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ABSTRACT

We study the minimum s-t-cut problem in graphs with costs
on the edges in the context of evolutionary algorithms. Min-
imum cut problems belong to the class of basic network op-
timization problems that occur as crucial subproblems in
many real-world optimization problems and have a variety
of applications in several different areas. We prove that
there exist instances of the minimum s-t-cut problem that
cannot be solved by standard single-objective evolutionary
algorithms in reasonable time. On the other hand, we de-
velop a bicriteria approach based on the famous MaxFlow-
MinCut Theorem that enables evolutionary algorithms to
find an optimum solution in expected polynomial time.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: evolutionary algorithms, minimum s-t-cuts, multi-

objective optimization, randomized search heuristics

1. INTRODUCTION

Metaheuristics such as evolutionary algorithms, ant colony
optimization, and local search methods are known to be
good problem solvers for a wide range of real-world optimiza-
tion problems. Empirical tests confirm that they provide
high-quality solutions within reasonable time for many such
problems. Understanding the success of these metaheuris-
tics from a theoretical point of view has gained increasing
interest in recent years and is an ongoing challenge.

A lot of progress has been made in analyzing simple evo-
lutionary algorithms with respect to their runtime behavior
on artificial pseudo-boolean functions [4, 8] as well as some
well-known combinatorial optimization problems [7, 13, 14,
15, 17, 18]. We contribute to this line of research and study
the minimum s-t-cut problem in a given graph with weights
on the edges. This is one of the basic, classical problems in
combinatorial optimization, operations research, and com-
puter science [2]. It is well known that the problem of com-
puting a minimum s-t-cut can be solved in polynomial time
and is closely related to the problem of computing a max-
imum flow in a given graph. Besides the classical s-t-cut
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problem, there are many other variants of cutting problems
some of which are NP-hard. Examples are the maximum
cut problem or the minimum multicut problem [9]. Evolu-
tionary algorithms have produced good results for various
kinds of difficult cutting problems [5, 12, 16].

We start by considering two single-objective models for
the minimum s-t-cut problem in Section 2. One is node-
based, the other one is edge-based. In the node based ap-
proach we are searching for a partitioning of the vertices
into two subsets, one containing s and the other containing
t, such that the cost of the edges connecting the s- to the
t-side of the cut is minimal. In the edge based approach we
search for a subset of edges of minimal costs such that the
deletion of those edges disconnects t from s, i.e., the chosen
edges constitute a cut.

It turns out that the two mentioned single-objective ap-
proaches do not lead to an efficient optimization process for
basic evolutionary algorithms. We present classes of graphs
with the following undesired property: Once the evolution-
ary algorithm has found some suboptimal s-t-cut, it is ex-
tremely unlikely that this solution will eventually be turned
into an optimal solution within a polynomial number of it-
erations. The reason is that in the search space consisting of
all s-t-cuts there is a second-best (suboptimal) solution such
that the globally optimal solution is far away and thus very
unlikely to be reached within a single step. Moreover, due
to the special structure of the considered graphs, the evo-
lutionary algorithm gets easily trapped in this second-best
locally optimal solution.

Afterwards, in Section 3, we examine an edge-based multi-
objective model of the problem that takes the cost of a
subset of edges as well as the remaining s-t-flow value into
account that can be sent after removing the chosen edges.
This trick helps to somehow enlarge the actual search space
by enhancing infeasible edge sets (whose removal does not
disconnect ¢ from s). The enlarged search space no longer
allows for the undesired situation in the single-objective ap-
proach discussed above.

In order to evaluate a subset of edges with respect to
the maximum s-t-flow value after deletion of those edges,
we assume that the evolutionary algorithm has access to
an oracle that can compute the maximum flow value in a
graph. Due to the close relation of maximum s-t-flows and
minimum s-t-cuts, this assumption seems to be questionable
at first sight. We therefore discuss this issue in some more
detail in the following.

We first argue from a theoretical point of view. While
an explicitly given maximum s-t-flow (specified by the flow



value on every edge of the graph) directly exposes a mini-
mum s-t-cut, the maximum flow value alone does not con-
tains any structural information about a minimum cut be-
sides the minimum cut capacity. In particular, having access
to such an oracle does not render the minimum cut problem
entirely trivial.

From a more practical point of view, having access to
such a maximum flow oracle seems reasonable in certain sit-
uations. Consider, for example, a network of water or oil
pipelines. When a leak occurs at some point ¢ of the net-
work, enough pipeline connections have to be cut off by using
stop-cocks such that no more liquid leaks from the system.
On the other hand, it is desirable to keep the number of
inactivated pipeline connections at a minimum in order to
keep the negative impact small. In the described scenario,
after cutting off some edges, the remaining flow out of the
leak can be easily observed and is actually the crucial basis
for further decision-making.

Finally, in contrast to the basic minimum s-¢-cut problem
considered here, in more complex settings the complexity of
a minimum cut computation and the related maximum flow
computation can be considerably different. Consider for a
example a multicommodity flow setting with k source-sink
pairs (ss;,t;), ¢ = 1,...,k. Here, a maximum multicom-
modity flow can be computed in polynomial time while the
problem to find a set of edges of minimum cost that discon-
nects every sink ¢; from its associated source s;, i =1,...,k,
is NP-hard [3]. It is therefore reasonable to assume that
maximum multicommodity flow computations are used as
subroutines when trying to compute a minimum cut discon-
necting all source-sink pairs. As a final example we mention
length-bounded flows and cuts. Also in this situation, the
maximum flow value is considerably easier to obtain than a
minimum cut [1].

