
J. P . R o s e n

What Orientation Should
Ada Objects Take?
A d a has often been blamed for not
being really object oriented, in the sense
that it provides only static inheritance
(through derived types), but not a full
inheritance mechanism. Many pro-
ponents of the so-called object-
oriented languages (OOLs, see [8] or
[13] for example) have claimed that a
full i nhe r i t ance m e c h a n i s m is
absolutely necessary for true object
orientation.

On the other hand, Booch [1] has
defined a method he calls object-
oriented design (OOD), which does
not use inheritance. Many Ada teams
have used this method successfully,
feeling that their designs are really
oriented according to abstractions of
real-life objects, and still do not feel a
need for inheritance. This makes
them quite uneasy when reading
about the necessary features of object
orientation. To make things more
complicated, Booch has advocated
inheritance in his recent book [2].
The 9X revision of the standard will
introduce inheritance into Ada, but
not in the same ways as pure OOLs;
Ada opponents will certainly take
this opportunity to claim that the
magic label object oriented still does not
apply to Ada.

In this article, we will discuss vari-
ous forms of object orientation and
how they apply to Ada, and see how
the new features of Ada 9X will im-
pact the design of Ada programs. We
will address the issue here only from
the point of view of a language that is
directed toward software engineer-
ing. Other uses of the object para-

digm, especially in organizing data
for AI applications or data bases are
not within the scope of this work. We
will compare Ada mainly to two chal-
lengers: C + + because it is a lan-
guage that is currently attracting
considerable attention, and Eiffel
because it is a language that has spe-
cifically been designed to embody the
concepts of inheritance in a software
engineering approach.

Object Orientation
What actually makes software "object
oriented" is that the basic conceptual
units are abstractions of real-life ob-
jects:

Object-oriented design is the con-
struction of software systems as
structured collections of abstract data
type implementations [7].

Since an object can only be de-
scribed by a set of properties and a
set of actions it has on other objects,
an abstraction o f an object is a pro-
gramming unit that gathers both
data structures and program struc-
tures. This is achieved through the
use of abstract data types (ADTs)
which provide encapsulation and lo-
cality, a property that simplifies
maintenance since all properties of a
given aspect of the problem domain
belong to a single piece of software.

From this point of view, Ada is
more object oriented than current
OOLs, because it allows definition of
types that model more accurately the
constraints of real-life objects. In lan-
guages such as Eiffel or C + + , basic

data types are still determined by the
underlying hardware, and it is not
possible to define types whose con-
straints are those of the real-world
objects they are supposed to repre-
sent. Consider, for example, a need
as simple as an integer type that is
known to range from 0 to 40,000,
something the Ada programmer
would simply declare as:

t y p e M Y _ T Y P E is r a n g e 0 .. 40_000;

In Eiffel or C + + , checking that
values are within bounds would re-
quire making it a class, and redefin-
ing all operations, including assign-
ment, to preserve value-semantics on
assignment. Moreover, there is no
portable way of ensuring that the
underlying integer type used to rep-
resent the value can accommodate
the whole range, therefore forcing
the use of the longest available inte-
ger type on the machine, and almost
certainly wasting s p a c e . . . Needless
to say, in practice, nobody makes the
effort, and good old type INTEGER
(Eiffel) or int (C) is used throughout
the programs.

ADTs, however, are not sufficient
to make object orientation effective.
In a large project, there are many
objects, and some kind of organiza-
tion as well as factoring of common
properties is needed. How this fac-
torization is achieved is what differ-
entiates OOLs from the Booch ap-
proach.

