
A Set of Tools to Teach Compiler Construction

Akim Demaille Roland Levillain Benoît Perrot
EPITA Research and Development Laboratory (LRDE)

14/16, rue Voltaire
F-94276, Le Kremlin-Bicêtre, France

akim@lrde.epita.fr roland@lrde.epita.fr benoit@lrde.epita.fr

ABSTRACT
Compiler construction is a widely used software engineer-
ing exercise, but because most students will not be compiler
writers, care must be taken to make it relevant in a core
curriculum. Auxiliary tools, such as generators and inter-
preters, often hinder the learning: students have to fight tool
idiosyncrasies, mysterious errors, and other poorly educative
issues. We introduce a set of tools especially designed or im-
proved for compiler construction educative projects in C++.
We also provide suggestions about new approaches to com-
piler construction. We draw guidelines from our experience
to make tools suitable for education purposes.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Infor-
mation Science Education—Computer Science Education;
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers, Parsing, Run-time environments

General Terms Design, Management

Keywords Compiler Design, Object Oriented Program-
ming, Educational Projects, Design Patterns, Tools.

1. INTRODUCTION
In [9] we introduced “yet another compiler construction

project”: the Tiger project. Contrary to its peers (e.g., [2,
4, 5, 6]) its primary objective is not to implement a com-
piler, since “students will (most likely) never design a com-
piler” [8]. In the terms of [17], our approach is “software
project” oriented: the actual goal is to teach undergraduate
students Object-Oriented Programming (OOP), C++, de-
sign patterns, software engineering practices, long run team
work, etc. The scale is another significant difference: 250
students making about a dozen submissions in groups of four
— more than 2000 (proto-)compilers to assess each year.

We used off-the-shelf tools when available. They often
proved to be inadequate for students: cryptic and/or in-
complete error messages, lack of conformity with the coding
standard we demand of students, and from time to time, im-

Copyright 2008 ACM. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in ITiCSE’08, 978-1-60558-115-
6/08/06 June 30–July 2, 2008, Madrid, Spain.
http://doi.acm.org/10.1145/1384271.1384291.

possible automation. They were frequently pointed out as
sources of confusion during the end-of-the-year debriefings
with the students. So over the years, to improve their ed-
ucative value and/or to ease the management of such a large
scale project, we improved several of these tools and created
new ones taking student advice and requests into account.
In [9] we skimmed over these tools; reviewers and readers
asked for more details. This paper addresses their demand.
A small survey on compiler construction project Web sites
shows that some obsolete tools (e.g., Yacc) are still widely
used, and that some teachers still evaluate code correction
by hand. This paper also aims at discouraging this.

The contributions of this paper are to introduce tools tai-
lored to students and tools facilitating evaluation of student
projects, to highlight some rarely used features that enhance
learning, to show new teaching techniques enabled by these
tools, and to try to specify what features an auxiliary tool
should have to be suitable for education.

Figure 1 presents the compiler, Section 2 component gen-
erators, and Section 3 pedagogical interpreters, whose inter-
est is discussed in Section 4. Section 5 concludes.

2. GENERATED COMPILER COMPONENTS
Some compiler components are understood well enough to

be generated from high-level descriptions (Figure 1). Sec-
tion 2.1 covers parser generation. The parser builds an AST,
whose generation is exposed in Section 2.2. Section 2.3
presents an assembly code generator generator. They all
produce C++ code that comply with strict standards.

2.1 Parser Development
The Yacc [11] parser generator lacks many features pro-

posed by modern alternatives (e.g., [13]). Our curriculum
covers LALR(1) parsing because it is still widely used. To
address its shortcomings, we have extended Bison, the GNU
Yacc implementation [7], and improved the educative value
it lacked.