We continue with the discussion of the result presented
in Section 3. As both criteria (the cost of chosen edges
and the remaining flow value) admit a number of function
values that is exponential in the input size, the Pareto front
explored by the evolutionary algorithm is of exponential size
and we investigate a multi-objective evolutionary algorithm
that uses the concept of e-dominance introduced in [10].
This concept leads to a partitioning of the two-dimensional
objective space into a certain number of boxes. For each box
at most one search point is archived. The size of the boxes is
determined by a parameter € which has to be chosen accord-
ing to the considered problem. We show that this algorithm
performs well for a wide range of e-values. In particular, we
show that a minimum s-¢t-cut can be computed in expected
polynomial time using the multi-objective approach.

The outline of the paper is as follows. In Section 2, we
analyze the single-objective approaches to the minimum cut
problem and show that they do not lead to an efficient
optimization process. In Section 3, we present the multi-
objective model and prove that the expected optimization
time of this approach is polynomial. Finally, we finish with
some conclusions.

2. SINGLE-OBJECTIVE APPROACH

We consider the following problem. Given a connected di-
rected graph G = (V| E) on n + 2 vertices and m edges and
a cost function ¢ : E — IN; that imposes positive integer

weights on the edges. Two nodes s,t € V are distinguished.
We call s the source node and ¢ the target node.

A s-t-cut S C E is a set of edges such that there is no path
from s to t when the edges of S are deleted from E. The
cost of a subset of F is defined as the sum of the costs of its
elements. The goal is to find an s-t-cut S C E of minimum
cost. We denote by cmax = maxeer c(e) the largest cost
among all edges.

First, we examine two single-objective approaches. Here,
we consider the well-known (1+1) EA working on bit strings
of length n. New search points are obtained by flipping each
bit of the current search point with probability 1/n. The
algorithm can be described as follows.

AvcoriTHM 1. (1+1) FA
1. Choose an initial search point x € {0,1}" uniformly at
random.
2. Repeat
e create an offspring x' by flipping each bit of x with
probability 1/n.
o if f(z') < f(z), z:=2'.

For our investigations, we are interested in the number of
fitness evaluations to reach an optimal search point. This
is called the optimization time of the considered algorithm.
Often the expectation of this value is analyzed and called
the expected optimization time.

2.1 Node-based Search

We first investigate the (1+1) EA that searches for a parti-
tioning of the vertices such that the edges crossing the two
partitions constitute a minimum cut.

The search space is {0,1}", i.e., each bit of a search point
x corresponds to one vertex of V\{s,t}. If z; = 0, the vertex
v; 1s on the same side of the cut as the source s whereas
x; = 1 assigns v; to the target t. Let S = {s} U {vi|z; = 0}
and T = {t} U {vs|z; = 1}.

The fitness of a search point x is given by

cost(z) = Z c(e),

e€EN(SXT)

which computes the sum of the cost of all edges leading from
S to T'. Note, that each search point constitutes a cut, i.e.,
there are no infeasible solutions using this approach.

In the following, we present a class of instances where
the (1+1) EA in the described setting is not able to find
a minimum cut in polynomial time with high probability.
To simplify the presentation we use real-valued costs on the
edges. However, an appropriate scaling can be used to come
up with instances where the costs are positive integers and
the following results also hold.

The example is based on graphs G, that are used as build-
ing blocks (see Figure 1). The graph Gj consists of a path
of k nodes (excluding s and t) connected by edge pairs. The
costs on the edge pairs are increasing from 1 to k. In addi-
tion, the very last edge pair has cost 0, such that assigning
all nodes to the source s constitutes the unique minimum
cut of cost 0. On the other hand, assigning all nodes to the
target ¢ is a local optimum of cost 1.

For simplicity, we assume that the bits of a vector from
{0,1}* are in the same order as the corresponding vertices



Figure 1. Graph Gi

on the path from s to t. For example, cost(0*~'1) = k.
Furthermore, cost(0¥) = 0 and cost(1%) = 1.

We define the notion of a block of bits as follows. A block
is a set of consecutive bits that have the same value. The
length of a block is the number of its bits. For example,
x = 0 consists of one single block of 0’s of length k. In
the following, the right-most block of a bit string will play
an important role, and we use len(z) to define the length of
that block.

First we prove two simple observations that will be needed
later.

LEMMA 1. Let z be a search point with len(z) > 2. Pro-
vided that only 1-bit flips occur, all future accepted search
points ' satisfy len(z') > len(z).

PROOF. If the left-most bit of the right-most block is
flipped, an edge of cost k + 1 — len(z) is removed from the
cut, whereas an edge of cost k + 2 — len(zx) is being added.
Hence, cost(z') = cost(x) + 1 and ' is not accepted. If the
right-most bit of the right-most block is flipped, an edge of
cost k is added to the cut, whereas at most one edge of cost
0 is removed from the cut. Again, cost(z’) > cost(z) and
2’ is not accepted. If one of the inner bits of the right-most
block is flipped, two edges of cost at least k+2 — len(z) and
k+ 3 —len(z) are added to the cut, and no edge is removed.
This implies cost(z’) > cost(z) and ' is not accepted.  []

In other words: If x = %00 holds, this property is main-
tained for all future accepted search points (provided that
only 1-bit flips occur). Similar for z = x11.

LEMMA 2. Let len(z) < k. Flipping the bit left of the
right-most block increases len(x) by at least 1 and decreases
cost(z) by at least 1.

PROOF. Let i denote the index of the bit left to the right-
most block. Let 2’ denote the bit string obtained from = by
flipping x;. Assume x = *0, this implies z; = 1.

Ifz;_1 = x;_, = 0, flipping x; excludes the edges (v;_1, v;)
and (vit+1,v;) from the cut, i.e., cost(z") = cost(z) —i— (i +
1) < cost(x) — 1. If x;—1 = x;_, = 1, flipping z; excludes
the edge (vit1,v;) from the cut, whereas the edge (vs, vi—1)
is included. Hence, we have cost(z') = cost(z) — (i+1)+1i =
cost(z) — 1. The case z = x1 is similar. U

Now we describe the construction of the graph G, based
on Gy. Consider £ copies of G and merge all copies of s.
Similarly, merge all copies of ¢t. The resulting graph has
kf 4+ 2 nodes and 2¢(k + 1) edges. The j-th copy of G will
be denoted by GY. The value cost?(z) corresponds to the
total cost caused by the edges in GY leading from S to T.

