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ABSTRACT 

This paper presents a variant of Quantum behaved Particle Swarm 
Optimization (QPSO) named Q-QPSO for solving global 
optimization problems. The Q-QPSO algorithm is based on the 
characteristics of QPSO, and uses interpolation based 
recombination operator for generating a new solution vector in the 
search space. The performance of Q-QPSO is compared with 
Basic Particle Swarm Optimization (BPSO), QPSO and two other 
variants of QPSO taken from literature on six standard 
unconstrained, scalable benchmark problems. The experimental 
results show that the proposed algorithm outperforms the other 
algorithms quite significantly.     

Categories and Subject Descriptors 

D.3.3 [Programming Languages]: Language Contructs and 
Features – abstract data types, polymorphism 

General Terms 

 Algorithms, Performance, Reliability, Experimentation 

Keywords 

Particle swarm optimization, Interpolation, Global optimization, 
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1. INTRODUCTION 
Particle Swarm Optimization (PSO) is relatively a newer addition 
to a class of population based search technique for solving 
numerical optimization problems. The particles or members of the 
swarm fly through a multidimensional search space looking for a 
potential solution.  
In classical (or original PSO), developed by Kennedy and 
Eberhart in 1995 [1], each particle adjusts its position in the 
search space from time to time according to the flying experience 
of its own and of its neighbors (or colleagues). 
For a D-dimensional search space the position of the ith particle is 
represented as Xi = (xi1, xi2, …, xiD). Each particle maintains a 
memory of its previous best position     Pbesti = (pi1, pi2… piD).  
 

 
The best one among all the particles in the population is 
represented as Pgbest = (pg1, pg2… pgD). The velocity of each 
particle is represented as Vi = (vi1, vi2, … viD). In each iteration, 
the P vector of the particle with best fitness in the local 
neighborhood, designated g, and the P vector of the current 
particle are combined to adjust the velocity along each dimension 
and a new position of the particle is determined using that 
velocity. The two basic equations which govern the working of 
PSO are that of velocity vector and position vector given by: 
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The first part of equation (1) represents the inertia of the previous 
velocity, the second part is the cognition part and it tells us about 
the personal experience of the particle, the third part represents 
the cooperation among particles and is therefore named as the 
social component. Acceleration constants c1, c2 and inertia weight 
w are the predefined by the user and r1, r2 are the uniformly 
generated random numbers in the range of [0, 1].  

PSO has undergone a plethora of changes since its development. 
One of the recent developments in PSO is the application of 
Quantum laws of mechanics to observe the behavior of PSO. Such 
PSO’s are called Quantum PSO (QPSO). Some variants of QPSO 
include mutation based PSO [2], [3], where mutation is applied to 
the mbest (mean best) and gbest (global best) positions of the 
particle, also in one of the variants of QPSO a perturbation 
constant called Lyapunov constant is added. However to the best 
of our knowledge no has used the concept of recombination 
operator in QPSO. 

This paper presents a QPSO called Q-QPSO which uses the 
quantum theory of mechanics to govern the movement of swarm 
particles along with an interpolation (quadratic interpolation) 
based recombination operator.  
The concept of quadratic interpolation as a recombination 

operator was introduced by us [4], [5], for improving the 
performance of classical PSO, where it gave significantly good 
results. This motivated us to apply this concept for QPSO also to 
improve its performance. 

The remaining of the paper is organized as follows: Section 2 
briefly describes the Quantum Particle Swarm Optimization. 
Section 3, explains the proposed Q-QPSO, Section 4, gives the 
experimental settings and numerical results of some selected 
unconstrained benchmark problems. The paper finally concludes 
with Section 5. 
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2. QUANTUM PARTICLE SWARM 

