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What Orientation Should 
Ada Objects Take? 
A d a  has often been blamed for not 
being really object oriented, in the sense 
that it provides only static inheritance 
(through derived types), but not a full 
inheritance mechanism. Many  pro- 
ponents  of  the so-called object- 
oriented languages (OOLs,  see [8] or 
[13] for example) have claimed that a 
full i nhe r i t ance  m e c h a n i s m  is 
absolutely necessary for true object 
orientation. 

On the other hand, Booch [1] has 
defined a method he calls object- 
oriented design (OOD), which does 
not use inheritance. Many Ada teams 
have used this method successfully, 
feeling that their designs are really 
oriented according to abstractions of  
real-life objects, and still do not feel a 
need for inheritance. This makes 
them quite uneasy when reading 
about the necessary features of  object 
orientation. To make things more 
complicated, Booch has advocated 
inheritance in his recent book [2]. 
The  9X revision of  the standard will 
introduce inheritance into Ada, but 
not in the same ways as pure OOLs; 
Ada opponents will certainly take 
this opportunity to claim that the 
magic label object oriented still does not 
apply to Ada. 

In this article, we will discuss vari- 
ous forms of  object orientation and 
how they apply to Ada, and see how 
the new features of  Ada 9X will im- 
pact the design of  Ada programs. We 
will address the issue here only from 
the point of  view of  a language that is 
directed toward software engineer- 
ing. Other  uses of  the object para- 

digm, especially in organizing data 
for AI applications or data bases are 
not within the scope of  this work. We 
will compare Ada mainly to two chal- 
lengers: C + +  because it is a lan- 
guage that is currently attracting 
considerable attention, and Eiffel 
because it is a language that has spe- 
cifically been designed to embody the 
concepts of  inheritance in a software 
engineering approach. 

Object Orientation 
What actually makes software "object 
oriented" is that the basic conceptual 
units are abstractions of  real-life ob- 
jects: 

Object-oriented design is the con- 
struction of  software systems as 
structured collections of  abstract data 
type implementations [7]. 

Since an object can only be de- 
scribed by a set of  properties and a 
set of  actions it has on other objects, 
an abstraction o f  an object is a pro- 
gramming unit that gathers both 
data structures and program struc- 
tures. This is achieved through the 
use of  abstract data types (ADTs) 
which provide encapsulation and lo- 
cality, a property that simplifies 
maintenance since all properties of  a 
given aspect of  the problem domain 
belong to a single piece of  software. 

From this point of  view, Ada is 
more object oriented than current 
OOLs, because it allows definition of  
types that model more accurately the 
constraints of  real-life objects. In lan- 
guages such as Eiffel or C + + ,  basic 

data types are still determined by the 
underlying hardware, and it is not 
possible to define types whose con- 
straints are those of  the real-world 
objects they are supposed to repre- 
sent. Consider, for example, a need 
as simple as an integer type that is 
known to range from 0 to 40,000, 
something the Ada programmer  
would simply declare as: 

t y p e  M Y _ T Y P E  is  r a n g e  0 .. 40_000; 

In Eiffel or C + + ,  checking that 
values are within bounds would re- 
quire making it a class, and redefin- 
ing all operations, including assign- 
ment, to preserve value-semantics on 
assignment. Moreover, there is no 
portable way of  ensuring that the 
underlying integer type used to rep- 
resent the value can accommodate 
the whole range, therefore forcing 
the use of  the longest available inte- 
ger type on the machine, and almost 
certainly wasting s p a c e . . .  Needless 
to say, in practice, nobody makes the 
effort, and good old type INTEGER 
(Eiffel) or int (C) is used throughout  
the programs. 

ADTs, however, are not sufficient 
to make object orientation effective. 
In a large project, there are many 
objects, and some kind of  organiza- 
tion as well as factoring of  common 
properties is needed. How this fac- 
torization is achieved is what differ- 
entiates OOLs from the Booch ap- 
proach. 