In a classical OOL, objects are or-
ganized into a hierarchy of classes.
General classes contain features com-

COMMUNICATIONS OF THE ACM/November 1992/Vol.35, No.ll 71

http://crossmark.crossref.org/dialog/?doi=10.1145%2F138844.138849&domain=pdf&date_stamp=1992-11-01

mon to many subclasses, and special-
ized subclasses implement only be-
haviors that are common to a subset
of the parent class's objects. We will
call this method "Object orientation
by classification first" (or simply
stated classification). This organiza-
tion is akin to the classification of bio-
logical species [6]. For example, a
class GRAPHICAL__OBJECT would
gather all the propert ies of graphical
objects, and a class RECTANGLE
(derived from GRAPHICAL_OB-
JECT) will contain only those aspects
that are peculiars to rectangles. Of
course, since a RECTANGLE is a
graphical object, it must still have the
propert ies of GRAPHICAL_OB-
JECT. It is said to inheri t from its
parent type, GRAPHICAL_OB-
J E C T

OOD provides an alternative
method by recognizing that objects
are made of di f ferent parts, and that
the same parts can be used to make a
variety of higher-level objects. Each
object is designed as an assembly of
lower-level components . We will call
this method "Object orientat ion by
composit ion first" (or simply stated
composition). An impor tan t feature of
composit ion is that there is no need
to know how a component is made in
o rde r to use it. A set o f parts that
form an object constitutes an abstrac-
tion layer. Therefore , the basic struc-
tur ing concept in OOD is organi-
zation of objects according to
abstraction layers. This is what is
general ly used in engineering, and
has been especially successful in the
electronic industry.

Why do so many people believe
that classification is the only "true"
object orientation? Perhaps because
OOL designers place a heavy empha-
sis on inheritance, which is clearly
necessary only to classification. Most
books about OOLs generally address
only classification; they start with a
discussion about ADTs (and [8] is
really great at that). Then, there is a
short s tatement such as "we generally
think of objects as being gathered
into c l a s ses . . . " , and then the discus-
sion goes on to classification and in-
heritance. They jus t do not ment ion
that o ther organizations are possible.
Hence, the "natural necessity" of
classification and inheritance. Few
papers have advocated composition

as a different , effective, object orien-
tation [9, 10, 11],

Of course, both dimensions are
present in any object. At the pro-
g ramming level, languages must sup-
port them. Composit ion is absolutely
necessary even for classification-
or iented languages, and Eiffel offers
a syntactic construction that makes a
clear distinction between composi-
tion and classification. Al though it
is possible to ignore classification
for composi t ion-oriented languages,
classification is helpful for describing
data with variant structure. Ada has
many features that favor composi-
tion, but only a limited suppor t for
classification; new features of Ada
9X will add more facilities. The im-
por tant factor, however, is that, at
design level a main design direction
must be chosen; the o ther aspect will
remain second.

An Example
To stress the difference between clas-
sification and composition, we will
take a simple example, which is actu-
ally the very example used by Turbo-
Pascal ® to introduce inheri tance [3].

First, the notion of a mathematical
point is introduced; Using Ada syn-
tax, we can define it as follows (using
Ada syntax):

type P O I N T is
record

X,Y : INTEGER;
- - Of course, with Ada, INTE-
- - G E R should not be used
here...

end record;

Then, the question arises of how
to define a screen pixel. The expla-
nation goes on like this: "Of course, a
pixel is a kind of POINT, with an
extra feature: it can be visible or
not." Thus the need to extend the
type P O I N T to make it a PIXEL
appears , and inheri tance comes nat-
urally. In particular, if there is a
MOVE procedure def ined for
POINTs, you do not need to rewrite
it, since it will apply to PIXELs as well
. . . as long as the behavior for
POINTs suits your needs for
PIXELs, which in general will not
be the case. I f you need a di f ferent
behavior, you will have to write
the code anyway.

However, is it so obvious that a

pixel is a point? A point is a mathe-
matical object, while a pixel is a dot
on a screen . . . Quite di f ferent ob-
jects actually. An alternative ap-
proach would be to define a PIXEL
as a self-standing entity, def ined by
various attributes. One attr ibute is its
position (which can be described
using the notion of mathematical
point). Another one is whether it is
visible or not. This would be the
composit ion approach. With compo-
sition, the MOVE procedure you
def ine on PIXELs bears no visible re-
lationship to the MOVE on POINTs
(anyway, the fact that a PIXEL in-
cludes a P O I N T is general ly h idden
in a private part). This does not pre-
clude the implementa t ion of MOVE
for PIXELs from using MOVE on
POINTs, therefore reusing the code
for POINTs, but this dependency
will remain hidden. Thanks to over-
loading, the same identif ier (MOVE)
can be used both for POINTs and
PIXELs, providing uniformity f rom
a user's point of view.