2.1.1 LALR(1) Automaton Development
LALR(1)’s speed come with a cost: hard-to-solve con-

flicts. Educators often demonstrate how to address some
conflicts. The Tiger language provides two syntactic con-
structs that bear enough similarity to confuse LALR(1):

/∗ Create a table of 51 integers initialized to 0. ∗/
int array [51] of 0;
/∗ Access cell #42 of the array . ∗/
my array [42];

http://doi.acm.org/10.1145/1384271.1384291

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module

generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpreter

generator

generator input

The scanner (sans-serif names refer to the module names) breaks the input stream of characters into a stream
of tokens, from which the parser builds an Abstract Syntax Tree (AST). Uses are bound to their declaration in
accordance with scoping rules. The type checker verifies that the AST is correct. Several stages (Translate, Canon)
perform multiple simple translations to High- and Low-level Intermediate Representations (IRs). Then instruction
selection produces pseudo-assembly using an unlimited register set. Liveness analysis produces an Interference Graph
(IG) used by the register allocator to produce the final assembly code.

Figure 1: The Tiger Compiler main modules

Both start with "id" [exp] ; it is only the following
"of" that allows one to decide. The corresponding (natural)
grammar is not LALR(1), nor even LR(k):

exp: ”id ” ”[” exp ”] ” ”of ” exp | lvalue
lvalue : ”id ” | lvalue ”[” exp ”] ”

To help students understand and solve the conflict, we
made Bison provide a detailed textual presentation of the
automata, as illustrated below. New material is highlighted.

state 0 0 $accept: . exp $end
2 1 exp: . ‘‘ id’’ ‘‘[’’ exp ‘‘]’’ ‘‘of ’’ exp

2 | . lvalue
4 3 lvalue: . ‘‘ id’’

4 | . lvalue ‘‘[’’ exp ‘‘]’’
6 ‘‘ id ’’ shift , and go to state 1

exp go to state 2
8 lvalue go to state 3

10 state 1 1 exp: ‘‘ id ’’ . ‘‘[’’ exp ‘‘]’’ ‘‘ of ’’ exp
3 lvalue : ‘‘ id ’’ . [$end, ‘‘[’’, ‘‘]’’]

12 ‘‘[’’ shift , and go to state 4
‘‘[’’ [reduce using rule 3 (lvalue)]

14 $default reduce using rule 3 (lvalue)

The old presentation had poor pedagogical value: too con-
cise, and often significantly different from the traditional
exposure in class for no good reason. Firstly, the automa-
ton had no initial rule (rule 0) from which the automaton
is derived, and had a different termination scheme. It was
the source of recurrent questions from students. Secondly,
Bison presented only the “core” of the “item sets” (the list
of “pointed rules”), which is sufficient for trained users, but
confuses students (e.g., only line 1 would have been reported
for state 0). In the case of the initial state (lines 1–5) the
item set was not actually given at all! Only actions were
reported, out of the blue. Thirdly, the lookaheads (as in line
11) were not reported. This is of tremendous help in some
cases to understand why LALR(1) fails.

In addition to the generation of the textual description of
the automaton, we added graphical representations genera-
tions. While these representations are barely usable to de-
bug real life parsers, they do help novices deal with conflicts

in small scale grammars, or to check automaton computa-
tions performed by hand. They are also a valuable help to
prepare lecture notes.

2.1.2 Parser Actions
Parsers generated by Yacc/Bison execute user-provided

actions when a rule is “recognized”. These actions may ma-
nipulate so-called semantic values (which attribute grammar
practitioners actually call synthesized attributes) associated
to the various symbols. Unfortunately, to refer to the se-
mantic values one must use their index in the rule:

exp: ” identifier ” ”[” exp ”] ” ”of ” exp
//$$ $1 $2 $3 $4 $5 $6
{ $$ = new Array (@$, new Type (@1, $1), $3, $6) }

This is hard to read and error-prone, yet Yacc is still widely
used. Under the intensive use by students, accepted short-
comings had to be addressed. We modified Bison to allow
the user to name the symbols.