In a classical OOL, objects are or- 
ganized into a hierarchy of  classes. 
General classes contain features com-  
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mon to many subclasses, and special- 
ized subclasses implement  only be- 
haviors that are common to a subset 
of  the parent  class's objects. We will 
call this method "Object orientation 
by classification first" (or simply 
stated classification). This organiza- 
tion is akin to the classification of  bio- 
logical species [6]. For example,  a 
class GRAPHICAL__OBJECT would 
gather  all the propert ies  of  graphical  
objects, and a class RECTANGLE 
(derived from GRAPHICAL_OB- 
JECT) will contain only those aspects 
that are peculiars to rectangles. Of  
course, since a RECTANGLE is a 
graphical  object, it must  still have the 
propert ies  of  GRAPHICAL_OB- 
JECT. It is said to inheri t  from its 
parent  type, GRAPHICAL_OB- 
J E C T  

OOD provides an alternative 
method by recognizing that objects 
are made of  di f ferent  parts,  and that 
the same parts can be used to make a 
variety of  higher-level objects. Each 
object is designed as an assembly of  
lower-level components .  We will call 
this method "Object orientat ion by 
composit ion first" (or simply stated 
composition). An impor tan t  feature of  
composit ion is that there  is no need 
to know how a component  is made  in 
o rde r  to use it. A set o f  parts that 
form an object constitutes an abstrac- 
tion layer. Therefore ,  the basic struc- 
tur ing concept  in OOD is organi-  
zation of  objects according to 
abstraction layers. This  is what is 
general ly used in engineering,  and 
has been especially successful in the 
electronic industry. 

Why do so many people  believe 
that classification is the only "true" 
object orientation? Perhaps because 
OOL designers place a heavy empha-  
sis on inheritance, which is clearly 
necessary only to classification. Most 
books about  OOLs generally address  
only classification; they start  with a 
discussion about  ADTs (and [8] is 
really great  at that). Then,  there is a 
short  s tatement such as "we generally 
think of  objects as being gathered 
into c l a s ses . . . " ,  and then the discus- 
sion goes on to classification and in- 
heritance. They  jus t  do not ment ion 
that o ther  organizations are possible. 
Hence, the "natural  necessity" of  
classification and inheritance. Few 
papers  have advocated composition 

as a different ,  effective, object orien- 
tation [9, 10, 11], 

Of  course, both dimensions are 
present  in any object. At the pro- 
g ramming level, languages must sup- 
port  them. Composit ion is absolutely 
necessary even for classification- 
or iented languages, and Eiffel offers 
a syntactic construction that makes a 
clear distinction between composi- 
tion and classification. Al though it 
is possible to ignore classification 
for composi t ion-oriented languages, 
classification is helpful  for describing 
data with variant structure. Ada  has 
many features that favor composi- 
tion, but  only a limited suppor t  for 
classification; new features of  Ada  
9X will add  more facilities. The  im- 
por tant  factor, however, is that, at 
design level a main design direction 
must  be chosen; the o ther  aspect will 
remain  second. 

An Example 
To stress the difference between clas- 
sification and composition, we will 
take a simple example,  which is actu- 
ally the very example used by Turbo-  
Pascal ® to introduce inheri tance [3]. 

First, the notion of  a mathematical  
point  is introduced;  Using Ada  syn- 
tax, we can define it as follows (using 
Ada  syntax): 

type P O I N T  is 
record 

X,Y : INTEGER;  
- -  Of  course, with Ada,  INTE-  
- - G E R  should not be used 
here... 

end record; 

Then,  the question arises of  how 
to define a screen pixel. The  expla- 
nation goes on like this: "Of  course, a 
pixel is a kind of  POINT,  with an 
extra  feature:  it can be visible or  
not." Thus  the need to extend the 
type P O I N T  to make it a PIXEL 
appears ,  and inheri tance comes nat- 
urally. In particular,  if there is a 
MOVE procedure  def ined for 
POINTs,  you do not need to rewrite 
it, since it will apply to PIXELs as well 
. . .  as long as the behavior  for 
POINTs  suits your  needs for 
PIXELs, which in general  will not 
be the case. I f  you need a di f ferent  
behavior,  you will have to write 
the code anyway. 