A benefit of the classification ap-
proach is that if you want to change
the proper t ies of a mathematical
point, all o f its descendants (includ-
ing PIXEL) will be automatically
updated . The drawback is that users
of PIXEL know its relat ionship to
POINT, and can apply POINT's
methods (even those that are not
necessarily meaningful for a PIXEL)
to it. The implementa t ion is visible: if
the designer of PIXEL wants to
change the implementa t ion strategy,
for example by deriving from some-
thing o ther than POINT, the de-
signer is unable to do so without dis-
turbing the code of PIXEL's users,
since those users may have used
methods inheri ted from POINT.

Linguistic Aspects
OOLs have brought a number of
new notions into p rog ramming lan-
guages: polymorphism, dynamic
binding, and inheritance. The popu-
larity OOLs have achieved necessar-
ily means their use carries a number
of benefits. Many of these benefits,
however, are most noticeable only
when compared with o lder p rogram-
ming languages such as Pascal or C;
the impor tant question is how do
these benefits apply to Ada? In o ther
words, are those new notions neces-

72 November 1992/%1.35, No.ll/COMMUNICATIONS OF T H E ACM

sary to provide those benefits? We
will discuss the tools provided by Ada
to satisfy the same needs, both using
current Ada and the 9X improve-
m e r i t s .

Encapsulation
Encapsulation is the ability to gather
into one place all aspects related to a
given abstraction of a real-world ob-
ject. Many benefits of object-oriented
technologies come from abstraction
and encapsulation, which are com-
mon to both composit ion and classifi-
cation.

C has a very poor encapsulation
mechanism (the file can be used as a
primitive means for packaging enti-
ties). The class concept in C + + has
provided a means of logically relat-
ing a data type and its associated sub-
programs, and a number of C + +
projects use classes only for that pur-
pose, without using inheritance. In
Eiffel, classes are the only s tructuring
feature, used for encapsulation as
well as for def ining compilation
units. 1 Neither of these languages
allows for nested units (i.e., all ab-
stractions must be def ined at the li-
brary level, and there is no way to
define an encapsulated construct
local to a given entity). It should be
noted that having nested units and
inheri tance in the same language
creates technical difficulties in o rde r
to preserve safety of the language;
Ada 9X will achieve this, thanks to its
strong typing features, at the cost of
extra (and somewhat difficult) com-
p i l a t i o n - o r even run- t ime--checks .

Ada features the package - - a very
powerful encapsulation mechanism.
Packages can be used for many pur-
poses, including but not limited to,
building abstract data types. Let us
stress this point: an Ada package is
not necessarily an ADT; a package
containing the definit ion of a private
type together with associated opera-
tions is the Ada way of defining an
ADT. Being more general, the pack-
age is a bit less adapted to the partic-
ular need o f building classes; but this
is outweighed by its ability to provide
a flexible means of satisfying any
encapsulation needs, including local

JThe latest version of Eiffel has brought a new
packaging construct, not mentioned in [8]. Eif-
fel is such a moving target that any reference to
it should mention the precise version used.

encapsulations.
It is unarguably true that the class

mechanism brings a real enhance-
ment to languages such as C or Pascal
by providing them with an encapsu-
lation mechanism that has been
sorely missing. With the package,
Ada already has a more powerful
tool. Moreover, 9X will fur ther im-
prove it by providing a second level
of organization, with the notion of
hierarchical libraries. The class
mechanism is clearly not indispensa-
ble for the purpose of encapsulation.

