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ABSTRACT
We aim for a more rigorous discussion of “complexity” for
Artificial Embryogeny. Initially, we review several existing
measures from Biology and Mathematics. We argue that
measures which rank complexity through a Turing machine,
or measures of information contained in a genome about
an environment, are not desireable here; Instead, we argue
for measures which provide the environment “for free”, al-
lowing us to quantify the capacity for a genome to exploit
a provided area of growth. This leads to our definition of
Environmental Kolmogorov Complexity and Logical Depth,
along with our introduction of novel measures of functional
complexity. Next, we attempt at defining an exceptionally
simple model of embryogenesis, the Terminating Cellular
Automata. The described measures are computed in this
context, and contrasted.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search; F.1.1 [Theory
of Computation]: Computation by Abstract Devices—
Models of Computation

General Terms
Algorithms, Measurement, Experimentation

Keywords
Artificial Embryogeny, Developmental Systems, Complexity,
Environment, Complexification, Cellular Automata

1. INTRODUCTION
Complexity is a topic often discussed in Artificial Embryo-

geny (AE) and Biology; Indeed, the notion is fundamental
to several interesting open topics. Unfortunately, there does
not exist any single accepted definition of the term, and
many authors use it implicitly; This severely undercuts our
ability to evaluate related hypotheses.
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For instance, consider the term “complexification”, typi-
cally used to describe the increase in phenotypic (organis-
mal) complexity which accompanies the growth of genomic
complexity during evolution. Whether such a (causal) link
exists in natural history is a much discussed topic in biology
today ([22, 14]), and has generated some interest in AE as
well ([27, 2]). However, without any standard for measuring
genomic or phenotypic complexity, any relevant claims are
not falsifiable. This is a pity, since AE is uniquely capable
of generating control data for comparison. As a second ex-
ample, consider the notion of the existence of an “edge of
chaos”, that is, a region between orderly and chaotic growth
where “interesting” algorithms lie; Evaluation of any such
notion is also highly dependent upon the choice of complex-
ity taken [9].

This paper begins with a discussion of notions of com-
plexity in Biology and AE. Of particular interst will be the
role of the dynamic and the environment in these measures,
along with biological motivations. We will not be inter-
ested in related topics such as Complexity Theory or Self-
Organization, believing this first stage to be a necessary
precursor to those more ambitious topics. Current work in
AE, especially views on complexity, do not sufficiently con-
sider the role of environment and dynamics in development;
we will propose a modification of Kolmogorov complexity,
along with some other measures, in an attempt to rectify
this. In so doing, we will derive a definition with properties
quite different from those of traditional Kolmogorov com-
plexity; notably, we will gain computability, but lose the
cross-machine applicability of traditional Kolmogorov com-
plexity. But, we will argue, this perspective should be of
greater value to practitioners.

Next, we will define perhaps the simplest model of AE pos-
sible, the Terminating Cellular Automaton (TCA). Using a
one-dimensional version of TCAs on simple binary strings,
we will be able to compute our defined measures (although
doing so via brute force would likely be intractable in some
other, less minimal model). We then contrast the measures
with each other, discussing similarities and differences.

2. REVIEW

2.1 Artificial Embryogeny
Artificial Embryogeny (AE) (sometimes known as “Com-

putational Development” or “Developmental Systems”) is a
sub-field of Evolutionary Computation concerned with bi-
asing search through computation-like processes. In short,
AE consists of the use of a non-linear dynamical system



to map from representation to organism, inspired by, but
not necessarily resembling, the mapping from genotype to
phenotype in nature. There does not appear to be any ac-
cepted crisp definition; Indeed, this very conference track
requests papers that deal with “the use, construction or evo-
lution of genotype-phenotype mappings that involve either
re-writing, iteration, time, or environmental interaction”1.
Banzhaf and Miller phrase one of the goals of AE eloquently:
“the challenge is to radically dispose of the complexity limits
for the evolution of computer code, and aim at complexities
heretofore only achieved by large teams of human program-
mers” [5].

2.2 Cellular Automata
Cellular Automata (CAs) originate from Ulam and von

Neumann, in an attempt to describe a discrete counterpart
for continuous dynamical systems [17]. CAs are often used
as simple models in physics, and, increasingly, as models of
biological pattern formation [12, 10].