However,  is it so obvious that a 

pixel is a point? A point  is a mathe-  
matical object, while a pixel is a dot  
on a screen . . . Quite di f ferent  ob- 
jects actually. An alternative ap- 
proach would be to define a PIXEL 
as a self-standing entity, def ined by 
various attributes. One attr ibute is its 
position (which can be described 
using the notion of  mathematical  
point). Another  one is whether  it is 
visible or  not. This would be the 
composit ion approach.  With compo- 
sition, the MOVE procedure  you 
def ine on PIXELs bears no visible re- 
lationship to the MOVE on POINTs  
(anyway, the fact that a PIXEL in- 
cludes a P O I N T  is general ly h idden 
in a private part). This does not  pre- 
clude the implementa t ion of  MOVE 
for PIXELs from using MOVE on 
POINTs,  therefore  reusing the code 
for POINTs,  but this dependency  
will remain  hidden.  Thanks  to over- 
loading, the same identif ier  (MOVE) 
can be used both for POINTs  and 
PIXELs, providing uniformity f rom 
a user's point  of  view. 

A benefit  of  the classification ap- 
proach is that if you want to change 
the proper t ies  of  a mathematical  
point, all o f  its descendants  (includ- 
ing PIXEL) will be automatically 
updated .  The  drawback is that  users 
of  PIXEL know its relat ionship to 
POINT,  and can apply POINT's  
methods (even those that  are not 
necessarily meaningful  for a PIXEL) 
to it. The  implementa t ion is visible: if 
the designer  of  PIXEL wants to 
change the implementa t ion strategy, 
for example  by deriving from some- 
thing o ther  than POINT,  the de- 
signer is unable to do so without dis- 
turbing the code of  PIXEL's users, 
since those users may have used 
methods inheri ted from POINT.  

Linguistic Aspects 
OOLs have brought  a number  of  
new notions into p rog ramming  lan- 
guages: polymorphism,  dynamic 
binding,  and inheritance. The  popu- 
larity OOLs have achieved necessar- 
ily means their  use carries a number  
of  benefits. Many of  these benefits, 
however, are most noticeable only 
when compared  with o lder  p rogram-  
ming languages such as Pascal or  C; 
the impor tant  question is how do 
these benefits apply to Ada? In o ther  
words, are those new notions neces- 

72 November 1992/%1.35, No.ll/COMMUNICATIONS OF T H E  ACM 



sary to provide those benefits? We 
will discuss the tools provided by Ada  
to satisfy the same needs, both using 
current  Ada  and the 9X improve- 
m e r i t s .  

Encapsulation 
Encapsulation is the ability to gather  
into one place all aspects related to a 
given abstraction of  a real-world ob- 
ject. Many benefits of  object-oriented 
technologies come from abstraction 
and encapsulation, which are com- 
mon to both composit ion and classifi- 
cation. 

C has a very poor  encapsulation 
mechanism (the file can be used as a 
primitive means for packaging enti- 
ties). The  class concept in C + +  has 
provided a means of  logically relat- 
ing a data type and its associated sub- 
programs,  and a number  of  C + +  
projects use classes only for that pur-  
pose, without using inheritance. In  
Eiffel, classes are the only s tructuring 
feature, used for encapsulation as 
well as for def ining compilation 
units. 1 Neither  of  these languages 
allows for nested units (i.e., all ab- 
stractions must be def ined at the li- 
brary  level, and there is no way to 
define an encapsulated construct 
local to a given entity). It should be 
noted that having nested units and 
inheri tance in the same language 
creates technical difficulties in o rde r  
to preserve safety of  the language; 
Ada 9X will achieve this, thanks to its 
strong typing features, at the cost of  
extra (and somewhat difficult) com- 
p i l a t i o n - o r  even run- t ime--checks .  