For the lower bound on the running time of the (141) EA
we choose k = O(n'/1%) and ¢ = ©(n'/'°). Furthermore,
we add n — kf vertices adjacent to t. The resulting graph

is called G}, (see Figure 2). In the following we distinguish
between the original Gy ¢ (called chain part) and the star
part. All edges in the star part have cost 1/n. Adding the
star part has the consequence that steps flipping nodes in
the flow part become more unlikely. As there are ©(n'/?)
nodes in the chain part but ©(n) nodes in the star part, steps
flipping exactly ¢ nodes in the chain part, i a constant, have
probability @(n7<4/ 5)i) (using similar counting arguments
as in [15]).

1 [ J
n
1
n
.
. n — k¢ nodes
1
n
1
™ o

Figure 2. Graph G;c,ﬁ

THEOREM 1. With probability 1 — o(1), the optimization
time of the (1+1) EA on G}, is 92(n'/1%)

PROOF. We consider a typical run consisting of different
phases of length n”/® and show that a local optimal solution
which is not globally optimal is reached with probability
1 —o(1). As the chain part consists only of ©(n'/®) nodes
while the total number of nodes is n (excluding s and t),
mutation steps flipping at least two bits in the chain part
do not occur with probability 1 — O(n=%°n"/%) = 1 — 0(1)
within these phases. Let z? be the part of a search point
which consists of the bits corresponding to the nodes of G.

CramM 1. With probability 1 — o(1), after n™/% steps a
search point x has been obtained for which the following two
statements hold.

1. For each GV either x7 = %00 or 7 = %11 holds.
2. For at least one G7, 7 = x11 holds.

ProoF. The probability that a fixed z of the initial
search point does not match %11 is 3/4. These probabil-
ities are independent for each component GY. Hence, the
probability that there is no j, 1 < j < /£ such that z7 of
the initial search point matches %11 is (3/4)°. Thus, the
second statement holds with probability 1 —o(1) for the ini-
tial search point. By Lemma 1, the statement holds with at
least the same probability at the end of the phase.

Consider any component GY. If 27 = %00 or ’ = %11 for
the initial search point, by the same lemma, this property
holds at the end of the phase. Suppose z/ = %01 or 2/ =
%10. The probability that the two right-most bits of =’ are
not flipped within a phase of n7/® steps is at most (1 —

l/n)(2"7/5) =0 (672712/5).

There are £ = @(nl/m) components which implies that
with probability 1 — O (nl/me*z”z/s) =1-o0(1), 27 = %00
or 7 = %11 holds for each j at the end of the phase. O

CrAM 2. With probability 1 — o(1), after additional n™/°
steps a search point x has been obtained for which the fol-
lowing two statements hold.

1. For each G’ either 27 = 0% or ¥ = 1* holds.

2. For at least one G7, 27 = 1% holds.



Proor. With probability 1 — o(1) only such mutation
steps occur that flip no bits or exactly one bit in the chain
part. Mutation steps that flip no bits in the chain part are
irrelevant for the claim and can be ignored.

Now consider the mutation steps where exactly one bit
in the chain part is flipped. Due to the choice of 1/n for
the cost of the star edges, the fitness change caused by the
star part is at most (n — kf)/n < 1. The fitness changes by
at least 1 when flipping exactly one bit in the chain part.
Hence, changes in the star part do not affect the statements
given in Lemma 1 and Lemma 2.

There is a sequence of at most n'/® 1-bit flips in the
chain part that results in a search point x fulfilling the first
statement: For each component GY flip the bit left to the
right-most block. By Lemma 2, such steps are accepted.
By Lemma 1, the length of the right-most block does not
decrease. The probability of a particular 1-bit flip in the
chain part in the next mutation step is at least 1/(2en).
Hence, the expected time until a search point fulfilling the
first statement is reached is upper bounded by O(n6/5). Us-
ing Markov’s inequality, the probability of having reached
such a search point within a phase of n'/® steps is 1 — o(1).

By Claim 1, there is at least one component G’ with
2’ = %11 at the end of first phase. By Lemma 1 and
the first statement, z7 = 1* holds at the end of the sec-
ond phase. O

CraM 3. With probability 1 — o(1), after additional n”/®
steps a search point x has been obtained for which the fol-
lowing three statements hold.

1. For each G’ either 27 = 0% or ¥ = 1* holds.

2. For at least one G7, 7 = 1% holds.
8. All bits corresponding to nodes in the star part are set
to 1.

PRrooF. After having reached a search point where for
each G7 either 27 = 0% or &’ = 1* holds, bit flips affecting
the chain part are only accepted if they flip at least k flow
nodes. This is exponentially unlikely during a phase of n’/%
steps. Hence the first two statements are fulfilled at the end
of the phase.

Within this phase all bits corresponding to star nodes are
set to 1 with probability 1 — o(1) using similar fitness layer
arguments as before. |

After having reached a search point where the three prop-
erties of the preceding claim hold, we consider one fixed
component G with 27 = 1*. This component can only be
turned into an optimal component by flipping all bits of G7
in a single mutation step. The probability for this event
is O(n™F). The expected waiting time for such a step is
Q(nF) = 2%klem) - Using Markov’s inequality once more,
the optimization time is 2°*) with probability 1—o(1) as all
failure probabilities during our typical run have been shown

to be o(1). U

An integral cost vector can be obtained by multiplying all
edge costs by n. Theorem 1 also applies to the modified cost
vector.