Typically CAs involve an infinite lattice of cell locations,
and an arbitrarily long evolution through time. The El-
ementary CAs, or ECAs, are those which consist of two
colours, using a neighbourhood of size three. They are often
divided into four classes, originally described by Wolfram:
Classes One and Two, or CAs that evolve to a stable point
or period; Class Three, CAs whose behaviour is chaotic; and
Class Four, CAs whose behaviour shows long-lasting struc-
tures. Unfortunately, in general, it has proven impossible to
predict which class a given CA will fall into, even in a prob-
abilistic sense; Indeed, there is no crisp definition separating
Classes Three and Four, simply an agreed upon partition of
the space of ECAs [3].

2.3 Some Measures of Complexity
Here we review several notions of complexity, taken from

both Mathematics and Biology; this is by no means an ex-
haustive list. Instead, we choose measures that are (a) read-
ily defined on the space in which AE models operate, and
(b) directly relevant to embryogenic growth.

Structural Complexity in organisms is an attempt to de-
fine complexity in a fashion that corresponds with our näıve
conception, using the gross number of cells, cell types, or-
gans, etc. Bell and Moorers, for instance, use the number
of types of cell specialization, and show a correlation with
the estimated number of cells in an organism overall. They
interpret the results to indicate a greater capacity for spe-
cialization in a cooperative division of labour.Interestingly,
they find that major groupings of organisms differ in com-
plexity by size: animals have more cell types per total cell
number than plants, for instance [7].

A similar notion is that of McShae’s Functional Complex-
ity, which aims to measure the complexity of an organism by
the number of functions it performs. Since an enumeration
of functions is impossible directly, there have been attempts
to use “parts as proxy”; That is, if one makes the assump-
tion that parts in an organism exist because they play a
functional role, then the number of parts forms a rough es-
timate for the number of functions which an organism carries
out. Parts is a vague term, but could include the number of
organs, morphological categories, etc. [23].

Shannon Entropy (sometimes Shannon Information) was
developed by Shannon as a means of estimating the infor-

1From the GECCO-2007 website, sigevo.org/gecco-2007

mation content of a transmitted symbol [26], quite similar
to notions of entropy from thermodynamics. Shannon en-
tropy has since become a common measure of complexity in
cryptography and communication theory, and also at times
as a means of measuring self-organization. It is maximized
for random sources and normal numbers, and low Shannon
entropy is an indication of easily compressible data.

Let X be a random variable taking values on alphabet Σ,
and p(x) = Pr(X = x). The Shannon entropy function is
defined as

H(X) = E[I(X)] = −
X

x∈X

p(x) log p(x) (1)

where I(X) is the self-information, or the information con-
tributed by a single symbol. Making the assumption that
0 log 0 = 0, H assumes values on the range [0, log |Σ|].

Kolmorogov Complexity was developed independently by
Kolmogorov, Chaitin and Solomonoff [15]. The measure is
intended to capture the notion of incompressibility of data,
where we consider every knowable means of compression;
This is done by considering a Universal Turing Machine,
U , which, by the Church-Turing thesis, implements every
possible algorithmic technique. The particular choice of U is
unimportant (from the perspective of mathematics, at least)
since each can implement every other in constant time. This
leads to our definition:

KU (x) = min
|p|

{p | p ⊢U x}

where x is the data in question, p is a program, and p ⊢U x
denotes the execution of program p by machine U produces
output x. Hence, we seek the shortest possible program that
computes the data in question.

For both periodic and random strings (that is, strings gen-
erated by an i.i.d. variable), it is known that Shannon en-
tropy and Kolmogorov complexity agree up to a constant
[20]. Moreover, it is known that there is a link between
entropy and the expectation of Kolmogorov complexity for
a distribution [15]. For these reasons, H and K are often
linked — note, however, that these linkages do not imply
any particular relation in the general case, and especially
not if we restrict our attention to finite data. A serious
drawback of Kolmogorov complexity is that it is known to
be uncomputable [11], and hence, usually rejected outright.