To produce good error messages, the compiler needs to
keep track of the location of the symbols. Automatic lo-
cation tracking was implemented: @$, @1, @2, etc. denote
the location of each symbol. The following excerpt from the
Tiger parser demonstrates it, together with named symbols.

res=exp: type=” identifier ” ”[” size=exp ”]” ”of ” init=exp
{ $res = new Array(@res, new Type(@type, $type), $size, $init) }

2.1.3 The Parser Execution
To ensure that students correctly manage the memory,

we promote the use of checkers [9]. They have revealed a
well-known fact: it is impossible to properly reclaim mem-
ory during error recovery or when special actions such as
YYACCEPT or YYABORT are used. This was solved by the in-
troduction of the %destructor directive.

During its development, the run-time behavior of a parser
may be incorrect. For instance, if the aforementioned con-
flict is improperly solved, it may fail to recognize the sen-
tence my_array [my_index]. Debugging traces (dating back
to Yacc) help:

Starting parse
2 Entering state 0

Reading a token: token ‘‘ identifier ’’ (1.0−1.9: my array)
4 Shifting token ‘‘ identifier ’’ (1.0−1.9: my array)

Entering state 1
6 Reading a token: token ‘[’ (1.10−1.11:)

Shifting token ‘[’ (1.10−1.11:)
8 Entering state 4

Reading a token: token ‘‘ identifier ’’ (1.11−1.19: my index)
10 Shifting token ‘‘ identifier ’’ (1.11−1.19: my index)

Entering state 1
12 Reading a token: token ‘]’ (1.20−1.21:)

Reducing stack by rule 3 (line 9):
14 $1 = token ‘‘identifier’’ (1.11−1.19: my index)

−> $$ = nterm lvalue (1.11−1.19: my index)
16 Stack now 0 1 4

Entering state 3
18 Next token is token ‘]’ (1.20−1.21:)

Reducing stack by rule 2 (line 6):
20 $1 = nterm lvalue (1.11−1.19: my index)

−> $$ = nterm exp (1.11−1.19: my index)
22 Stack now 0 1 4

Entering state 7
24 Next token is token ‘]’ (1.20−1.21:)

Shifting token ‘]’ (1.20−1.21:)
26 Entering state 9

Reading a token: Now at end of input.
28 1.22: syntax error, unexpected end of file, expecting ‘‘of’’

Error: popping token ‘]’ (1.20−1.21:)
30 Error: popping nterm exp (1.11−1.19: my index)

Error: popping token ‘[’ (1.10−1.11:)
32 Error: popping token ‘‘identifier’’ (1.0−1.9: my array)

Important data (highlighted above) was missing, making
it virtually impossible to spot errors in long inputs. Students
were wasting time gaining useless expertise: processing in-
complete traces. Bison has been improved in several ways:

• The locations are reported.

• The user can specify how to print semantic values using
the new %printer Bison directive (e.g., line 3).

• The reductions (e.g., line 13) now detail both the right-
hand side symbols (type, location and value) before the
reduction takes place, and the computed result.

• Error recovery, as exposed in class, is made explicit (see
the “popping” lines below, starting at 29).

• The discarded symbols are freed thanks to %destuctor.

2.1.4 Bison Back-ends
The Tiger project teaches C++, which Bison did not sup-

port. During the first years we used the regular C output,
but it had several shortcomings which denatured the exercise
into “how to embed C++ code in a hostile C environment”.
So we equipped Bison with a multiple back-end architecture
and a LALR(1) C++ back-end was developed and used for
the Tiger assignments.

Usually, with the help of extended descriptions of au-
tomata and run-time traces, students manage to resolve the
conflicts such as the one of Section 2.1.1.

Although teaching this process is valuable — LALR(1) is
widely used — students should also be given the opportunity
to use a GLR parser generator. Generalized LR (GLR) [14]
has numerous advantages:

• It can process any Context-Free Grammar (CFG). This
is in sharp contrast with LR(1) which supports only de-
terministic languages, and even sharper with LALR(1).