We want to remark that this result also applies to undi-
rected graphs. A pair of oppositely directed edges of equal
cost behaves exactly as a single, undirected edge of the same
cost.

2.2 Edge-based Search

Now we consider an approach that searches for a set of edges
which represents a minimum cut. Therefore we work with
bit strings of length m = |F| in the (14+1) EA. For a search
point z € {0,1}™, the set E(z) := {e; € F | x; = 1} denotes
the subset of E corresponding to the 1’s in . Note, that
not every search point represents an s-t-cut.

We consider the fitness functionf( )= cost( )+aflow(x)
for some a > 1, where cost(z) := }__c (., c(€) and flow(x)
denotes the maximum value of an s-t- glow in the graph
G(z) := (V,E \ E(z)). The capacity of an edge e € F
equals its cost c(e). The fitness function is to be minimized.
Note that flow(z) vanishes if and only if F(z) contains an
s-t-cut of G. Hence, flow(zx) is a penalty term that penal-
izes bitstrings that do not correspond to a feasible solution.
If E(z) contains an s-t-cut of G, the fitness function equals
the value of the corresponding cut. A factor o < 1 is un-
suitable, since the empty set would have smaller (or equal)
fitness than the global optimum.

In the following, we present a class of instances for which
(141) EA fails to explore a minimum cut in polynomial time
with high probability. Again, we use real-valued costs on the
edges to simplify the presentation. The instances are based
on the graph Hy (see Figure 3). Hj consists of k + 1 edges
from s to v with cost 1 and k edges from v to ¢t with cost
1+ ¢e. Choosing € > % implies that the minimum s-t-cut of
Hj, is given by the set of 1-edges. The set of (1 + ¢)-edges
is another cut of larger cost. Requiring € < % will turn out
to be useful later.
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Figure 3. Graph Hy

Let a(z) denote the cardinality of E(x) intersected with
the set of l-edges, and let b(z) := |E(z)| — a(z). Then
cost(z) = a(z) -1+ b(z) - (1 +¢) and flow(x) = min{k +
1 —a(x),(k—b(z))(1+¢)}. Note that the global optimum
corresponds to a(z) = k+ 1 and b(z) = 0, whereas a(z) =0
and b(z) = k is a local optimum of strictly larger value.

First we show that flow(z) does not depend on a(z) pro-
vided that b(x) is larger than a(x).

ProposITION 1. Ifb(z) > a(x)+1, then flow(z) = (k—
b(x))(1+¢€). Ifb(z) < a(z)—1, then flow(z) = k+1—a(x).

ProoF. If b(z) > a(z) +1 holds, then (k—b(z))(1+¢) <
(k—a(z)—1)(1+¢e) <k—1-a(z) + k. Since e < 2, we

have (k — b(z))(1+¢) < k+1—a(z).
If b(z) < a(z) — 1 holds, then (k — b(x))(14+¢) > (k —
a(z)+1)(1+¢) > k+1—a(x). O

In the case that only 1-bit flips occur the following slightly
stricter precondition is maintained throughout the run of
(1+1) EA.



LEMMA 3. If b(z) > a(z) + 2 for some search point x,
then this property also holds for all future accepted search
points, provided that only 1-bit flips occur.

Proor. Let 2’ denote the search point constructed from
z. Since ' differs from = by one bit, we have b(z') > a(z’) +
1. By Proposition 1, the flow(-) value depends solely on b(-),
and it holds

—(1+¢) ifb(z')=0b

flow(z") = flow(z)+ 40 if b(z') = b(z),

(14+¢) ifba’)=nb(z)—1.

For the cost(-) component holds

1+e if b(z") = b(x) + 1,
—(1+¢e) ifbz)=0b(zx) -1,

cost(z') = cost(z) +{ 1 if a(z') = a(x) + 1,
-1 ifa(z') = a(z) — 1,
0 otherwise.

Note that o > 1. Hence, we can summarize that f(z') <
f(z) holds if and only if a(z’) = a(z) — 1 or b(z’) = b(x) +
1. This implies that 1-bit-flips are only accepted if they
decrease a(x) or increase b(x), and hence, b(z') > a(z’) + 2
holds if =’ is accepted.

In a similar way we obtain the following result.

LEMMA 4. If a(z) > b(z) + 2 for some search point x,
then this property also holds for all future accepted search
points, provided that only 1-bit flips occur.

Proor. Let ' denote the search point constructed from
x. Since z’ differs from z by one bit, we have a(z’) > b(z') +
1. By Proposition 1, the flow(-) value depends solely on
a(-), and it holds

-1 ifa(z’) =a(z)+1,
flow(z') = flow(z) +4{0 if a(z') = a(x),
1 ifa(@’) =a(z

=
I
—_

For the cost(-) component holds

1+¢ if b(x') = b(z) + 1,
—(1+¢) ifb(z')=0b(z) -1,

cost(z') = cost(z) + ¢ 1 if a(z') = a(x)+1,
-1 if a(z’) = a(z) — 1,
0 otherwise.

Note that @ > 1. Hence, we can summarize that f(z') <
f(z) holds if and only if a(z') = a(x) +1 or b(z') = b(x) — 1.
This implies that 1-bit flips are only accepted if they increase
a(x) or decrease b(x), and hence, a(z’) > b(z') + 2 holds if
2’ is accepted. O

Now we describe the construction of the graph Hy ; based
on Hj. Consider [ copies of Hy and merge all copies of s.
Similarly, merge all copies of ¢t. The resulting graph has
I + 2 nodes and (2k + 1) edges. The j-th copy of Hj will
be denoted by H?. The values a’(x) and b?(x) correspond
to the cardinality of E(x) intersected with the set of 1- and
(1 + ¢)-edges in H7, respectively.

