those in
Table 3. Nevertheless, a conclusion drawn is that, at higher
bandwidths, differences among the algorithms become smaller.
For instance, at 256 Kbps Neural-Network has c = 1.15
based on Type-Length, instead of c = 3.75.

For transmissions clearly exceeding the channel capacity,
Type is the best choice, resulting in a 89.3% improvement

Table 3: Total Travel time at sink 21 (64 Kbps, 256
Kbps)

Bandwidth Strategy Total Travel Time

(seconds)

64 Kbps Type 222,589.264

Type-Length 222,357.200

Always-Wait 228,350.418

Neural-Network 832,881.794

256 Kbps Type 8,419.056

Type-Length 8,431.477

Always-Wait 8,357.483

Neural-Network 9,725.795

compared to Always-Send used by DIS. However, if the
channel capacity is near to the demanded rate, then Always-
Wait can perform just as well, yielding a 30.3% improve-
ment over DIS. On the other hand, for a low bandwidth a
Type strategy can outperform Always-Wait by 3.1%. These
results are not surprising because Type is offline, and good
offline algorithms should outperform the online ones.

Among the studied online algorithms, the closest one to
Type is Neural-Network that strives to predict the type of
the next PDU in the sequence. Assuming that Neural-
Network could be improved sufficiently to resemble the per-
formance of Type, and defining the coefficient γ to be the
ratio of the channel capacity to the average bandwidth de-
mand:

γ =
channel capacity

average bandwidth demand
(9)

then γ can be used to select the preferred PDU bundling
strategy. For low values of γ (γ < 1)the demanded band-
width is larger than the channel capacity. Type is the best
offline algorithm in this case, but due to its offline nature,
an improved Neural-Network is selected. If γ is somewhat
larger than 1, for instance between 1 and 2 1 < γ < 2,
the channel capacity is sufficient to handle the traffic on
the average, but there could be spikes of high demand, and
Always-Wait is the best choice in this scenario. When γ is
large, for instance larger than 2 (γ > 2), there is an excess of
bandwidth as compared to the demand, and alloying is not
justified. Alloying implies the addition of a small delay while
the algorithm is waiting for the next PDU. Always-Send is
a good choice in this situation because it is simple, does not
incur in extra delays and provides good performance.

4.3 Queue Length Analysis
Due to the nature of the PDU traffic in the simulation,

two queues to focus attention on are the router queue on-
board any of the aircrafts and the satellite queue. Figure 5
shows the satellite queue at 64 Kbps and 128 Kbps. It is
clear from the graph that 64 Kbps is an insufficient band-
width, causing the satellite queue to grow unbounded once it
becomes full. The reason for having a descent after reaching
a maximum of about 6,000 messages, is that the simulation
is approaching its end and no more messages are sent from
generators. However, at 128 Kbps a significant change in
the queue length is produced, keeping it at reasonably low
values.

Also, at 64 Kbps the graph does not reach zero at the

20

Figure 5: Messages in Satellite Showing the Impact
of a Higher Bandwidth on its Queue (64 Kbps and
128 Kbps).

end. This occurs because the queue status is reported only
if another message enters the queue. After the arrival of the
last message to the queue, messages are consumed without
being reported.

Table 4 displays the average and standard deviation of
the satellite queue length for combinations of different algo-
rithms and bandwidths.

Table 4: Average and Standard Deviation in the
Satellite Queue Length for Combinations of Algo-
rithm and Bandwidth

Average: 64 128 256 512

Std. Deviation Kbps Kbps Kbps Kbps

type 316.97 2.38 0.91 0.56

411.43 3.97 1.72 1.23

Type-Length 318.154 2.44 0.92 0.56

412.273 4.13 1.75 1.26

Always-Wait 327.278 2.30 0.85 0.49

421.161 3.88 1.69 1.16

Neural 1,028.47 3.58 1.24 0.79

Network 1,045.26 6.37 2.18 1.52

Always-Send 2,962.94 5.40 1.22 0.63

2,236.83 10.78 2.55 1.57

4.4 Collision Accumulation
Collision accumulation in one of the planes at different

bandwidth rates is given in Figure 6. Results from the sim-
ulation indicate that at 64 Kbps the highest collision rate
measured at the router aboard airplane 7 was close to 12 col-
lisions per second, and it occurred during the time interval
[2050, 2100] in the link connecting the satellite to the planes.
At 64 Kbps, fewer than 4,800 collisions were detected in all
for Always-Send, representing less than 8% of the total num-
ber of PDUs. At 256 Kbps, collisions for Always-Wait were
close to 2,100, or 5.3% of all the bundles.