Polymorphism and Dynamic
Binding; Type Extensions
Polymorphism is the ability for a vari-
able to hold various data structures.
In most OOLs, a variable may hold
not only values of its own type, but
also values of a type that inherits
from the variable's declared type. A
consequence is that the designer of a
type with an OOL does not know
what the actual type is that the vari-
able will hold at run time: anyone
reusing the type may add (later) new
variations. In Ada, a polymorphic
variable must be explicitly declared
as such, using a type with discrimi-
nants and variant parts. No logical
dependency is necessary among the
di f ferent forms the variable can take,
but those forms are fixed by the type
declaration. I f a new form is neces-
sary, the original type must be modi-
fied.

Dynamic binding is the ability of an
operat ion to per form differently ac-
cording to the actual type of the
value a polymorphic variable is hold-
ing. This is pe r fo rmed automatically
with OOLs. At run time a (formal)
operat ion dispatches to the correct
implementat ion according to a hid-
den descr iptor that uniquely identi-
fies the current variant. In Ada, a
dispatching operat ion must be ex-
plicitly provided in the form of a
p rocedure accepting a paramete r of
the polymorphic type, which uses a
case statement, driven by the dis-
criminant, to call the appropr ia te
operat ion. The re is no need to have a
one-to-one mapping between the
operat ion on the polymorphic type
and the corresponding t reatment for
a part icular variant. However, all this
dispatching must be explicitly coded.

By requir ing explicit control over

polymorphism and dynamic binding,
the Ada solution gave complete con-
trol to the designer of an A D T over
all possible uses of the type, and com-
plete compile-t ime type checking. I f
a variant is added to a discriminant
and the cor responding code is not
added to the relevant case statement,
the p rogram will simply not compile.
This is the reason it was chosen in the
first place, at the cost of more explicit
code and recompilations.

This trade-off, however, of secu-
rity against ease of evolution is now
being regarded as too strict for many
applications. Dynamic binding pro-
vides a simpler way of adding new
variants to an existing type, no
change in code is necessary. This
makes evolution and addit ion of new
features easier. The drawback is that
some type checking must be delayed
until execution time. With 9X, both
paradigms will be available, under
the responsibility of the initial de-
signer. Tagged types will allow for type
extensions, inheri tance and dynamic
binding for class-wide operations.
This will make applications easier to
evolve, and will allow for easier inter-
facing with foreign environments.
Nevertheless, extensions will be al-
lowed only if the initial type is
tagged: an impor tant consequence is
that those new features will be avail-
able only if the initial designer specif-
ically gave permission; if necessary,
complete control over all usages of
the type can still be guaranteed.

The language will now leave the
responsibility of whether security or
ease of evolution should prevail as a
design choice. This careful approach
will be a major improvement from
the point o f view of p rogram evolu-
tion, while still retaining, if required,
the secure approach that makes Ada
unique for many critical applications.

Reusing Algorithms
One of the needs that many previous
p rogramming languages failed to
satisfy is the ability to provide reusa-
ble algori thms (i.e., algori thms that
can be appl ied to a variety of types).
The basic point is that most algo-
r i thms are not applicable to an arbi-
t rary type. For example, the simple
algori thm used to exchange the con-
tents of two variables:

TEMP := X;

COMMUNICATIONS OF THE ACM/November 1992/Vol.35, No.ll 73

X := Y;
Y := TEMP;

asserts that at least assignment is
available for the type o f variables X,
Y and TEMP, something that is not
necessary true, e.g., for a limited type
in Ada (or a file type in Pascal). The
main problem when designing a way
of providing reusable algorithms is
how to express those common prop-
erties that are required of any type
to which the algori thm is applicable.