• It is modular. Because CFGs are closed under union
(contrary to (LA)LR(k)), modules can be assembled.

• It supports nondeterministic grammars, such as that of
Section 2.1.1, by providing unlimited look-ahead.

• It even supports ambiguous grammars, yielding parse
forests instead of simple parse trees.

GLR gracefully addresses complex grammars, or “globally
nice” grammars with local complexities. When properly im-
plemented, GLR parsers are as efficient as LALR(1) parsers
on LALR(1) grammars. P. Hilfinger provided Bison with
an efficient GLR back-end in C, on top of which we built
a C++ version. It suffices to change the back-end to make
the natural grammar of Section 2.1.1 work: the GLR parser
is a working drop-in replacement for the incorrect LALR(1)
parser.

This enables new approaches to teaching parser genera-
tion. In the first step LALR(1) is used to train students in
conflict resolution on a simple grammar fragment, then GLR
is used for the full, more complex, possibly locally ambigu-
ous, grammar. Conversely, one may first use GLR to focus
on parser generation, and then switch the same grammar to
LALR(1) to teach conflict resolution recipes.

2.2 Abstract Syntax Tree Generation
In typical compilers (Figure 1), the parser builds an AST:

an intermediate representation of the input program. In
OOP, ASTs are straightforwardly implemented as classes
composed of “standard” parts (constructors, destructor, vis-
itor hooks, attributes, accessors. . .). Tools such as Treecc
[18] generate AST support (classes and traversals). Some
parser generators automate the AST generation [13], and
some even derive it from the grammar [15]. These tools
are actually too convenient: The implementation by hand
of AST support is an ideal introduction to OOP and C++.
In our curriculum, it is the first C++ assignment. Since
students are provided with code with gaps, we needed the
classes to be simple, “look” hand-crafted, and be carefully
documented. No tool fulfilled these needs, so we wrote
an AST generator (which is not provided to the students).
It produces AST nodes and basic visitors (abstract visitor,
identity visitor, and cloning visitor). Parts declared“teacher
only” are not given to the students. This tool helped us
change the architecture to address the shortcomings spot-
ted during the yearly debriefings with the students [9]. It
also helps us change the assignment from year to year, to
diminish the interest of cheating by stealing code from pre-
vious classes.

2.3 Code Generator Generation
The back-end of the compiler performs the “instruction

selection”: The translation from an Intermediate Language
(IL) (Section 3.1) to assembly with arbitrarily many reg-
isters. It consists in mapping tree patterns into assembler
instructions. This well studied topic led to the inception of
several code generator generators such as Twig [3] or BURG
[10]. Since no suitable tool existed, we used to provide a
hand-written code generator, which was hard to maintain
and difficult to understand or enhance.

This module was one of the least-interesting parts of the
compiler, with poor educative content, which led to dissat-
isfaction among students. We finally chose to improve an
existing (free software) generator to match our (and our stu-
dents’) expectations: Monoburg, the BURG-like generator
from the Mono Project [1]. It produces code generators in C
using bottom-up rewriting, from an IL grammar. The rules
of this grammar express acceptable rewriting patterns from
Tree, the IL we use, to assembly:

binop: Binop(lhs : exp, rhs : Const)
{ EMIT (ASM.binop (tree−>oper(), lhs, rhs−>value())); }

Thanks to Benôıt Perrot and Michaël Cadilhac, Monoburg
became a standalone project that suits our needs, providing

• C++ features, e.g., namespaces and references;

• named arguments to simplify their manipulation (e.g.,
lhs and rhs above, instead of having to reach them from
the current top-level node, tree);

• modules, thanks to a new %include directive;

• easier development and debugging, e.g., #line statements
linking the generated code and the input file(s).

Using Monoburg was a considerable improvement: some
students implemented some assembly optimizations, and even
wrote back-ends for other architectures.