Ada  features the package - - a  very 
powerful  encapsulation mechanism. 
Packages can be used for many pur-  
poses, including but not limited to, 
building abstract data types. Let us 
stress this point: an Ada package is 
not necessarily an ADT; a package 
containing the definit ion of  a private 
type together  with associated opera-  
tions is the Ada  way of  defining an 
ADT. Being more general,  the pack- 
age is a bit less adapted  to the partic- 
ular need o f  building classes; but this 
is outweighed by its ability to provide 
a flexible means of  satisfying any 
encapsulation needs, including local 

JThe latest version of  Eiffel has brought a new 
packaging construct, not mentioned in [8]. Eif- 
fel is such a moving target that any reference to 
it should mention the precise version used. 

encapsulations. 
It is unarguably  true that the class 

mechanism brings a real enhance- 
ment  to languages such as C or  Pascal 
by providing them with an encapsu- 
lation mechanism that has been 
sorely missing. With the package, 
Ada  already has a more powerful  
tool. Moreover,  9X will fur ther  im- 
prove it by providing a second level 
of  organization, with the notion of  
hierarchical libraries. The  class 
mechanism is clearly not indispensa- 
ble for the purpose  of  encapsulation. 

Polymorphism and Dynamic 
Binding; Type Extensions 
Polymorphism is the ability for a vari- 
able to hold various data structures. 
In  most OOLs, a variable may hold 
not only values of  its own type, but  
also values of  a type that inherits 
from the variable's declared type. A 
consequence is that the designer of  a 
type with an OOL does not know 
what the actual type is that the vari- 
able will hold at run  time: anyone 
reusing the type may add (later) new 
variations. In  Ada,  a polymorphic  
variable must be explicitly declared 
as such, using a type with discrimi- 
nants and variant parts. No logical 
dependency  is necessary among the 
di f ferent  forms the variable can take, 
but  those forms are fixed by the type 
declaration. I f  a new form is neces- 
sary, the original type must  be modi- 
fied. 

Dynamic binding is the ability of  an 
operat ion to per form differently ac- 
cording to the actual type of  the 
value a polymorphic  variable is hold- 
ing. This is pe r fo rmed  automatically 
with OOLs. At run time a (formal) 
operat ion dispatches to the correct 
implementat ion according to a hid- 
den descr iptor  that uniquely identi- 
fies the current  variant. In Ada, a 
dispatching operat ion must be ex- 
plicitly provided in the form of  a 
p rocedure  accepting a paramete r  of  
the polymorphic  type, which uses a 
case statement, driven by the dis- 
criminant,  to call the appropr ia te  
operat ion.  The re  is no need to have a 
one-to-one mapping  between the 
operat ion on the polymorphic  type 
and the corresponding t reatment  for 
a part icular  variant. However,  all this 
dispatching must  be explicitly coded. 

By requir ing explicit control over 

polymorphism and dynamic binding, 
the Ada  solution gave complete con- 
trol to the designer  of  an A D T  over 
all possible uses of  the type, and com- 
plete compile-t ime type checking. I f  
a variant is added  to a discriminant 
and the cor responding  code is not 
added  to the relevant case statement, 
the p rogram will simply not compile. 
This is the reason it was chosen in the 
first place, at the cost of  more  explicit 
code and recompilations. 

This trade-off,  however, of  secu- 
rity against ease of  evolution is now 
being regarded  as too strict for many 
applications. Dynamic binding pro-  
vides a simpler  way of  adding  new 
variants to an existing type, no 
change in code is necessary. This 
makes evolution and addit ion of  new 
features easier. The  drawback is that 
some type checking must  be delayed 
until execution time. With 9X, both 
paradigms will be available, under  
the responsibility of  the initial de- 
signer. Tagged types will allow for type 
extensions, inheri tance and dynamic 
binding for class-wide operations. 
This will make applications easier to 
evolve, and will allow for easier inter- 
facing with foreign environments.  
Nevertheless, extensions will be al- 
lowed only if the initial type is 
tagged: an impor tant  consequence is 
that those new features will be avail- 
able only if the initial designer  specif- 
ically gave permission; if necessary, 
complete control  over all usages of  
the type can still be guaranteed.  