In OOLs, this is obtained by as-
suming that all types having those
common proper t ies belong to a given
class. For example, consider the al-
gor i thm used to move a f igure on
a s c r e e n :

E r a s e (F i g u r e) ;
Se t_pos i t ion(F igure ,
To = > (New_X, New_Y));
D r a w (F i g u r e) ;

This algori thm is applicable to any
graphical object that can provide an
opera t ion to erase it f rom the screen,
one to set its cur rent location, and a
third to draw it again. In Eiffel, this is
expressed as follows:

deferred class GRAPHIC_OBJECT
export

MOVE, DRAW, ERASE,
SET_POSITION

feature
X, Y : INTEGER;
DRAW is

deferred
end; - - DRAW
ERASE is

deferred
end; - - ERASE
SET_POSITION(To_X : INTEGER;
To_Y : INTEGER) is

deferred
end

MOVE(To_X : INTEGER; To_Y :
INTEGER) is
do

ERASE;
SET_POSITION(To_X, To_Y);
DRAW

end; - - MOVE
end - - GI~APHIC_OBJECT

(the de fe r red clause means that any
type that inherits from
GRAPHIC_OBJECT must provide a
definit ion for the actual feature).
Now, every object such as REC-
TANGLE or CIRCLE will inheri t

f rom GRAPHIC_OBJECT; DRAW,
SET_POSITION and ERASE will be
redef ined for each, but the algori thm
for MOVE will automatically be
available.

The Ada solution expresses more
directly the basic requirement : for
any data type on which certain oper-
ations are available, a given algo-
r i thm is applicable. This translates
into:

generic
type ITEM_TYPE is
l imited private;
with procedure DI~kW(ITEM : in
ITEM_TYPE);
with p r o c e d u r e SET_POSITION
(ITEM : in out ITEM_TYPE; TO :
in POSITION);
with p rocedu re EI~ASE(ITEM : in
ITEM_TYPE);

procedure MOVE(ITEM : in out
ITEM_TYPE);

This generic unit can in turn be
instantiated by providing the corre-
sponding types and operat ions. Note
however that d i f ferent instantiations
need not bear any conceptual rela-
tionship; imagine, for example, a
remotely control led toy crane: erasing
may be matched with an operat ion to
pick a block up from the floor, setting
position with moving the crane, and
drawing with placing the object back
on the floor. The MOVE algori thm
would therefore be applicable to
moving cubes a round the floor, al-
though a crane is obviously not a
graphic object.

From the point of view of the code
actually generated, both solutions are
likely to be comparable. The code for
the generic unit can be genera ted
only once (no duplication) by replac-
ing all calls to impor ted subprograms
by indirect calls, which is exactly what
dynamic binding will use.

The main difference between the
two views is conceptual: with OOLS,
to reuse an algori thm you have to
incorporate your own type into a for-
eign structure. In the preceding EIF-
FEL example, you have to make your
type inheri t f rom GRAPHIC_OB-
JECT, therefore stating that your
type /s a figure. With generics, the
dependency is reversed: you incor-
pora te a foreign algori thm into the
proper t ies of your type, but you do
not create any dependency]rom your

type to the foreign structure. You buy
a reusable algori thm from a vendor
and incorporate it into your design,
but this does not create a conceptual
dependency to the provider of the
abstraction.

It must be noted that many com-
parisons of the relative merits of in-
heri tance and generics for code
reuse only consider generic type pa-
rameters; what makes generics pow-
erful in Ada is the ability to impor t a
type together with an explicit list o f
requi red operat ions. Ignor ing this
fundamenta l feature simply kills the
most powerful uses of generics.

Methodological Aspects
Is classification really a design
method? It has long been recognized
that languages are not the ult imate
solution to the software crisis; devel-
opmen t methods are the impor tan t
factor, and languages are here only
to help in applying a given method.
Classification is the methodological
end that justifies inheri tance means.

Classification is not as natural , and
certainly not as easy, as many pur-
port. For example, there was a
lengthy interchange of messages on
the comp.lang.eiffel bulletin board
on whether a RECTANGLE should
be considered a kind of (i.e., inheri t
from) POLYGON. The issue here
was that a POLYGON featured a
method called ADD_VERTEX, that
was clearly not applicable to REC-
TANGLEs. Al though there was a
great deal o f controversy, many con-
cluded the only safe way was to N O T
use inheritance, and to consider a
RECTANGLE as not being a POLY-
GON.