As Figure 6 shows, at 128 and 256 Kbps there is roughly
a total difference of 1,000 fewer collisions for Always-Wait
than for Always-Send, indicating that Packet Alloying sig-
nificantly reduces collisions for the same bandwidth. Also,
it can be noted that as the bandwidth increases, the number
of collisions decreases, because at higher bandwidths PDUs

Figure 6: Collision Accumulation at Plane 7 (64,
256, 512, 1,024 Kbps).

take less transmission time, lowering the probability of a
collision.

5. CONCLUSIONS
Several sets of simulations were performed, using different

vignettes and different assignment of OTB sites to simula-
tion nodes. The analysis of the slack time revealed the occur-
rence of negative slack spikes at regular time intervals. The
studied PDUs participating in those negative spikes showed
that they constituted sequences scheduled at the same or
almost the same time, and usually of the same type and
length. The structure of such PDUs was investigated, con-
cluding that they were similar in structure. Results demon-
strate that DIS traffic generated by OTB can be substan-
tially reduced by the application of several techniques. PDU
bundling techniques can diminish the negative spikes in the
slack time during traffic generation. Inter and intra PDU
redundancy can be eliminated by bundling and compression
techniques.

Bundling PDUs contributes to save bandwidth by remov-
ing redundant fields, which is the base of the proposed Packet
Alloying bundling. If several PDUs are produced, only one
physical bundle is actually sent carrying the non-redundant
fields of those PDUs. Packet Alloying is a lossless com-
pression technique in which the extraction of the original
PDUs occurs at the destinations in a straightforward man-
ner. The new technique significantly lowered the queue
lengths of routers and satellite, and decreased the travel
times of PDUs at low bandwidths. Its performance was
compared to that of the non-bundling option. The effect of
bundling was significant, as indicated by the collected statis-
tics. For instance, applying Always-Wait to the vignette at
64 Kbps in wireless links, a reduction in the magnitude of
negative slack time from -75 to -9 seconds (88%) for the
worst spike was achieved. Similarly, at 64 Kbps, Always-
Wait reduced the average satellite queue length from 2,963
to 327 messages for a 89% reduction. Although their per-
formance can vary, all the algorithms utilizing the proposed
bundling strategies performed significantly better than the
non-bundling Always-Send algorithm. By applying Packet
Alloying, it was found that 256 Kbps in wireless channels is
the minimum bandwidth for the studied vignette that passes
the test by all metrics (slack time, travel time, queue length,

21

and collisions).
Three online algorithms were proposed: Neural-Network,

Always-Wait and Always-Send, as well as three offline al-
gorithms: Type, Type-Length and Type-Length-Time. The
competitive ratio was estimated for the online algorithms
compared to the offline ones. For Always-Wait the index
was very close to 1, and we conclude that those offline al-
gorithms are not optimal. Also, the NN strategy can be
improved, possibly by using more neurons, a longer input se-
quence, and extended training sessions. Data revealed that
predictions based solely on the PDU type are almost as good
as predictions based on type and length, and these predic-
tions are better than Always-Wait in many cases. Therefore,
a NN approach could be useful if the percentage of success-
ful guesses is high enough that it outperforms the Type or
Always-Wait algorithms.

The Always-Wait algorithm, although not optimal, gives
very good results especially at higher bandwidths. The sim-
pler strategy Always-Wait performs as good as Type-Length,
possible because there is a high probability that predictions
based solely on the type agree with predictions based on
type and length. For example, an offline examination of
the PDUs indicated that from the 50,230 PDUs sent by the
CONUS ground station, 42,911 (85.4%) implied the same
action (wait or send) for both algorithms. It was observed
that at higher bandwidths, the difference between Always-
Wait and the offline algorithms Type and Type-Length be-
comes smaller, giving more relevance to the straightforward
Always-Wait strategy.

Even though the type of aggregation proposed proved to
be successful for DIS transmissions, it can be applied to any
protocol based on structured packets where field redundancy
is observed, as is the case of TCP and UDP transmissions.