Often the attempt is made to use compression algorithms
as means of measuring the meaningful content of a pattern,
having removed the obvious regularities and redundancies.
Lempel-Ziv compression is a popular algorithm for the loss-
less compression of binary data used, for instance, in the
GIF image format. The original concept was proposed by
Lempel and Ziv and utilized in the specific LZW algorithm
by Welch [28].

The LZW algorithm works by creating dictionaries of nec-
essary symbols from the base alphabet; Given a sequence
in order, the system will create dictionary entries for one-
and two-character sequences. As the process continues, suc-
cessively longer sequences of symbols will be created — at
each stage, the dictionary code for the best new symbol
will be output, until the entire message has been codified.
Hence, LZW is a frequency-based algorithm which removes
repeated sequences. A complexity measure can be derived:

LZW (x) = |x′| (2)

where x′ is the lossless compression of string x.



Compression algorithms, especially Lempel-Ziv algorithms,
have been used as an approximation of Kolmogorov com-
plexity on several occasions. This usage, in any individual
case, is likely a poor choice. Although some compression al-
gorithms have been shown to agree with K is cases of high
regularity and high randomness, it can easily be shown to
disagree with K on simple and fundamental examples2.

Often, we would like to include a notion of the compu-
tational complexity required to compute a pattern; While
computational complexity is a useful notion for the discus-
sion of algorithms, it fails for the discussion of patterns,
since one can always design a program that outputs some
given data in time O(1). One solution to this is the use of
Bennet’s Logical Depth [8]; In this definition, the complex-
ity of a given piece of data is related to the running time
required by the shortest algorithm which computes it. That
is, given a universal Turing machine U and data x, we define
the logical depth, D, to be:

DU (x) = τU (p∗), where p∗ ⊢U x (3)

where τ is a measure of execution time, and p∗ is a shortest-
length program computing x.

Note that by the criterion of logical depth, both highly
ordered and random strings are not complex — since they
are computed with simple ‘print x’ statements. Numbers
such as π or e, on the other hand, are considered complex,
since it takes effort to print their digit expansions.

Another interesting approach comes from Adami, that of
Physical Complexity, related directly to an organism’s envi-
ronment. Adami sets out to measure the amount of infor-
mation that a given genome (or population of genomes) has
about the environment; Ideally, he desires the shared Kol-
mogorov complexity between a sequence and a description
of the environment. Since it is known that Shannon Entropy
is related to the expectation of Kolmogorov complexity, it
may be used as an approximation for K for populations.
The measure may be approximated by computing the en-
tropies of the values at single-sites of the genome. Adami
states his suspicion that biological evolution will tend to-
wards greater complexity in time, and provides a digital ex-
periment as illustration [1]. Unfortunately, Adami’s simple
model aside, the Kolmogorov complexity of the environment
is likely more difficult to describe than that of an organism’s
genome, if for only the simple reason of relative size.

2.4 Complexity in Artificial Embryogeny
Unfortunately, in Artificial Embryogeny and related sys-

tems, the definition of complexity is usually left implicit.
For instance, in his discussion of the generation of complex
programs, Banzhaf discusses complexity only in terms of the
number of components, stating simply that the generation
of a program with a trillion components is “impossible” by
“conventional methods” [4]; Of course, this is an approx-
imation of truth. It is not inconceivable, for instance, to
design a set-theoretic program which outputs the number
one trillion using a trillion nested successor functions. In
another paper, Banzhaf and Miller instead use a more Al-
gorithmic Information-like discussion of complexity, stating

2This is easily seen by considering the compression of suc-
cessively longer sequences of the expansion of a computable
but normal number (one which is normal in every base is
known to exist [6]), which will continue to increase in size,
in contrast with its smaller (log n) Kolmogorov complexity.

an overall goal to be to “evolve a program whose purpose
is so complex that it requires 100,000 or a million lines of
code or 10,000 modules of average size 100 lines of code”
([5], emphasis added). Of course, this is also an approxima-
tion — a strict reading of this goal would require that the
developmental solution also require a million lines of code to
achieve the program in question, raising the question - why
use an embryogenic approach?