3. PEDAGOGICAL INTERPRETERS
As depicted in Figure 1, a compiler is a long pipe. In the

Tiger project, students deliver code for virtually every stage.
Hence, each stage should produce machine and human read-
able output, to enable automated checking, and to ease
manual debugging. Automated verification is mandatory
in the context of large classes: in our case about 70 groups
submit a partial compiler every two/three weeks (possibly
several times if students with bad results are given addi-
tional chances). On the one (front) end, checking an AST
is straightforward: pretty-print it back to source code, and
compare the result with the input1. On the other (back) end,
checking the assembly code is simple: merely run it on an
actual computer, or on a simulator. Checking intermediate
representations is troublesome. We developed Havm (Sec-
tion 3.1) to check the Intermediate Representations (IRs),
and Nolimips (Section 3.2) to check pre- and final assembly
code.

3.1 Register-Based Intermediate Language
In most compilers several stages perform simple transla-

tions on several Intermediate Languages (ILs) instead of a
single jump from the source to the target language. Two
classes of IL are common: stack-based languages (such as
the Java Byte Code, or MSIL, the IL used in the .Net
framework), or register-based languages. While several en-
vironments exist for stack-based IL, none was available for
register-based IL.

Havm, written by Robert Anisko, is free software avail-
able on the Internet. It interprets Tree, a simple high-level
register-based IL introduced by Andrew W. Appel [4]. In a
later stage, the compiler transforms Tree code into a lower
level subset of Tree. Havm is an interpreter for both these
high- and low-level ILs—in the latter case it checks that the
restrictions are verified.

It features two sets of temporaries. The special tempo-
raries correspond to specific purpose registers such as the
frame and stack pointers (fp, sp), and incoming (i0, i1,
etc.) and outgoing (rv) argument registers. Using these
registers, the student is in charge of the stack management.
In typical compilers, register allocation is not performed
yet, and therefore registers are not preserved across func-
tion calls. To comply with this, Havm provides an unlimited
set of plain temporaries and recursion support by saving

1External AST comparison is slightly less simple because
there might be modifications such layout changes, syntactic
sugar removal, routine inlining and so forth. We actually
compare that the operations are idempotent: the pretty-
printed AST should remain unchanged if parsed and pretty-
printed again.

and restoring the whole set across calls. The combination
of explicit stack frame management and implicit recursion
support for registers proved to help introduce students grad-
ually to the implementation of recursion support in actual
languages and compilers.

In addition to simple verifications (e.g., uninitialized mem-
ory reads), Havm features a trace mode that helps students
analyze incorrect executions, and simple performance mea-
surements, to compare programs in terms of efficiency.

3.2 MIPS Assembly Language
The last compiler stages (Figure 1) usually process assem-

bly language. Simple and clean, mips is a commonly chosen
architecture for education [4, 12, 16]. We are no exception.

B. Perrot introduced Nolimips, a mips simulator. It allows
one to test compilers on any computer, and provides several
features specifically developed for education that other mips
simulators lack (e.g., SPIM [12], MARS [16]).

Because registers are not allocated at instruction genera-
tion (Figure 1), students cannot check their modules at this
stage. They have to complete the full compiler before check-
ing, but then errors might come from either the instruction
selection, the liveness analysis, or the register allocation.
The instructors are not in a better position: the assessment
cannot be automated. To address this, Nolimips supports
arbitrarily many general purpose registers.

Challenging a complete register allocator for mips is also
delicate. Since there are 32 registers, writing tests that ex-
ercise “spills” (i.e., when no register is left and temporaries
have to be allocated on the stack) is very difficult, and a
useless skill. Nolimips makes this straightforward: It can
downgrade the mips architecture by limiting the number of
caller-save, callee-save or argument registers. It can also
check that callee-save registers are preserved across function
calls, as required by the mips calling convention.

Programs generally generate side-effects, such as printing
or reading characters. Other services typically provided by
operating systems (exiting, memory allocation or disposal)
may improve the experience as well. These tasks can be
carried out in Nolimips through the use of convenient system
calls, inspired by the standard C library.