For the lower bound on the running time of the (14+1) EA
we choose k = ©(n*/1%) and £ = ©(n'/1°). Furthermore, we

add a clique of n — [ — 1 vertices (one vertex being t). The
resulting graph is called Hj, , (see Figure 4). In the following
we distinguish between the original Hy ¢ (called bundle part)
and the clique part. All edges in the clique part have cost
§ < (o —1)/n?. Adding the clique has the consequence
that steps flipping edges in the bundle part become more
unlikely. As there are ©(n'/?) edges in the bundle part but
@(n2) edges in the clique part, steps flipping exactly i edges
in the bundle part, i a constant, have probability @(n7(3/2)i)
(using similar counting arguments as in [15]).

clique of

n nodes

Figure 4. Graph H, ,

THEOREM 2. With probability 1 — o(1), the optimization
time of the (1+1) EA on Hy , is 92(n?/1).

PRrooOF. We consider a typical run consisting of different
phases of length n®/? and show that a local optimal solution
which is not globally optimal is reached with probability
1—o(1).

Cram 4. With probability 1 —o(1) for each j, 1 < j < £,
la’ (x) — b (x)| > 2 holds for the initial search point x.

Proor. Each component H? contains exactly 2k+1 edges
that can be either chosen or not. Let 27 be the part of a
search point x which consists of the bits corresponding to
these edges. Clearly, 27 has 2k + 1 bits and the search space
X7 for H? is of size 2%**1. In the following, we count the
number of search points in X7 where |a?(z) — b/ (z)| < 2
holds. For |a?(z) — b’(z)| = 0 the number of search points
in X7 is given by

BT (5 () o

For the case a’ (z) — b’ (z) = —1 we get

i (f) (ff;) _ O(k—1/222k+1)

For the case a’ (z) — b’ (z) = 1 we get

S ()fi)-owe

i=0

Hence, the probability that |a?(x) — b’ ()| < 2 holds for the
initial search point x is upper bounded by

O(k71/222k+1)

92k+1 =0k~ %) =0(n*'")

There are ¢ = @(nl/lo) such components which implies that
with probability 1 — O(n'/** . n=2/10) = 1 — O(n=1/1%) =
1 —o(1), |a®(z) — b ()| > 2 holds for each j, 1 < j < £, of
the initial search point x. O



Note that the property of Claim 4 does not only hold if
the initial search point is chosen uniformly at random. For
example, if the (1+1) EA is started from the empty set,
the claimed property holds after an additional phase of n®/?
steps with probability 1 — o(1).

We consider phases consisting of n®/? steps. As the bundle
part consists only of ©(n'/?) edges while the total number
of edges is ©(n?), mutation steps flipping at least two bits in
the bundle part do not occur with probability 1—O(n5/2n73)
=1 — o(1) within these phases.

CraiM 5. With probability 1 — o(1), after n®? steps a
search point x has been obtained for which the following two
statements hold.

1. For each H cither b (z) = k and o’ () = 0 or ¥/ (x) =

0 and o’ (x) = k + 1 holds.
2. For at least one H?, v (z) = k and a’(x) = 0 holds.

Proor. With probability 1 — o(1) only such mutation
steps occur that flip no bits or exactly one bit in the bundle
part. Mutation steps that flip no bits in the bundle part are
irrelevant for the claim and can be ignored.

Now consider the mutation steps where exactly one bit in
the bundle part is flipped. Due to the choice of § < "n_zl for
the cost of the clique edges, the fitness change caused by the
clique part is at most (n — 1 —1)(n —1 —2)§ < o — 1. The
different cases examined in Lemma 3 and 4 show that the
fitness changes by at least & — 1 when flipping exactly one
bit in the bundle part. Hence, changes in the clique part do

not affect the statements given in Lemma 3 and 4.
Let

Tj_{kbj(m)wLaj(x) if b (z) > a’ (z) + 2,

S k+1—d(2)+ ¥ (x) if ad(z) > (x) + 2.

and let r = Z§:1 77 be the sum over the values 77 for the

components H?. Due to Lemma 3 and 4, steps decreasing
the value of r are accepted while steps increasing the value
of r are rejected. The value r decreases with probability
at least r/(em) in the next mutation step. Considering the
different values of r the expected time until a search point
with r = 0 has been reached is upper bounded by

nl/2
Z (em/r) = O(mlogn).

Using Markov’s inequality, the probability of having reached
a search point where » = 0 holds within a phase of no/? steps
is 1—o(1).

After initialization b (z) > a(z) + 2 holds for at least
one H? with probability 1 — o(1). This implies that for

this component the local optimum where &’(x) = k and
a’(z) = 0 is reached with probability 1 — o(1) within the
considered phase of n°/? steps. [

CralM 6. With probability 1 — o(1), after additional n®/?
steps a search point x has been obtained for which the fol-
lowing three statements hold.
1. For each H cither b (z) = k and o’ () = 0 or V/ (x) =
0 and o’ (x) = k + 1 holds.

2. For at least one H?, v (x) = k and a’(x) = 0 holds.

8. All bits corresponding to edges in the clique part are set
to 0.

PRrooF. After having reached a search point where for
each H7 either b’(z) = k and a’(x) = 0 or b’(x) = 0 and
a’(z) = k + 1 holds, bit flips affecting the bundle part are
only accepted if they flip at least 2k + 1 bundle edges. This
is exponentially unlikely during a phase of n°/? steps. Hence
the first two statements are fulfilled at the end of the phase.