Another approach has been taken by Hornby, who is inter-
ested in the use of developmental systems for evolutionary
design. For Hornby, the term complexity should refer to
our “interest and the ability to produce designs”; Hence,
his notion of complexity implicitly encapsulates characteris-
tics which directly contribute to the fitness of the generated
organism. Hornby shows that the inclusion of explicit mech-
anisms encouraging modularity, regularity and hierarchy are
positively correlated to the generation of highly fit organisms
in the development of table designs[16]. Hornby’s usage ac-
tually implies the opposite of complexity as utilized by most
physicists, seen when he demonstrates the low complexity of
a random bit string.

The actual need for a developmental stage in complex-
ification has been called into question recently by Stanley;
Stanley uses the term complexification to mean that “evolu-
tion can elaborate and increase the complexity of its prod-
ucts by adding new refinements and divisions [new genes]
during embryogenesis... this process of complexification al-
lows evolution to discover more complex phenotypes than
would be possible through optimizing a fixed set of genes.”
He then proposes a network of functions applied in com-
position as a model in which complexification may occur;
These networks accept a location in space as input, then
output a value by feeding through the network of functions,
outputting a single value representing the specialization at
the original site. Interestingly, although there does not exist
any obvious developmental stage, many regularities believed
significant to the canalization of space for biological design
are recovered. Stanley uses a subjective evolution to gener-
ate images displaying the desired regularities — throughout
the “complexity” of the image is referred to implicitly as
the amount of (visually estimated) intricacy in the output
image3 [27].

Some authors in AE literature are directly interested in
compression-based measures; For instance, Lehre and Hart-
mann [19] use an LZ compression algorithm as an approx-
imation of Kolmogorov complexity. They show that this
compression corresponds to an intuitive and predictive mea-
sure of problem complexity, helping to determine the appro-
priateness of AE techniques for problem solving. A similar
measure is utilized by Federici and Downing who order tar-
get patterns by “complexity” in an argument involving the
inclusion of “evolutionary stages”. The problem is com-
prised of growing images to match given patterns, each of
which is given a complexity rank through a general-purpose
compression algorithm, ARJ. Approximations of these pat-
terns are then evolved through the developmental algorithm
[13].

The above discussions no doubt take a more literal reading
than was intended by the original authors; Indeed, Banzhaf
and Miller foreshadow some of our arguments later in their
paper when they note that “the complexity of the organism

3Note the potential for circularity here: subjectivity in both
fitness and estimation of complexity.



stems mainly from outside and has not to be provided by
the genotype”. However, this precise interpretation does
highlight the difficulty in finding a more precise formulation,
and outlines existing ambiguity.

2.5 The Importance of Environment to Em-
bryogenesis

AE has largely been spawned from interest in the canal-
ization of development (channelling) found in natural sys-
tems, and the hope that general and useful principles may be
reproduced by computational models. Developmental sys-
tems, both natural and artificial, may be viewed as con-
straints of the space of all possible phenotypic configura-
tions, and, at least in artificial cases, prevent large portions
of the phenotypic space from being searched. Of course, the
trade-off involves easier access to other portions of a typ-
ically large and un-evolvable phenotypic space; The same
principle is described by Gould in natural systems: “Lest
we begin to suspect that rigid limitation must represent
the major evolutionary implication of such a constraint, I
must re-emphasize the positive aspect of constraint as fruit-
ful channelling, along lines of favourable variation that can
accelerate or enhance the work of natural selection” [14].

Consider the case of the divergence of the echinoderms
from their bilateral ancestors. Bilaterals are characterized
by, amongst other traits, a vascular system carrying blood, a
bilateral morphology; The echinoderms, on the other hand,
have a radial morphology, and a transport system which
carries water. Remarkably, the regulatory genes which code
for these developmental traits displayed minimal changes
— instead, it is their role in the dynamic of development
which has altered in evolution. “The highly derived body
architecture of echinoderms evolved at least in part through
extensive modifications in the roles and expression domains
of regulatory genes inherited from their bilateral ancestors.
Even the limited number of genes and species we examined
demonstrates a remarkable evolutionary flexibility” [21]. It
is surprising, as Gould notes, “that the evolution of differen-
tiated and specialized Baüplane from a presumably homonomous
common ancestor proceeds... by reduction and restriction,
rather than by addition of genes or expansion of their do-
mains of activity,” quite unlike the mechanism specified by
theories of complexification [14].