One must recognize there is cur-
rently no widespread methodology
for applying inheritance, something
akin to OOD and its derivatives (ex.,
GOOD [12], HOOD [4]). A method-
ology is taken here as a set of rules
and associated tools that guide a de-
veloper dur ing the design process,
allow the cross-checking of struc-
tures, and provide the necessary doc-
umentat ion.

Some even advocate that inheri-
tance should lead to abandoning the
whole idea of top-down design. Since
the basic idea is to design by reusing
and adjust ing existing components ,
object orientat ion would lead to

74 November 1992/%1.35, No.ll/COMMUNICATIONS OF THE ACM

bottom-up design. Realistically, no
project comprising several hundred
thousand lines of code can be com-
pletely developed bottom-up, and it
should be noted that the electronic
industry does use top-down design,
although eventually everything is
built from existing components. Too
often, advocating bottom-up design
is just an excuse for not having any
sound design methodology.

Although classification is a wide-
spread scientific activity, it is not ob-
vious that it can be applied to soft-
ware development. The problem
faced by Linn6 was to put some orga-
nization into existing species, while
the software designer has to design
new objects--quite a different task.
Note that there is nothing in the elec-
tronic industry (which is certainly
closer to software development than
entomology!) that looks like design
by classification (although classifica-
tion is used to organize existing com-
ponents, but not to design them).

IS Classification Used as it
Should Be?
Even though classification at first
sight appears to be a scientific activ-
ity, in practice it appears that inheri-
tance is actually used for a very dif-
ferent purpose. Actually, almost
every book, paper, or article that
presents classification is self-contra-
dictory. It always starts by explaining
classification, where it appears that a
project is well-organized from top-
level, general classes, to derived,
more specialized classes• The topol-
ogy of the project is thus said to fol-
low the general scientific scheme of
species classificationfl It will be ex-
plained later that as projects evolve,
there is no need to change existing
classes: new classes are derived from
older ones, in order not to disturb
parts of the software that depend on
them; as needs evolve, new behaviors
are provided in the newly derived
classes. This means that the topology
of the project no longer reflects a
logical classification, but the evolu-
tion of requirements over time. The
inheritance graph becomes a kind of
stack of archeological layers, and it is

2Species classification and graphical objects are
not the only examples taken in all books about
classification. Is it possible to apply it to any-
thing else?

impossible to understand it unless
you know the complete story of the
project.

Another issue is that inheritance is
often used not for classification, but
just to grab pieces of code. Jaulent [5]
gives an example in which he makes
a class PARROT inherit from the
class HUMAN_BEING because it
needs the property CAN_SPEAK
• . . This kind of misuse o f the inher-
itance mechanism, especially when
multiple inheritance is available, is
extremely tempting to the program-
mer who just wants to "reuse" exist-
ing code, while actually introducing a
terrible mess in the dependencies
between objects.

The Case for Reuse
Of course, reuse is not limited to the
case of reusing algorithms men-
tioned earlier• It extends to reusing
objects, subsystems, even full de-
signs. This is certainly a prime con-
cern, and Ada was designed for
reuse. What is not generally said is
that there are different kinds of
reuse, and reuse in the Ada sense is
very different from the kind of reuse
OOLs provide.

Reusability, as defined in OOLs, is
targeted toward delta coding. The
basic idea here is that no two differ-
ent projects will ever need exactly the
same components. Therefore, if the
exact abstraction you need is not in
the program library, inheritance lets
you choose one that is close enough
to what you want to do, and just
modify (I dare not say "patch") the
difference (the delta) between the
behavior provided by your ancestor
and the one that is needed• This is an
efficient means of rapidly developing
components tailored to specific
needs from existing pieces.

On the other hand, composition
promotes standard, opaque compo-
nents. There is no insight on how
they are designed internally, and no
way to change the behavior except
where explicitly provided for
(through generics). This keeps uni-
formity among all uses and the ability
to change the implementation of the
component without affecting users in
any way (even recompilation is not
necessary if you change only a body).
This has an unpleasant consequence
for the programmer: if no compo-

nent fits exactly the programmer 's
needs, then these needs must be ad-
justed to fit existing components
(and the p rogrammer must resist the
temptation o f designing a specifically
tailored component). This is quite a
new constraint in software design,
but very common in all other engi-
neering disciplines. I f you need a
3.456K1) resistor, what do you do?
Use a 3.7K1~ and adjust your design.
Of course, working with a set of stan-
dard frozen components is much
more cost-effective for maintenance
and validation.