Within this phase all bits corresponding to edges in the
clique part are set to 0 with probability 1—o(1) using similar
fitness layer arguments as before. O

After having reached a search point where the three prop-
erties of the preceding claim hold, we consider one fixed com-
ponent H? where b/ (z) = k and o’ (x) = 0. This component
can only be turned into an optimal component by flipping
all bits of H? in a single mutation step. The probability
for this event is O(m™2*7!). The expected waiting time for
such a step is Q(m?F+1) = 2UEk+Dloem)  {j5ing Markov’s
inequality once more, the optimization time is 2%k) with
probability 1 — o(1) as all failure probabilities during our
typical run have been shown to be o(1). O

The example of this section can be modified as follows
to obtain integral costs. Let g be a rational lower bound

on a — 1. We choose ¢ := % and 8 := 2n72. Finally we
¥

multiply all edge costs with 2kyn?. The resulting cost vector
is integral and the coefficients are polynomially bounded in
the input size (for fixed ). Theorem 2 also applies to the
modified cost vector.

3. MULTI-OBJECTIVE APPROACH

In the multi-objective setting we consider an edge-based ap-
proach using the fitness function f : {0,1}™ +— N3, f(z) =
(cost(z), flow(x)), where cost(z) = 3 g, cle) and
flow(z) denotes the value of a maximum s-t-flow in G(z) :=
(V,E\ E(z)). Again, the capacity of an edge e € E equals
its cost c(e). Instead of combining cost(x) and flow(z) into
one single value as in the single-objective setting, we con-
sider both components separately. The objectives have to
be minimized. Let F := flow(0™) denote the value of a
maximum s-t-flow in G. Note that F < C := m - ¢max. The
goal is to find a search point z with f(x) = (F,0).

flow A
(0,F) fk—-=-=-=-===—=—=-==—=——-—=——-—-—-—-——
N
N
N
N
N
N
N
N
A
N
N
N
+ -
z* = (F,0) cost
Figure 5.  Objective space of the fitness function f(z) =

(cost(z), flow(x))

The objective space is depicted in Figure 5. A simple
observation about the structure of the search space is given
in the following proposition.



PROPOSITION 2. For any search point x € {0,1}™ it
holds that flow(x) + cost(x) > F. Furthermore, flow(x) +
cost(z) = F if and only if E(x) is a subset of some minimum
cut.

Proor. Assume flow(x) + cost(z) < F holds for some
z € {0,1}™. By the definition of flow(-), there exists a
maximum flow in G(z) of value flow(z). This maximum
flow induces a minimum cut in G(x) of the same value. The
union of the edges crossing this cut and the edges in E(z)
is a cut for the original graph G and the value of this cut is
flow(x) + cost(z) < F. Since F is the value of a maximum
flow for G, this is a contradiction to the maximum-flow-
minimum-cut theorem.

Now suppose flow(x) + cost(z) = F holds. By the same
arguments, there is a cut in G that contains E(z). Since the
value of this cut equals F', it is a minimum cut. Conversely,
suppose E(z) is a subset of some minimum cut S. Then
S\ E(z) is a minimum cut in G(z) with value flow(x).
Hence, F' =3 cgc(e) = 3 cpm () + Xees\pa) cle) =
cost(z) + flow(z). O

We denote by L = {z € {0,1}™ | flow(z) + cost(x) = F}
the set of search points whose objective vectors lie on the line
given by the two objective values (0, F') and (F,0). Due to
Proposition 2 these search points represent subsets of edges
of a minimum cut.

Examples for simple multi-objective evolutionary algo-
rithms (MOEAs) that have been analyzed before are SEMO
and GSEMO [6, 11, 14]. The GSEMO algorithm can be
described as follows. Note that the fitness function f is
vector-valued and the <-comparison is to be understood
component-wise.

ALGORITHM 2. GSEMO (Global Simple FEvolutionary
Multi-objective Optimizer)
1. Choose z € {0,1}™ uniformly at random.
2. Determine f(zx) and initialize P := {z}.
3. Repeat
e choose x € P uniformly at random.
e create an offspring *’ by flipping each bit of x with
probability 1/m.
e let P unchanged, if there is an 2" € P such that
f(@") < f(@') and f(2") # f(2').
o otherwise, exclude all " with f(z') < f(z") and add
z' to P.

Note that the values of both components cost(-) and flow(-)
of the fitness function can be exponential in the input size,
which implies that GSEMO has to cope with a Pareto front
of exponential size. As long as the costs on the edges are
polynomially bounded in the number of vertices, we can
show that GSEMO is able to compute a minimum cut in
expected polynomial time when using the objective func-
tions mentioned above.

THEOREM 3. The expected time until GSEMO working
on the fitness function f constructs a minimum cut is
O(Fm(logn + log cmax))-

Proor. The population size is upper bounded by F' as
GSEMO keeps at each time at most one solution per fixed
flow value. First we consider the time until 0™ has been

included into the population. Afterwards we study the time
to reach a minimum cut afterwards.

We apply the method of the expected multiplicative cost
decrease with respect to the cost value. Let x € P be the
solution in the population with the smallest cost. Consider
a mutation step that selects x and performs an arbitrary
1-bit flip. Such a step is called a good step. The probability
of a good step is lower bounded by Q(1/F).

Each step removing an edge from the solution = leads to a
new solution with smaller cost and is accepted. Steps adding
an edge to x do not change the minimum cost. Therefore,
a randomly chosen 1-bit flip decreases the minimum cost
on average by a factor of at least 1 — 1/m. This holds in-
dependently of previous steps. Hence, after N good steps,
the expected minimum cost value is bounded from above by
(1—1/m)™ - cost(z). Since cost(zx) < C, we obtain the upper
bound (1 —1/m)" - C.

If N := [(In2) - m - (logC)], this bound is at most 3.
Since the minimum cost is not negative, by Markov’s in-
equality, the probability that the bound is less than 1 is at
least 1/2. The minimum cost is an integer implying that the
probability of having found the search point 0™ is at least
1/2. Therefore, the expected number of good steps until the
search point 0™ is found is bounded by 2N = O(mlogC) =
O(m(logn+10g cmax)). Since the probability of a good step
is Q(1/F), a total number of O(Fm(logn + log cmax)) steps
are needed to find the solution 0™.