6. ACKNOWLEDGMENTS
I would like to thank Dr. Ronald DeMara who was my

advisor in the Department of Electrical and Computer En-
gineering at the University of Central Florida (UCF) and
chair of the Bandwidth and Latency Implications of In-
tegrated Tactical and Training Communication Networks
Project. Also, thanks to PEO STRI because this work
was supported in part the U.S. Army Research Develop-
ment and Engineering Command (RDE-COMM) as part of
the Embedded Combined Arms Team Trainer and Mission
Rehearsal (ECATT-MR) Science and Technology Objective
(STO) contract N61339-02-C-0097.

7. REFERENCES
[1] L. M. Corporation. Advanced distributed simulation

technology ii (adst ii) onesaf testbed baseline
assessment (do #0069) cdrl ab02 final report. In
Proceedings of NAECON 88, Dayton, Ohio, May 1998.

[2] J. S. Frederiksen and K. S. Larsen. Packet bundling.
In M. Penttonen and E. M. Schmidt, editors,
Proceedings of the Algorithm Theory - SWAT 2002:
8th Scandinavian Workshop on Algorithm Theory,
volume 2368 of Lecture Notes in Computer Science,
pages 328–337, Turku, Finland, July 3-5, 2002.
Springer-Verlag Heidelberg.

[3] A. Goel, M. R. Henzinger, S. Plotkin, and E. Tardos.
Scheduling data transfers in a network and the set
scheduling problem. Journal of Algorithms,
48(2):314–332, 2003.

[4] IEEE Computer Society Press. IEEE Std 1278-1993,
1278.1-1995, 1278.2-1995, 1278.3-1996, 1278.1a-1998,
IEEE Standard for Information Technology - Protocols
for Distributed Interactive Simulations Applications.
Entity Information and Interaction, Application
Protocols, Communication Services and Profiles,
Recommended Practice for Distributed Interactive
Simulation - Exercise Management and Feedback,
1993, 1995, 1996, 1998.

[5] R. M. Karp. On-line algorithms versus off-line
algorithms: How much is it worth to know the future?
In Proceedings of the IFIP 12th World Computer
Congress on Algorithms, Software, Architecture -
Information Processing ’92, volume 1, pages 416–429,
Madrid, Spain, September 7-11, 1992. North-Holland.

[6] B. McDonald, J. Weeks, and J. Hughes. Development
of computer generated forces for air force security
forces distributed mission training. In Proceedings of
the 2001 I/ITSEC, Orlando, FL, U.S.A., November
26-29, 2001.

[7] S. Phillips and J. Westbrook. On-line algorithms:
Competitive analysis and beyond. In Algorithms and
Theory of Computation Handbook,. CRC Press, 1999.

[8] D. Taylor. Dis-lite & query protocol: Message
structures. In Proceedings of the 14th DIS Workshop
on Standards for the Interoperability of Distributed
Simulations, Orlando, FL, U.S.A., March 11-15, 1996.

[9] A. Varga. Omnet++ discrete event simulation system,
version 2.3, user manual, June 15 2003.

[10] J. J. Vargas. Data Transmission Scheduling for
Distributed Simulation Using Packet Alloying.
Dissertation, University of Central Florida,
Department of Electrical and Computer Engineering,
Orlando, Florida, U.S.A., December 2004.

[11] J. J. Vargas, R. DeMara, A. Gonzalez, and
M. Georgiopoulos. Bandwidth analysis of a simulated
computer network running otb. In Proceedings of the
Second Swedish-American Workshop on Modeling and
Simulation (SAWMAS 2004), Cocoa Beach, FL,
U.S.A., February 2004.

[12] J. J. Vargas, R. F. DeMara, M. Georgiopoulos, A. J.
Gonzalez, and H. Marshall. Pdu bundling and
replication for reduction of distributed simulation
communication traffic. JDMS: The Journal of Defense
Modeling and Simulation: Applications, Methodology,
Technology, 1(3):173–185, 2004.

[13] J. J. Vargas, F. Goergen, R. DeMara, A. Gonzalez,
and M. Georgiopoulos. Interim report: Bandwidth and
latency implications of integrated tactical and training
communication networks. Technical report, University
of Central Florida, Department of Electrical and
Computer Engineering, Orlando, FL, U.S.A., July 6,
2003.

22