Let's face it: the kind of reuse of-
fered by Ada is less appealing to the
programmer, since it puts constraints
on the design phase that will only pay
later on. But Ada is intended for
long-term projects, not quick proto-
typing. In the slums, people build
houses by reusing old items such as
pieces of wood and tires, and adjust-
ing them to their needs. This kind of
reuse is often extremely clever, and if
you absolutely need a shelter rapidly,
it is certainly an efficient method.
But will the house withstand a storm?
This is certainly not industrial reuse,
which is building houses from well-
engineered, standard prefabricated
components.

IS it Possible to Reconcile
Composit ion and Classification?
Since composition and classification
both have drawbacks and benefits, it
is tempting to try and reconcile them
in a common framework.

Booch tried to define a method in
[2] that used composition and classi-
fication on equal footing. However,
we do not believe such efforts can be
successful, and this can be shown by
examining the properties of the
structural graph of the project.

The graph of an Ada project re-
flects the dependencies in terms of
"with" clauses (i.e., it describes uses
of units by other units). This graph is
fundamentally nontransitive: what
this means is that, to understand and
act on a given unit, it is necessary to
understand the unit itself (of course),
the specifications of all "withed"
units, and no more. Since adding a
new unit adds dependencies only to
the unit's immediate neighbors, it
can be said that the overall complex-
ity of the full graph grows linearly

C O M M U N I C A T I O N S OF THE ACM/November 1992/Vol.35, No.ll 75

Ida
with N (the number of units).

On the other hand, an inheri tance
graph reflects classification and is
transitive: a given unit depends on its
immediate ancestors, on the ances-
tors' ancestor, and so on. To under-
stand the behavior of a given unit, it
is necessary to unders tand the whole
inheri tance subgraph that leads
down to the given object. This was
perceived by Booch since he wrote
[2, p. 101]:

The re is a very real tension between
inheri tance and encapsulation. To a
large degree, the use of inheri tance
exposes some of the secrets of an
inheri ted class. Practically, this
means that to unders tand the mean-
ing of a part icular class, you must
often study all of its superclasses,
sometimes including their inside
views.

Add ing a new unit to a graph will
increase the overall complexity by a
factor that is propor t ional to the size
of the graph: the global complexity
will therefore grow as N 2.

Thus structural graphs and inher-
itance graphs are incompatible, since
they exhibit incompatible propert ies.
The re is no way to design using com-
position and classification at the same
time. Al though there are always
some classification aspects in a com-
posi t ion-oriented design, and con-
versely, a main direction must be
chosen, the other aspect will remain a
second-class citizen.

Once again, composit ion will ex-
hibit a lower complexity and a
greater security at the cost of ease of
design. For small-sized, quickly de-
veloped projects, classification can be
an efficient method. But for large-
scale, long-lasting projects, composi-
tion is necessary to ensure control on
the overall complexity.

Conclusion
Inher i tance has become very popular
because it has brought a number of
benefits, including abstraction, en-
capsulation, reusable algorithms, and
more, to languages such as C or Pas-
cal that had no appropr ia te tool to
satisfy these needs. When inheri-
tance is viewed in the context of Ada,
the issue is quite different , since
many of those needs are already sat-
isfied by o ther features.

Ada 9X will in t roduce new mecha-

nisms, including a purposely limited
and well-controlled form of inheri-
tance, to the language. This will allow
the designer to develop new para-
digms, open Ada's usage to other
domains, and make interfacing with
external environments based on in-
heri tance easier; however, ext reme
care has been exercised to ensure
that improvements in some areas are
not made at the cost of o ther qualities
of the language.