Now we bound the time until a minimum cut has been
constructed. Once again we apply the method of the ex-
pected multiplicative cost decrease, now with respect to the
flow value. Let = be the solution with the smallest flow
value in PN L. Note, that solutions in L are Pareto-optimal
which implies that once a solution has been obtained for
a specific objective vector, the population will always con-
tain a solution for that objective vector until the end of the
optimization process.

Consider a mutation step that selects x and performs an
arbitrary 1-bit flip. Such a step is called a good step. The
probability of a good step is lower bounded by ©2(1/F). Due
to Proposition 2, the solution z is a subset of a minimum
cut. A minimum cut and therefore a solution with objective
vector (F,0) can be obtained by including the remaining
edges of the corresponding minimum cut. Therefore, a ran-
domly chosen 1-bit flip decreases the minimum flow value in
P N L on average by a factor of at least 1 — 1/m.

Hence, after N good steps, the expected minimum flow
value is bounded from above by (1—1/m)" - flow(z). Since
flow(z) < F < C, we obtain the upper bound (1 —1/m)" -
C. Using the method of the multiplicative cost decrease the
expected time until a minimum cut has been obtained is
O(Fm(logn + log ¢max)) which proves the theorem. OJ

The upper bound given for GSEMO is pseudo-polynomial
in the input size. In the following we consider a MOEA
that ensures diversity by using the concept of e-dominance
introduced by LAUMANNS et al. [10]. Here the objective
space is partitioned into axes-parallel boxes and each box
includes at each generation at most one search point. It
turns out that in our setting it is sufficient to partition the
objective space with respect to the second objective. Hence,
we use stripes instead of boxes.

We partition our objective space into stripes with respect
to the flow value by using the function b : {0,1}™ — N with



| log(1+ flow(2))
bla) = | et

termines the size of the stripes. Let B := maxgeo,13m b(x).
Now the DEMO algorithm can be described as follows.

J , where € > 0 is a parameter that de-

ALGORITHM 3. DEMO (Diversity Evolutionary Multi-ob-
jective Optimizer)
1. Choose z € {0,1}™ uniformly at random.
2. Determine f(z) and initialize P := {z}.
3. Repeat
e choose x € P uniformly at random.
e create an offspring ' by flipping each bit of x with
probability 1/m.
e let P unchanged, if there is an z” € P such that
f@") < f(2') and f(z") # f(x') or if there is an
" € P such that b(z") = b(z') and cost(z")
+ flow(z") < cost(z’) + flow(z').
o otherwise, exclude all " where f(z') < f(z") or
b(z") = b(z') and add x’ to P.

Similar to the GSEMO algorithm, DEMO discards a new
search point 2’ if it is dominated by a search point z/ € P
with different objective vector. Additionally, = is discarded
if there is a search point z” € P which falls in the same
stripe and is closer to the line through (0, F') and (F,0). If
this is not the case, as before, all dominated search points
in the population are removed. Additionally, we ensure that
the population contains at most one search point for each
stripe.

ProposITION 3. The maximum population size of DEMO
is bounded by B = O(¢ *log C).

PROOF. Since the b(-) value is a non-negative integer and
the population contains at most one search point per stripe,
the population size is bounded by B. We have B < log(1 +
F)/log(l +¢) < 2log(1 4 F)/e. Since F < C, we obtain
b(z) = O(s tlog C). O

LEMMA 5. The expected time until DEMO working on
the fitness function f constructs a search point x* € L is
O(me™*(log® n + log? Cmax))-

PROOF. We proof the result by considering the expected
multiplicative decrease of flow(-) + cost(-).

Let x = argmin.cp flow(z) + cost(z) be a solution whose
sum of the flow and cost value is the smallest among all
solutions in the current population P. Assume that x & L,
i.e., flow(z) + cost(x) = F does not hold.

Denote by E'(z) C E(z) the set of edges chosen by z that
do not belong to a fixed minimum cut of G. Removing these
edges leads to a solution ™ € L due to Proposition 2. Each
of the 1-bit flips removing a single edge of E'(z) leads to a
solution z’ with flow(z') + cost(z’) < flow(zx) + cost(x) as
otherwise this would contradict Proposition 2.

We consider all possible 1-bit flips. The probability for
carrying out an arbitrary 1-bit flip in the next step is ©(1).
All 1-bit flips regarding the edges of E’(z) are accepted and
in total lead to a solution z* € L. We do not consider the
remaining 1-bit flips to measure the improvement towards a
solution z* € L and assume that they reduce the sum of the
flow and cost value by zero.

Therefore, a randomly chosen 1-bit flip decreases the value
flow(z) + cost(x) — F on average by a factor of at least 1 —

1/m. Using the method of the multiplicative cost decrease
the expected number of steps until a search point z* with
flow(z™) + cost(x™) = F has been obtained is bounded by
2N = O(mlog C) = O(m(logn + log cmax))-

Since the population size is bounded by B, the probability
of picking a search point = that minimizes flow(z)+ cost(z)
is Q(1/B). Hence, the expected number of generations until
a solution z* € L has been obtained is upper bounded by

O(NB) = O(mBlog C) = O(me ' log” C)
= O(mz-fl (10g2 n+ 10g2 Cmax)) .

This concludes the proof. O

In the following, we show that we can obtain from each
search point z € L which does not describe a minimum cut
a search point =’ € L with b(z’) < b(z) by flipping a specific
bit if the value of ¢ is chosen in an appropriate way. Using
this property we are able to show that DEMO is able to
compute a minimum cut efficiently.

PROPOSITION 4. Lete < 1/m andx € L be a search point
with flow(z) > 0. Then there exists a 1-bit flip leading to a
search point ' € L with b(z') < b(x).