Compared to our previous use of SPIM, Nolimips helped
our students diagnose their mistakes much earlier, and even
allowed them to uncover bugs. Indeed, some calling conven-
tion violations can remain unnoticed. While these features
were designed for education, they do make sense in produc-
tion by making stress tests easier to design.

4. DISCUSSION

4.1 Feedback from the users
Two assistant professors make the lectures, and 20 men-

tors, students from older classes who enjoyed the project,
handle lab sessions and assist the students at any time.
These educators reported that from year to year, the inter-
action with the students is less demanding. Basic questions
are less frequently asked since the tools now provide stu-
dents with more relevant information. The quality of the
delivered compilers also increased, in particular thanks to
the early control by stricter tools. Automating everything
that could be, included gathering the projects and evaluat-
ing them, allowed us to spend more time on more advanced
issues. Though it is harder to get feedback from the stu-
dents, since they don’t see the evolution of the tools, the

mentors report that the tools led more students to success
than before with less assistance. Besides, some improve-
ments were prompted by students and mentors.

4.2 Software tools for education
What makes a tool suitable for education purposes? In

our experience it provides several distinctive features:

Low learning curve. While practitioners are used to com-
plex and possibly inconsistent interfaces, instructors
don’t have the leisure to spend time on them. Students
need to focus on the actual issues. This requirement
is at the origin of most changes in Nolimips, the one-
directive change to move from LALR(1) to GLR with
Bison, etc.

Fidelity to theory. Tools should obey as strictly as pos-
sible to the theory. The previous lack of initial rule in
Bison disrupted students.

Complete context. Providing as much context as possi-
ble in errors or debugging traces also helps novices to
locate and understand a problem. The changes in Bi-
son’s automaton report, location tracking (which ben-
efits Bison too), and debugging traces fall into this
category.

Fill the gap. Large pieces of software that cannot be checked
before completion are a daunting task for students.
The ability to run Intermediate Representations (IRs)
thanks to Havm and Nolimips enables most groups to
succeed where only a few groups used to. As far as
the authors know, no industrial strength compiler ex-
ercises IRs this way.

Paranoid checks. “Useless” constraints can bring out ex-
isting bugs more easily. For instance, Nolimips pro-
vides means to augment the register pressure artifi-
cially to stress the register allocation.

Abundant and relevant warnings Report valid but du-
bious constructs. Activate warning flags and teach stu-
dents to pay attention to them.

Added freedom. As emphasized in [9], this project must
be doable by a majority of students. This demoral-
izes the best ones who think they’ve done no better
than the majority. So any such project should provide
optional challenges. Thanks to GLR and Monoburg
some students did work that went much further than
the requirements.

Compliance Tools should comply with the standard we
demand of students. For instance, it is unacceptable to
ask students to use generated code that leaks memory.

Auxiliary educative tools also help instructors by (i) free-
ing them from interactions with students about basic prob-
lems, (ii) improving the whole quality allowing one to focus
on more interesting issues, and (iii) automating parts of the
assessment. As an example, from one year to the follow-
ing, we doubled the number of groups whose parser passes
more than 97% of our tests, we tripled the number of correct
ASTs, and doubled the average grade for the binding stage.

5. CONCLUSION
Addressing shortcomings in the tools students use im-

proves the learning by making it more efficient. The tools
we changed or introduced for compiler construction project
gave them more freedom to experiment, more leisure to un-
derstand the core issues, more opportunities to find their
mistakes by themselves. They also helped us automate parts

of the management of the project. Following the guidelines
we propose should help to improve other student project
frameworks.

Acknowledgments
Olivier Gournet designed Figure 1. Stephen Frank, Benôıt
Sigoure, and Alexandre Borghi proofread this paper.