The  language will now leave the 
responsibility of  whether  security or 
ease of  evolution should prevail as a 
design choice. This careful approach 
will be a major improvement  from 
the point  o f  view of  p rogram evolu- 
tion, while still retaining, if required,  
the secure approach  that makes Ada  
unique for many critical applications. 

Reusing Algorithms 
One of  the needs that many previous 
p rogramming  languages failed to 
satisfy is the ability to provide reusa- 
ble algori thms (i.e., algori thms that 
can be appl ied to a variety of  types). 
The  basic point  is that most algo- 
r i thms are not  applicable to an arbi- 
t rary type. For  example,  the simple 
algori thm used to exchange the con- 
tents of  two variables: 

TEMP := X; 
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X := Y; 
Y := TEMP; 

asserts that at least assignment is 
available for the type o f  variables X, 
Y and TEMP, something that is not 
necessary true, e.g., for a limited type 
in Ada  (or a file type in Pascal). The  
main problem when designing a way 
of  providing reusable algorithms is 
how to express those common prop-  
erties that are required of  any type 
to which the algori thm is applicable. 

In OOLs, this is obtained by as- 
suming that all types having those 
common proper t ies  belong to a given 
class. For  example,  consider the al- 
gor i thm used to move a f igure on 
a s c r e e n :  

E r a s e ( F i g u r e ) ;  
Se t_pos i t ion(F igure ,  
To = >  (New_X, New_Y));  
D r a w ( F i g u r e ) ;  

This algori thm is applicable to any 
graphical  object that can provide an 
opera t ion  to erase it f rom the screen, 
one to set its cur rent  location, and a 
third to draw it again. In Eiffel, this is 
expressed as follows: 

deferred class GRAPHIC_OBJECT 
export  

MOVE, DRAW, ERASE, 
SET_POSITION 

feature 
X, Y : INTEGER; 
DRAW is 

deferred 
end; - -  DRAW 
ERASE is 

deferred 
end; - -  ERASE 
SET_POSITION(To_X : INTEGER; 
To_Y : INTEGER) is 

deferred 
end 

MOVE(To_X : INTEGER; To_Y : 
INTEGER) is 
do 

ERASE; 
SET_POSITION(To_X, To_Y); 
DRAW 

end; - -  MOVE 
end - -  GI~APHIC_OBJECT 

(the de fe r red  clause means that any 
type that inherits from 
GRAPHIC_OBJECT must provide a 
definit ion for the actual feature). 
Now, every object such as REC- 
TANGLE or  CIRCLE will inheri t  

f rom GRAPHIC_OBJECT;  DRAW, 
SET_POSITION and ERASE will be 
redef ined  for each, but  the algori thm 
for MOVE will automatically be 
available. 

The  Ada  solution expresses more  
directly the basic requirement :  for 
any data type on which certain oper-  
ations are available, a given algo- 
r i thm is applicable. This translates 
into: 

generic 
type ITEM_TYPE is 
l imited private; 
with procedure DI~kW(ITEM : in 
ITEM_TYPE); 
with p r o c e d u r e  SET_POSITION 
(ITEM : in out  ITEM_TYPE; TO : 
in POSITION); 
with p rocedu re  EI~ASE(ITEM : in 
ITEM_TYPE); 

procedure MOVE(ITEM : in out 
ITEM_TYPE); 

This generic unit  can in turn be 
instantiated by providing the corre- 
sponding types and operat ions.  Note 
however that d i f ferent  instantiations 
need not bear  any conceptual  rela- 
tionship; imagine, for example,  a 
remotely control led toy crane: erasing 
may be matched with an operat ion to 
pick a block up  from the floor, setting 
position with moving the crane, and 
drawing with placing the object back 
on the floor. The  MOVE algori thm 
would therefore  be applicable to 
moving cubes a round  the floor, al- 
though a crane is obviously not a 
graphic object. 