ProoF. Let y := flow(z). By Proposition 2, the set E(x)
is a subset of some minimum cut E(z*). Since flow(z) > 0,
E(x) is a proper subset. Hence, there exists a least one 1-bit
flip leading to a search point ' with flow(z')+cost(z') = F
and flow(xz') < flow(z). Among all such search points,
consider a point ’ that minimizes y' := flow(z').

Let k := |E(z*)| — |E(z)] < m. Since y was minimal,
y' < (1— 1)y holds. Since e < = < + and k <y, we have

1 <1
m k

/ 1
I+e)1+y)<1+e+(1+e) (1—E)y
1 1
§1+*]32+<1+E)<7E)y:1+y.

log(1+ ") < log(1 +y)
log(1+¢) ~ log(l+¢)’

and finally b(z') < b(z). O

This implies

1+

THEOREM 4. Choosing € < 1/m, the expected time until
DEMO working on the fitness function f constructs a min-
imum cut is O(me 2(log® n + log? cmax)).

Proor. Due to Lemma 5 a search point z € L has been
included into the population after an expected number of
O(me™*(log® n + log? cmax)) steps. Hence, it is sufficient to
consider the search process after having found a search point
z e L.

The archiving strategy of DEMO guarantees that each
strip containing a search point from P N L will contain such
a (maybe different) search point in all future generations.
Therefore, minge pnr, b(z) will never increase during the run
of the algorithm.

Since the population size is bounded by B, the probability
of picking a search point x € L with minimal b-value among
the search points in L is ©(1/B). By Proposition 4, there
exists at least one 1-bit flip leading to a search point =’ € L
with b(z’) < b(z). The probability to generate such a search



point 2’ is (1/m). After at most B such steps, the b-value
is zero implying that we have found a minimum cut. Hence,
the expected time to obtain a minimum cut is

O(B*m) = O(me?log® C) = O(me>(log” n + log” tmax)) -
This concludes the proof. [

Note, that the upper bound is O(m?3(log® n + log? cmax))
for e = ©(1/m) and polynomial as long as ¢ = 1/poly(m)
for a polynomial poly(m).

The analysis of Theorem 4 was split into two phases: the
first phase ends with the construction of a solution z € L.
The total runtime is dominated by the runtime required for
the second phase, which is a factor of e ! larger than the
runtime of the first phase. A better bound for the overall
runtime can be proved using the following, slightly more
powerful algorithm.

ALGORITHM 4. Modified DEMO
1. Choose x € {0,1}™ uniformly at random.
2. Determine f(z) and initialize P := {z}.
3. Repeat
e choose x € P uniformly at random.
e create an offspring x’ by flipping each bit of x with
probability 1/m.
e let P unchanged, if there is an 2" € P such that
f(&") < f(z') and f(z") # f(z') or if there is an
an z” € P such that b(z") = b(z’) and flow(z") +
cost(z") < flow(z'") + cost(z") or if there is an z” €
P such that b(z") = b(z") and flow(z")+ cost(z") =
flow(z") + cost(z’) and flow(z") < flow(z").
e otherwise, exclude all " where f(z') < f(z") or
b(z") = b(z') and add x’ to P.

Compared to DEMO, a new rule for ties w.r.t. the sum
of flow and cost value within the same stripe has been added.
The modified version prefers solutions with smaller flow value,
that is, solutions whose objective vector is close to the op-
timum (F,0). This ensures that mingepnr flow(z) never
increases during a run of the modified DEMO algorithm,
which is not true for the original DEMO algorithm. This
property is used to prove a tighter runtime bound.

THEOREM 5. Choosing € < 1/m, the expected time until
modified DEMO working on the fitness function f constructs
a minimum cut is O(me ™' (log® n + log? cmax)).

ProorF. The modification does not affect the arguments
in the proof Lemma 5. Hence, Lemma 5 also applies to the
modified DEMO and it is sufficient to consider the search
process after having found a search point x € L.

Let = be the solution with the smallest flow value in PN L.
Consider a mutation step that selects z and performs an
arbitrary 1-bit flip. Such a step is called a good step. The
probability of a good step is lower bounded by ©2(1/B). Due
to Proposition 2, the solution x is a subset of a minimum
cut. A minimum cut and therefore a solution with objective
vector (F,0) can be obtained by including the remaining
edges of the corresponding minimum cut. Therefore, a ran-
domly chosen 1-bit flip decreases the minimum flow value in
PN L on average by a factor of at least 1 — 1/m.

Hence, after N good steps, the expected minimum flow
value is bounded from above by (1—1/m)" - flow(z). Since

flow(z) < F < C, we obtain the upper bound (1 —1/m)" -
C. Using the method of the multiplicative cost decrease the

expected time until a minimum cut has been obtained is
bounded by

O(Bm(logn + 10g ¢max)) = O(me ™" (log” n + 10g> cmax))

which proves the theorem. O

4. CONCLUSIONS

The computation of a minimum s-t-cut for a given weighted
graph arises in several applications and many constrained
variants are difficult to solve. We have studied how evolu-
tionary algorithms can cope with this problem. Our investi-
gations show that single-objective approaches fail to achieve
optimal solutions. In contrast to this the proposed multi-
objective approach points out the connection between the
two contrasting objectives cost and feasibility. This ap-
proach leads to a polynomial runtime as long as the objec-
tive space is polynomially bounded. To overcome the latter
problem we apply the concept of e-dominance which lead to
an expected polynomial runtime.

We believe that the gained insights might turn out to
be useful for solving NP-hard variants of the problem in
the context of multicommodity flow networks. In this con-
text, computing a maximum flow is a relatively easy problem
while finding a minimum cut is NP-hard. In a subsequent
work we want to apply our bicriteria approach in order to
solve the NP-hard minimum cut problem.
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