OPTIMIZATION 
The development in the field of quantum mechanics is mainly due 
to the findings of Bohr, de Broglie, Schrödinger, Heisenberg and 
Bohn in the early twentieth century. Their studies forced the 
scientists to rethink the applicability of classical mechanics and 
the traditional understanding of the nature of motions of 
microscopic objects [6].  
As per classical PSO, a particle is stated by its position vector xi 
and velocity vector vi, which determine the trajectory of the 
particle. The particle moves along a determined trajectory 
following Newtonian mechanics. However if we consider 
quantum mechanics, then the term trajectory is meaningless, 
because xi and vi of a particle cannot be determined 
simultaneously according to uncertainty principle.  
Therefore, if individual particles in a PSO system have quantum 
behavior, the performance of PSO will be far from that of classical 
PSO [7]. 
In the quantum model of a PSO, the state of a particle is depicted 

by wavefunction ),( txΨ , instead of position and velocity. The 

dynamic behavior of the particle is widely divergent from that of 
the particle in traditional PSO systems. In this context, the 
probability of the particle’s appearing in position xi from 

probability density function
2

),( txΨ , the form of which depends 

on the potential field the particle lies in [2]. 
The particles move according to the following iterative equations 
[8], [9]: 
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Mean best (mbest) of the population is defined as the mean of the 
best positions of all particles, u, k, c1 and c2 are uniformly 
distributed random numbers in the interval [0, 1]. The parameter 

β is called contraction-expansion coefficient. The flow chart of 
QPSO algorithm is shown in Figure 1. 

 

Figure 1 Flow of QPSO Algorithm  
 

3. PROPOSED Q-QPSO ALGORITHM 
The proposed Q-QPSO algorithm is a simple and modified 
version of QPSO in which we have introduced the concept of 

recombination. The Q-QPSO algorithm starts like the usual QPSO 
using equations (3), (4) and (5). At the end of each iteration, the 
quadratic interpolation recombination operator is invoked to 
generate a new swarm particle. The new particle is accepted in the 
swarm only if it is better than the worst particle (i.e. the particle 
having maximum fitness) present in the swarm. This process is 
repeated iteratively until a better solution is obtained. 
The quadratic crossover operator is a nonlinear operator which 
produces a new solution vector lying at the point of minima of the 
quadratic curve passing through the three selected swarm 
particles.  
The selection of particles, say {a, b, c} is done as follows: 

a = Xmin, (the swarm particle having minimum (or best) 
fitness function value)  

{b, c} = {randomly chosen particles from the remaining 
members of the swarm. 

(a, b and c should be three different particles)  
The idea behind the inclusion of an interpolation operator is to 
facilitate the Q-QPSO with a recombination operator which will 
help in finding a new solution point in the search space. Since, we 
are always holding the particle having the best fitness function 
value to take part in recombination process, the probability of 
generating a new trial vector with fitness function which is better 
than at least one of the existing solution vectors in the swarm 
increases. Thus the new particle is accepted in the swarm only if it 
is better than the worst particle. 

Mathematically, the new particle )~,.......,~,~(~ 21 ni
xxxx = , is 

given as: 
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The computational steps of Q-QPSO algorithm are given by: 

Step 1: Initialize the swarm with uniformly distributed 
random numbers.  

Step 2: Calculate mbest using equation (5) 

Step 3: Update particles position using equation (3) 

Step 4: Evaluate the fitness value of each particle 

Step 5: If the current fitness value is better than the best 
fitness value (Pbest) in history  

            Then Update Pbest by the current fitness value. 

Step 6: Update Pgbest (global best) 

Step 7: Find a new particle using equation (6) 

Step 8: If the new particle is better than the worst 

particle in the swarm 

Then replace the worst particle by the new 

particle. 

Step 9: Go to step 2 until maximum iterations reached. 
 

4. EXPERIMENTAL SETTINGS AND 

BENCHMARK PROBLEMS 
In Q-QPSO algorithm a linearly decreasing contraction-expansion 

coefficient (β) is used which starts at 1.0 and ends at 0.5. the 
acceleration constants are taken as 2.0. In order to check the 
compatibility of the proposed   Q-QPSO algorithm we have tested 



it on 10 benchmark problems (unconstrained) given in Table 1. 
All the test problems are highly multimodal and scalable in nature 
and are considered to be starting point for checking the credibility 
of any optimization algorithm. 
There is not much literature available in which QPSO is used 
extensively for solving a variety of test problems. Therefore, for 
the present study, we have considered 10 test problems out of 
which the first three problems are the ones that have been tested 
with some variants of QPSO. The remaining 6 problems we have 
solved with our version and with QPSO and BPSO.  As in [3], for 
functions f1, f2 and f3, three different dimension sizes are tested. 
They are 10, 20 and 30. The maximum number of generations is 
set as 1000, 1500 and 2000 corresponding to the dimensions 10, 
20 and 30 respectively. Different population sizes are used for 
each function with different dimensions. The population sizes are 