From the point  of  view of  the code 
actually generated,  both solutions are 
likely to be comparable.  The  code for 
the generic unit  can be genera ted  
only once (no duplication) by replac- 
ing all calls to impor ted  subprograms 
by indirect  calls, which is exactly what 
dynamic binding will use. 

The  main difference between the 
two views is conceptual:  with OOLS, 
to reuse an algori thm you have to 
incorporate  your own type into a for- 
eign structure. In  the preceding EIF- 
FEL example,  you have to make your 
type inheri t  f rom GRAPHIC_OB- 
JECT, therefore  stating that your  
type /s a figure. With generics, the 
dependency  is reversed: you incor- 
pora te  a foreign algori thm into the 
proper t ies  of  your type, but  you do 
not create any dependency]rom your  

type to the foreign structure.  You buy 
a reusable algori thm from a vendor  
and incorporate  it into your  design, 
but  this does not create a conceptual  
dependency  to the provider  of  the 
abstraction. 

It must  be noted that many com- 
parisons of  the relative merits of  in- 
heri tance and generics for code 
reuse only consider  generic type pa- 
rameters;  what makes generics pow- 
erful in Ada  is the ability to impor t  a 
type together with an explicit list o f  
requi red  operat ions.  Ignor ing  this 
fundamenta l  feature  simply kills the 
most powerful  uses of  generics. 

Methodological Aspects 
Is classification really a design 
method? It has long been recognized 
that  languages are not  the ult imate 
solution to the software crisis; devel- 
opmen t  methods  are the impor tan t  
factor, and languages are here  only 
to help in applying a given method.  
Classification is the methodological  
end  that justifies inheri tance means. 

Classification is not as natural ,  and 
certainly not  as easy, as many pur-  
port.  For  example,  there  was a 
lengthy interchange of  messages on 
the comp.lang.eiffel  bulletin board  
on whether  a RECTANGLE should 
be considered a kind of  (i.e., inheri t  
from) POLYGON. The  issue here  
was that a POLYGON featured a 
method called ADD_VERTEX, that 
was clearly not  applicable to REC- 
TANGLEs.  Al though there was a 
great  deal  o f  controversy, many con- 
cluded the only safe way was to N O T  
use inheritance,  and  to consider  a 
RECTANGLE as not being a POLY- 
GON. 

One must  recognize there  is cur- 
rently no widespread methodology 
for applying inheritance, something 
akin to OOD and its derivatives (ex., 
GOOD [12], HOOD [4]). A method-  
ology is taken here as a set of  rules 
and associated tools that  guide a de- 
veloper  dur ing  the design process, 
allow the cross-checking of  struc- 
tures, and provide the necessary doc- 
umentat ion.  

Some even advocate that inheri-  
tance should lead to abandoning  the 
whole idea of  top-down design. Since 
the basic idea is to design by reusing 
and adjust ing existing components ,  
object orientat ion would lead to 
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bottom-up design. Realistically, no 
project comprising several hundred 
thousand lines of  code can be com- 
pletely developed bottom-up, and it 
should be noted that the electronic 
industry does use top-down design, 
although eventually everything is 
built from existing components. Too 
often, advocating bottom-up design 
is just an excuse for not having any 
sound design methodology. 

Although classification is a wide- 
spread scientific activity, it is not ob- 
vious that it can be applied to soft- 
ware development. The problem 
faced by Linn6 was to put some orga- 
nization into existing species, while 
the software designer has to design 
new objects--quite a different task. 
Note that there is nothing in the elec- 
tronic industry (which is certainly 
closer to software development than 
entomology!) that looks like design 
by classification (although classifica- 
tion is used to organize existing com- 
ponents, but not to design them). 