This is quite a divergence from the motivations of Phys-
ical Complexity proposed by Adami. Here, we are empha-
sizing the ability of the dynamic of development to utilize
the environment in which it is found and adapt; This is not
the same concept as the genome “having information about
the environment”; Instead, the genome specifies a program
which can adapt to any of a wide class of environments. It
is having provided the environment “for free” that we see
value in measures for practitioners of AE; We do not seek
a genome which describes our environment, but instead, a
genome which can exploit an arbitrary environment. In-
deed, we have evidence that such genomes exist in current
AE practice [18].

3. WHAT NOTION OF COMPLEXITY IS
DESIRED?

We aim to discuss which measures of complexity are most
appropriate for AE — definable and computable descrip-
tions which can help to formalize our intuitions, and, hope-

fully, to design and guide future AE models. We are par-
ticularly interested in the perspective of a practitioner who
has a model and environment already designed, as is the
case with many practitioners in the field. Hence, we design
methods within a given dynamic and environment, although
this may remove our capacity to search between them.

Our perspective for this complexity tends to be based on a
cellular granularity; That is, there appears to be a tendency
to visually display cells or components, but not morphogens
or resources, when discussing phenotypic complexity. This
is likely influenced by biology, where time-lapse photographs
of cells are sometimes used to study embryogenic phenom-
ena (as in the study of angiogenesis by Zamir et al [29]).
Further, we shall have no issue with awarding random data
the highest complexity value with our measures; Random
configurations require the most effort to specify, and in our
opinion, thus qualify as the most complex. In the absence
of a cohesive Complexity Theory, we should not make as-
sumptions about what Self-Organization is at this particular
stage.

3.1 “Naı̈ve” Organismal Complexity
It is clear from the above discussion that there exists a

näıve notion of phenotypic complexity which pervades our
discussions, an ad hoc description based on visual inspec-
tion. The obvious analogue from Biology is Structural Com-
plexity; Unfortunately, its use in AE directly is of dubious
value. In natural systems, the inclusion of the possibility
of different cell specializations requires many resources and
great sophistication, whereas in most AE models, the cell
types are simply pre-programmed, waiting to be activated
through a single available variable.

Instead, we desire some measure that will capture the ef-
fort required, or the information contained, in the develop-
ment of an organism. Actual computation of information
would likely require a notion of work, which is probably im-
possible given our perspective; Instead, we propose using a
familiar substitute, Shannon Entropy. In cases where the
AE model begins with a static number of undifferentiated
cells, normalized entropy may be used. If the set of all cell
types is C, we have

oC(A) = −
1

log |C|

X

i∈C

pi log pi (4)

where pi is the frequency4 of cells of type i in organism A.
The use of entropy as a measure has the desirable property
of additivity, corresponding to intuition.

Note the significant divergence from statistical physics,
where many authors use a decrease in entropy to describe
self-organization [25]. While this might be appropriate for
the description of how a randomized medium transforms to
an ordered one, it is not appropriate for our current per-
spective on AE, which begins with a uniform mass of cells
(or lack of cells altogether) that then grows and specializes5 .

4This assumes a simple combinatorial model of cell specifi-
cation, as is typically the case. Some applications may need
to substitute a different distribution function.
5Differential models of morphogenesis may seem exceptions.
For instance, Merks et al note that when simulating vascu-
logenesis using a differential model, it is best to begin with
a collection endothelian cells distributed randomly over a
lattice; It is likely that application of their model decreases
entropy in this case [24]. While this may be an accurate



Figure 1: A Deva organism, shown at development
times 0, 5, 10, 15, 20, 25, 30, and 34 (termination).
Inset is oC. Top row shows the cellular view, bottom
the interpretation as a truss.

Embryogenesis, viewed at the cellular level, is an increase in
disorder overall.

Figure 1 shows the computation of oC for one organism
from the Deva project (see [18]) in various stages of de-
velopment of growing a Plane Truss. One may see a slow
increase in the complexity measure initially, due to undif-
ferentiated division, then faster increases as the organism
grows larger. Interestingly, the peak of oC does not occur
at the end, but ten time steps before, reaching a maximum of
64.3, compared to the 54.5 value at termination. This may
be a measurement of some of the self-organization which is
traditionally associated with a decrease in entropy.