20, 40 and 80. We have tested the functions f4 – f10 with 
dimensions 10, 30 and 50. A total of 30 runs for each 
experimental setting are conducted and the average fitness of the 
best solutions throughout the run is recorded. 
Tables 2, 3 and 4 show the mean best fitness of Q-QPSO, BPSO, 
QPSO and its two variants in literature for functions f1, f2 and f3 
respectively. Table 5 shows the mean best fitness values of Q-
QPSO, BPSO and QPSO for the functions f4 – f10. Tables 6, 7 
and 8 shows the T-test values for the benchmark problems f1, f2 
and f3 in comparison with the other algorithms. Figures 2, 3 and 4 
depict the performance with a focus on mean best fitness for some 
selected functions. In all the Tables, ‘Pop’ represents population, 
‘Dim’ represents dimension and ‘Gen’ represents Generation.     

 

 

 

Table 1. Numerical benchmark problems 

Function Range Optimum 
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Table 2. Comparison results of function f1 (Mean best) 

QPSO Mutation 

[3] 

QPSO Mutation [2] 

Pop Dim Gen Q-QPSO 
BPSO 

[2] 

QPSO 

[2] 
Gbest mbest gbest mbest 

10 1000 4.915e-19 5.5382 5.2543 5.2216 4.4788 4.3976 4.7332 

20 1500 7.806e-19 23.1544 16.2673 16.1562 15.6535 14.1678 13.6202 20 

30 2000 6.071e-19 47.4168 31.4576 26.2507 27.8098 25.6415 27.7975 

10 1000 6.550e-13 3.5778 3.5685 3.3361 3.3837 3.2046 2.8160 

20 1500 8.673e-19 16.4337 11.1351 10.9072 11.0128 9.5793 9.9143 40 

30 2000 5.493e-19 37.2896 22.9594 19.6360 21.0179 20.5479 19.8991 

10 1000 0.86794 2.5646 2.1245 2.0185 2.1833 1.7166 1.8923 

20 1500 0.97712 13.3826 10.2759 7.7928 8.0755 7.2041 7.8625 80 

30 2000 5.493e-19 28.6293 16.7768 14.9055 14.9965 15.0393 15.4082 

 

Table 3. Comparison results of function f2 (Mean best) 

QPSO Mutation [3] QPSO Mutation[2] 
Pop Dim Gen Q-QPSO BPSO[2] QPSO[2] 

gbest mbest gbest mbest 

10 1000 0.062657 0.09217 0.08331 0.0627 0.0732 0.0780 0.0932 

20 1500 0.005091 0.03002 0.02033 0.0209 0.0189 0.0235 0.0193 20 

30 2000 0.015442 0.01811 0.01119 0.0110 0.0103 0.0099 0.0114 

10 1000 0.057393 0.08496 0.06912 0.0539 0.0520 0.0641 0.0560 

20 1500 0.005827 0.02719 0.01666 0.0238 0.0247 0.0191 0.0171 40 

30 2000 0.007874 0.01267 0.01161 0.0119 0.0105 0.0098 0.0092 

10 1000 0.031527 0.07484 0.03508 0.0419 0.0542 0.0460 0.0554 

20 1500 0.006633 0.02854 0.01460 0.0136 0.0194 0.0186 0.0123 80 

30 2000 0.006648 0.01258 0.01136 0.0120 0.0082 0.0069 0.0111 

 

Table 4. Comparison results of function f3 (Mean best) 

QPSO Mutation [3] QPSO Mutation [2] 
Pop Dim Gen Q-QPSO 

BPSO 

[2] 