IS Classification Used as it 
Should Be? 
Even though classification at first 
sight appears to be a scientific activ- 
ity, in practice it appears that inheri- 
tance is actually used for a very dif- 
ferent purpose. Actually, almost 
every book, paper, or article that 
presents classification is self-contra- 
dictory. It always starts by explaining 
classification, where it appears that a 
project is well-organized from top- 
level, general classes, to derived, 
more specialized classes• The topol- 
ogy of  the project is thus said to fol- 
low the general scientific scheme of  
species classificationfl It will be ex- 
plained later that as projects evolve, 
there is no need to change existing 
classes: new classes are derived from 
older ones, in order  not to disturb 
parts of  the software that depend on 
them; as needs evolve, new behaviors 
are provided in the newly derived 
classes. This means that the topology 
of  the project no longer reflects a 
logical classification, but the evolu- 
tion of  requirements over time. The  
inheritance graph becomes a kind of  
stack of  archeological layers, and it is 

2Species classification and graphical objects are 
not the only examples taken in all books about 
classification. Is it possible to apply it to any- 
thing else? 

impossible to understand it unless 
you know the complete story of  the 
project. 

Another  issue is that inheritance is 
often used not for classification, but 
just to grab pieces of  code. Jaulent [5] 
gives an example in which he makes 
a class PARROT inherit from the 
class HUMAN_BEING because it 
needs the property CAN_SPEAK 
• . . This kind of  misuse o f  the inher- 
itance mechanism, especially when 
multiple inheritance is available, is 
extremely tempting to the program- 
mer who just wants to "reuse" exist- 
ing code, while actually introducing a 
terrible mess in the dependencies 
between objects. 

The Case for Reuse 
Of course, reuse is not limited to the 
case of  reusing algorithms men- 
tioned earlier• It extends to reusing 
objects, subsystems, even full de- 
signs. This is certainly a prime con- 
cern, and Ada was designed for 
reuse. What is not generally said is 
that there are different kinds of  
reuse, and reuse in the Ada sense is 
very different from the kind of  reuse 
OOLs provide. 

Reusability, as defined in OOLs, is 
targeted toward delta coding. The  
basic idea here is that no two differ- 
ent projects will ever need exactly the 
same components. Therefore,  if the 
exact abstraction you need is not in 
the program library, inheritance lets 
you choose one that is close enough 
to what you want to do, and just 
modify (I dare not say "patch") the 
difference (the delta) between the 
behavior provided by your ancestor 
and the one that is needed• This is an 
efficient means of  rapidly developing 
components tailored to specific 
needs from existing pieces. 

On the other hand, composition 
promotes standard, opaque compo- 
nents. There  is no insight on how 
they are designed internally, and no 
way to change the behavior except 
where explicitly provided for 
(through generics). This keeps uni- 
formity among all uses and the ability 
to change the implementation of  the 
component  without affecting users in 
any way (even recompilation is not 
necessary if you change only a body). 
This has an unpleasant consequence 
for the programmer:  if no compo- 

nent fits exactly the programmer 's  
needs, then these needs must be ad- 
justed to fit existing components 
(and the p rogrammer  must resist the 
temptation o f  designing a specifically 
tailored component).  This is quite a 
new constraint in software design, 
but very common in all other engi- 
neering disciplines. I f  you need a 
3.456K1) resistor, what do you do? 
Use a 3.7K1~ and adjust your design. 
Of  course, working with a set of  stan- 
dard frozen components is much 
more cost-effective for maintenance 
and validation. 

Let's face it: the kind of  reuse of- 
fered by Ada is less appealing to the 
programmer,  since it puts constraints 
on the design phase that will only pay 
later on. But Ada is intended for 
long-term projects, not quick proto- 
typing. In the slums, people build 
houses by reusing old items such as 
pieces of  wood and tires, and adjust- 
ing them to their needs. This kind of  
reuse is often extremely clever, and if 
you absolutely need a shelter rapidly, 
it is certainly an efficient method. 
But will the house withstand a storm? 
This is certainly not industrial reuse, 
which is building houses from well- 
engineered, standard prefabricated 
components. 

IS it Possible to Reconcile 
Composit ion and Classification? 
Since composition and classification 
both have drawbacks and benefits, it 
is tempting to try and reconcile them 
in a common framework. 