6. REFERENCES
[1] Mono home page. http://www.mono-project.com.
[2] A. Aiken. Cool: A portable project for teaching compiler

construction. ACM SIGPLAN Notices, 31(7):19–24, July
1996.

[3] A. W. Appel. Concise specifications of locally optimal code
generators. Technical Report CS-TR-080-87, Princeton
University, Dept. of Computer Science, Princeton, New
Jersey, February 1987.

[4] A. W. Appel. Modern Compiler Implementation in C,
Java, ML. Cambridge University Press, 1998.

[5] J. Aycock. MBL: A language for teaching compiler
construction. Technical Report 1995-574-26, Department of
Computer Science, University of Calgary, 1995.

[6] D. Baldwin. A compiler for teaching about compilers. In
Proceedings of the 34th SIGCSE technical symposium on
Computer science education (SIGCSE’03), pages 19–23,
Reno, Nevada, USA, February 2003.

[7] R. Corbett, R. Stallman, and P. Hilfinger. Bison: GNU
LALR(1) and GLR parser generator, 2003.
http://www.gnu.org/software/bison/bison.html.

[8] S. Debray. Making compiler design relevant for students
who will (most likely) never design a compiler. In
Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pages 341–345. ACM Press,
2002.

[9] A. Demaille. Making compiler construction projects
relevant to core curriculums. In Proceedings of the Tenth
Annual Conference on Innovation and Technology in
Computer Science Education (ITICSE’05), pages 266–270,
Universidade Nova de Lisboa, Monte da Pacarita,
Portugal, June 2005.

[10] C. W. Fraser, R. R. Henry, and T. A. Proebsting.
BURG–fast optimal instruction selection and tree parsing.
Technical Report CS-TR-1991-1066, 1991.

[11] S. C. Johnson. Yacc: Yet another compiler compiler. In
UNIX Programmer’s Manual, volume 2, pages 353–387.
Holt, Rinehart, and Winston, New York, NY, USA, 1979.
AT&T Bell Laboratories Technical Report July 31, 1978.

[12] J. R. Larus. SPIM S20: A MIPS R2000 simulator.
Technical Report TR966, Computer Sciences Department,
University of Wisconsin–Madison, 1990.

[13] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k)
parser generator. Software, Practice and Experience,
25(7):789–810, 1995.

[14] M. Tomita. Efficient Parsing for Natural Language: A
Fast Algorithm for Practical Systems. Kluwer Academic
Publishers, 1985.

[15] E. Visser. Scannerless generalized-LR parsing. Technical
Report P9707, Programming Research Group, University
of Amsterdam, July 1997.

[16] K. Vollmar and P. Sanderson. MARS: An
education-oriented MIPS assembly language simulator. In
Proceedings of the 37th SIGCSE technical symposium on
Computer science education (SIGCSE’06), pages 239–243,
Houston, Texas, USA, March 2006. ACM Press.

[17] W. M. Waite. The compiler course in today’s curriculum:
Three strategies. In Proceedings of the 37th SIGCSE
technical symposium on Computer science education
(SIGCSE’06), pages 87–91, Houston, Texas, USA, March
2006. ACM Press.

[18] R. Weatherley. Treecc, the Tree Compiler-Compiler.
http://www.southern-storm.com.au/treecc.html, 2002.

http://www.mono-project.com
http://www.gnu.org/software/bison/bison.html
http://www.southern-storm.com.au/treecc.html

	1 Introduction
	2 Generated Compiler Components
	2.1 Parser Development
	2.1.1 LALR(1) Automaton Development
	2.1.2 Parser Actions
	2.1.3 The Parser Execution
	2.1.4 Bison Back-ends

	2.2 Abstract Syntax Tree Generation
	2.3 Code Generator Generation

	3 Pedagogical Interpreters
	3.1 Register-Based Intermediate Language
	3.2 MIPS Assembly Language

	4 Discussion
	4.1 Feedback from the users
	4.2 Software tools for education

	5 Conclusion
	6 References