QPSO 

[2] Gbest mbest gbest mbest 

10 1000 5.544203 94.1276 59.4764 27.4620 22.1870 21.2081 15.3939 

20 1500 15.538104 204.336 110.664 49.1176 68.4096 61.9268 67.6978 20 

30 2000 25.687072 313.734 147.609 97.5952 113.3080 86.1195 76.1894 

10 1000 4.200496 71.0239 10.4238 7.8741 7.9850 8.1828 9.5005 

20 1500 14.158022 179.291 46.5957 28.4435 52.9333 40.0749 55.4853 40 

30 2000 24.126324 289.593 59.0291 62.3854 64.1942 65.2891 68.0551 

10 1000 2.893087 37.3747 8.63638 6.7098 5.7159 7.3686 6.4841 

20 1500 12.033052 83.6931 35.8947 31.0929 24.4566 30.1607 38.3067 80 

30 2000 22.426013 202.672 51.5479 43.7622 45.2270 38.3036 52.4678 

 

 



 

Table 5. Comparison results of functions f4 – f10 (Mean best) 

Function Dim Gen BPSO QPSO Q-QPSO 

10 1000 -2389.365 -3871.03 -3898.67 

30 2000 -6466.188 -8967.29 -9998 f4 

50 3000 -10473.09 -13105.9 -14783.6 

10 1000 0.502671 0.452975 0.376021 

30 2000 0.617222 0.501799 0.497801 f5 

50 3000 0.788322 0.598823 0.537782 

10 1000 6.965e-12 4.407e-015 1.210e-015 

30 2000 3.618e-05 7.568e-012 5.828e-015 f6 

50 3000 3.43866 1.018e-007 6.267e-014 

10 1000 3.79373e-006 1.09816e-09 7.93766e-013 

30 2000 7.836 4.11969 0.00571485 f7 

50 3000 27.8394 21.1619 0.2213 

10 1000 0.00000 0.00000 0.00000 

30 2000 0.05 0.00000 0.00000 f8 

50 3000 1.7 0.1 0.00000 

10 1000 2.4148e-14 2.02058e-32 3.32734e-34 

30 2000 2.04745e-07 3.2466e-13 7.94348e-16 f9 

50 3000 7.73949 1.67575e-08 8.66751e-11 

10 1000 2.51528e-22 5.51618e-54 1.00925e-62 

30 2000 1.34381e-07 1.44342e-21 2.9990e-27 f10 

50 3000 0.00176764 1.06795e-10 3.78622e-17 

 

Table 6. T-test* value for the function f1: comparison of Q-QPSO with other algorithms 

QPSO Mutation [3] QPSO Mutation [2] 

Pop Dim Gen 
BPSO 

[2] 

QPSO 

[2] 
gbest mbest gbest mbest 

10 1000 9.9530 9.9402 13.5224 10.3788 9.5110 9.8434 

20 1500 12.1083 14.9068 10.8334 8.9853 15.7493 13.3406 20 

30 2000 15.1352 22.4110 16.9158 7.6914 21.0956 20.911 

10 1000 9.1640 9.4523 7.7164 6.8459 5.7384 8.1806 

20 1500 16.4220 16.9198 11.2975 12.5773 18.6672 16.8778 40 

30 2000 14.2989 17.3561 25.1958 7.4558 22.4234 24.0754 

10 1000 2.5229 1.9482 1.69199 1.8635 1.2992 1.5181 

20 1500 7.2362 6.5989 6.6325 9.2566 7.2967 7.7037 80 

30 2000 15.1607 20.4847 14.3885 19.2611 19.7066 18.6037 

 



Table 7. T-test* value for the function f2: comparison of Q-QPSO with other algorithms 

QPSO 

Mutation[3] 

QPSO Mutation 

[2] 
Pop Dim Gen 

BPSO 

[2]  