Booch tried to define a method in 
[2] that used composition and classi- 
fication on equal footing. However, 
we do not believe such efforts can be 
successful, and this can be shown by 
examining the properties of  the 
structural graph of  the project. 

The  graph of  an Ada project re- 
flects the dependencies in terms of  
"with" clauses (i.e., it describes uses 
of  units by other units). This graph is 
fundamentally nontransitive: what 
this means is that, to understand and 
act on a given unit, it is necessary to 
understand the unit itself (of course), 
the specifications of  all "withed" 
units, and no more. Since adding a 
new unit adds dependencies only to 
the unit's immediate neighbors, it 
can be said that the overall complex- 
ity of  the full graph grows linearly 
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with N (the number  of  units). 

On the other  hand,  an inheri tance 
graph reflects classification and is 
transitive: a given unit  depends  on its 
immediate ancestors, on the ances- 
tors'  ancestor, and so on. To under-  
stand the behavior of  a given unit, it 
is necessary to unders tand  the whole 
inheri tance subgraph that leads 
down to the given object. This was 
perceived by Booch since he wrote 
[2, p. 101]: 

The re  is a very real tension between 
inheri tance and encapsulation. To a 
large degree,  the use of  inheri tance 
exposes some of  the secrets of  an 
inheri ted class. Practically, this 
means that to unders tand  the mean- 
ing of  a part icular  class, you must 
often study all of  its superclasses, 
sometimes including their  inside 
views. 

Add ing  a new unit  to a graph will 
increase the overall complexity by a 
factor that is propor t ional  to the size 
of  the graph:  the global complexity 
will therefore  grow as N 2. 

Thus  structural  graphs and inher-  
itance graphs are incompatible,  since 
they exhibit  incompatible propert ies.  
The re  is no way to design using com- 
position and classification at the same 
time. Al though there are always 
some classification aspects in a com- 
posi t ion-oriented design, and con- 
versely, a main direction must be 
chosen, the other  aspect will remain  a 
second-class citizen. 

Once again, composit ion will ex- 
hibit a lower complexity and a 
greater  security at the cost of  ease of  
design. For  small-sized, quickly de- 
veloped projects, classification can be 
an efficient method.  But for large- 
scale, long-lasting projects, composi- 
tion is necessary to ensure control  on 
the overall complexity. 

Conclusion 
Inher i tance has become very popular  
because it has brought  a number  of  
benefits, including abstraction, en- 
capsulation, reusable algorithms, and 
more,  to languages such as C or  Pas- 
cal that had no appropr ia te  tool to 
satisfy these needs. When inheri-  
tance is viewed in the context of  Ada,  
the issue is quite different ,  since 
many of  those needs are already sat- 
isfied by o ther  features. 

Ada  9X will in t roduce new mecha- 

nisms, including a purposely limited 
and well-controlled form of  inheri-  
tance, to the language. This will allow 
the designer  to develop new para-  
digms, open Ada's usage to other  
domains,  and make interfacing with 
external  environments  based on in- 
heri tance easier; however, ext reme 
care has been exercised to ensure 
that improvements  in some areas are 
not  made  at the cost of  o ther  qualities 
of  the language. 

This means that Ada  object orien- 
tation will still not jus t  follow classifi- 
cation, because classification does not 
answer proper ly  a number  of  re- 
quirements  for Ada  applications. In 
general,  classification will favor ease 
of  design and rapidly varying specifi- 
cations such as those encountered  
when pro to typing  software, while 
composit ion will bet ter  match the 
needs of  secure, long-lasting systems, 
requir ing various implementat ions 
of  the same abstract behavior.  The  
problem domain  Ada  is in tended to 
address requires object orientat ion 
by composit ion ra ther  than classifica- 
tion. 

Ada  is sometimes touted being 
"more than jus t  another  p rogram-  
ming language." We trust that Ada  
9X will be "more than jus t  another  
object-oriented language." It  will 
have its own form of  object orienta- 
tion, adapted  to the problem domain  
of  long life cycle, secure systems, 
which is not necessarily the form that 
can be found generally in the litera- 
ture. [ ]  
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