This means that Ada object orien-
tation will still not jus t follow classifi-
cation, because classification does not
answer proper ly a number of re-
quirements for Ada applications. In
general, classification will favor ease
of design and rapidly varying specifi-
cations such as those encountered
when pro to typing software, while
composit ion will bet ter match the
needs of secure, long-lasting systems,
requir ing various implementat ions
of the same abstract behavior. The
problem domain Ada is in tended to
address requires object orientat ion
by composit ion ra ther than classifica-
tion.

Ada is sometimes touted being
"more than jus t another p rogram-
ming language." We trust that Ada
9X will be "more than jus t another
object-oriented language." It will
have its own form of object orienta-
tion, adapted to the problem domain
of long life cycle, secure systems,
which is not necessarily the form that
can be found generally in the litera-
ture. []
References

1. Booch, G. Software Engineering with
Ada, Second ed. Benjamin Cum-
mings, 1986.

2. Booch, G. Object Oriented Design with
Applications. Benjamin Cummings,
1991.

3. Borland. Object Oriented Programming.
Reference Manual of Turbo-Pascal
V5.5.

4. European Space Agency. HOOD Ref-
erence Manual, WME/89-173/JB,
Noordwijk, the Netherlands.

5. Jaulent, P. G~nie Logiciel, les M~thodes.
Armand Colin, Paris, 1992.

6. Linn~, C. Systema naturae. Uppsala
1735.

7. Meyer, B. Eiffel: programming for reus-
ability and extendibility. Interactive
Software Engineering, 1986.

8. Meyer, B. Object Oriented Software Con-
struction. Prentice Hall, New York,
1988.

9. Rosen, .].P. A comparison of object
oriented paradigms. Tenth interna-
tional workshop on Expert Systems and
their Applications (Avignon, May
1990).

10. Rosen, J.P. Pour une dfifinition
m6thodologique de la notion
d',~orient~ objet,,. AFCET Interfaces,
n°96, (Paris Octobre 1990). (In
French).

11. Rosen, J.p. Object Oriented Para-
digms: OOD vs. Inheritance. Invited
lecture, Ada---Europe Conference (Ath-
ens, May 1991). (This document is a
registered Ada--Europe document
and can be obtained from the Ada- -
Europe Secretariat, Napier Polytech-
nic, 219 Colinton Road, Edinburgh
EH14 1DJ, UNITED KINGDOM).

12. Seidewitz and Stark. General Object
Oriented Software Development, NASA
Software Engineering Laboratory
Series SEL-86-002.

13. Stroustrupt, B. and Ellis, M. The An-
notated C++ Reference Manual, Ad-
dison-Wesley, Reading, Mass., 1990.

CR Categories and Subject Descrip-
tors: D.1.5 [Programming Techniques]:
Object oriented progamming; D.2.1
[Software Engineering]: Requirements/
Specifications--languages, methodologies;
D.2.10 [Software Engineering]: Design--
methodologies; D.2.m [Software Engineer-
ing]: Miscellaneous--Rapid prototyping,
reusable software; D.3.2 [Programming
Languages]: Language classifications--
Ada, object-oriented languages; D.3.3 [Pro-
gramming Languages]: Language Con-
structs and Features--abstract data types,
modules, packages

General Terms: Design, Languages
Additional Key Words and Phrases:

Classification, composition, inheritance

About the Author:
J.P. ROSEN is the founder of Adalog, a
company specializing in high-level train-
ing and consulting in the fields of Ada
and object-oriented design. His research
interests encompass all aspects related to
Ada and OOD, software, components,
and interfaces (especially SQL). Author's
Present Address: Adalog, 27 avenue de
Verdun, 92170 Vanves, France, rosen@
enst.enst.fr.

®Turbo-Pascal is a r e g i s t e r e d t r a d e m a r k o f Bor-
l and I n t e r na t i ona l

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the A C M copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Compu t ing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© A C M 0002-0782/92/1100-071 $1.50

76 November 1992/Voi.35, No.ll/COMMUNICATIONS OF THE ACM