QPSO 

[2] 

gbest mbest gbest mbest 

10 1000 0.6204 0.4417 0.00093 0.2277 0.3304 0.6398 

20 1500 4.2078 3.6522 4.2408 4.2339 4.6468 5.1432 20 

30 2000 0.2525 -0.4289 -0.4429 -0.523 -0.568 -0.4077 

10 1000 0.8184 0.3627 -0.1081 -0.1695 0.2101 -0.0435 

20 1500 4.5453 3.2313 4.8420 2.2757 4.2572 3.3365 40 

30 2000 1.6119 1.4395 1.2345 1.0282 0.6970 0.5324 

10 1000 1.9956 0.1995 0.5749 1.1770 0.8125 1.2151 

20 1500 4.2989 2.9130 2.2932 3.2294 3.6094 2.0360 80 

30 2000 2.1889 2.0719 1.7473 0.5976 0.1293 1.7143 

 

 

Table 8. T-test* value for the function f3: comparison of Q-QPSO with other algorithms 

QPSO Mutation [3] QPSO Mutation [2] 
Pop Dim Gen BPSO [2] QPSO [2] 

gbest mbest gbest mbest 

10 1000 2.4962 1.9296 2.3366 1.6658 1.4285 1.5366 

20 1500 3.5238 3.4839 3.7043 2.9247 2.7336 2.5909 20 

30 2000 2.8828 3.1750 2.7207 3.1501 2.5931 2.3971 

10 1000 2.1021 2.3534 1.9774 2.3377 2.6069 3.0377 

20 1500 2.3963 4.4938 2.6616 3.4119 2.0751 3.5739 40 

30 2000 3.0378 3.0108 3.8951 4.1699 2.8380 4.4003 

10 1000 3.2847 1.8772 2.5347 2.4382 2.8315 3.2502 

20 1500 2.8594 3.5828 3.2790 2.5388 2.9890 3.7068 80 

30 2000 3.4046 3.9045 3.6288 3.8771 3.1658 4.1947 

* The t value of 29 degrees of freedom is significant at a level a 0.05 level of significance by a two-tailed t-test 

 

 



   

                                                          (a)                                                                                   (b) 

Figure 2. Performance for Rastringin function (a) dimension 10 (b) dimension 20 

 

   

                                                              (a)                                                                                  (b) 

Figure 3. Performance for Griewank function (a) dimension 10 (b) dimension 20 

 

  

                                                             (a)                                                                                  (b)    

Figure 4. Performance for Rosenbrock function (a) dimension 10 (b) dimension 20 

 

 



5. CONCLUSIONS 
This paper presents a variant of Quantum PSO called Q-QPSO, 
incorporating the concept of recombination operator. The 
proposed Q-QPSO is tested on three standard unconstrained 
benchmark test problems and the results are compared with some 
of the existing QPSO (containing mutation operator) and standard 
PSO.  

For the first test problem, which is, Rastringin’s function (a highly 
multimodal function), the proposed Q-QPSO algorithm 
outperformed all the given algorithms, quite significantly and 
gave the near optimum solution (which is 0) in all the test cases. 
Similarly for the second test problem (Griewank function), Q-
QPSO gave better results than the other algorithms in seven out of 
the nine test cases tried. For the test functions f3 – f10 also Q-
QPSO gave superior results in all the cases. The dominance of the 
proposed Q-QPSO algorithm is also apparent from the two tailed 
t-test given in Tables 5, 6 and 7. 

However, we would like to add that the collection of test 
problems taken in this paper is not exhaustive and therefore 
making any concrete conclusion on the performance of Q-QPSO 
do not sound justified. Moreover, it is very much possible that the 
inclusion of a crossover operator may have an adverse effect on 
the diversity of the algorithm which in turn may deteriorate its 
performance for solving problems having large number of 
variables. Also, it would be interesting to do a theoretical analysis 
on quadratic interpolation operator and its application to 
optimization problems.   

However, on the positive side it is quite evident from the 
numerical results that for the highly multimodal problems having 
variables up to 50, Q-QPSO is definitely a better choice over the 
contemporary optimization algorithms. 

For the future work, we shall be apply Q-QPSO for solving more 
complex unconstrained and constrained optimization problems. 
Also we shall be studying the combined effect of mutation and 
recombination on a Quantum behaved PSO. 
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