Unfortunately, it is impossible to compare this measure
to any known relations to determine its correctness; Indeed,
some biologists point out that the evidence for complexifi-
cation in nature in general is inconclusive [23], which may
undercut our reason for believing it exists at all; Regard-
less, we offer oC as an improvement over implicitly defined
notions, and hope that usage proves it useful.

3.2 Genomic Complexity
Genomic size is easily defined in AE; for variable-length

representations, simple length will do. The number of genes
activated during development is another, applicable to many
fixed-length representations. However, we desire to extract
the important parts of the genome, removing the unneces-
sary portions; This will help us deal with issues such as re-
dundancy and (the genomic data formerly known as) “junk”.
Recall, after all, that the onion genome is more than five
times the length of that of a human’s!

The most direct means of capturing this is with Kol-
mogorov complexity. We wish to re-define this measure so
as to be more applicable in describing the information in an
organism’s genome, and not what is given “for free” by the
environment.

3.2.1 Environmental Kolmogorov Complexity

description, we note two issues: Firstly, the effort required
to generate the random distribution is discounted, which
may have been greater than the effort involved in the subse-
quent vasculogenesis; Secondly, it is possible that although
a random distribution models reality well, that some other
non-random process may also serve, hence not necessarily
requiring a decrease in entropy in the first place.

Let us assume a space of genomes, g ∈ G, a space of or-
ganisms, p ∈ P , and a process, AE, for mapping from one to
the other: g ⊢AE p. Environment here is implicitly included
in the definition of P . Also, let us assume that we have
a measure on G capturing the length of a representation,
| · | : G → R.

Given some target organism (configuration of our develop-
mental space), x, we may ask the minimum size of program
necessary to specify it under our scheme:

eKAE(x) = min
|g|

{g ∈ G | g ⊢AE x} (5)

An important point about eK, as opposed to the orig-
inal formulation of K, is that eK need not depend on a
Turing-machine6; After all, we have yet to see a demonstra-
tion that Turing-completeness is required for a model of the
development of living systems. Since we have a finite world
imposed by the developmental (phenotypic) space, the usual
trappings of uncomputability and unpredictability need not
apply to eK7. Of course, the choice of embryogenic model
becomes paramount, as we no longer have any guarantee
of one model implementing another, as we do with Turing
machines.

Note further that we may also define environmental logical
depth, as an analogue of equation 3:

eDAE(x) = τAE(g∗), where g∗ ⊢AE x (6)

where g∗ is a genome which minimizes eKAE and τ a mea-
sure of computation time.

3.3 Functional Complexity
For the same reasons we reject Structural Complexity for

AE, we must also reject the use of “parts as proxy” for
Functional Complexity — the importance of the parts has
been undercut by the fact that they have been purposefully
included in the model in the artificial case. However, in AE
unlike Biology, we typically have the advantage that we have
a raison d’être for our model: a fitness function, or a set of
goals.

3.3.1 Niche- and Funcplexity
Here we will define a set of boolean objectives, and mea-

sure complexity in terms of which boolean objectives an or-
ganism is capable of fullfilling. A specific boolean objective,
φ, can be designed in an AE system in a variety of ways: by
using the fitness function (“φ(x) ⇐⇒ f(x) > 0.5”); satisfy-
ing criteria in a multi-objective optimization; meeting some
specific task (“reproduce” or “survive for 100 time steps”);
etc.

6One might argue that since a traditional definition of K
uses a universal machine U capable of implementing any AE
models in constant time, that K is an appropriate measure.
Here, two factors should be noted: firstly, that U might be
capable of finding patterns faster than our developmental
system by not implementing the developmental stage; and
secondly, that since our developmental system need not be
Turing-complete, that U might reach patterns that our sys-
tem cannot.
7Even though eK is computable, it is not likely tractable
for any substantial model. However, it is likely that a ver-
sion of Universal Codes [15] adapted to the model would
be more readily computable. Or, perhaps simple random
search might yield reasonable approximations, at least for
the purposes of empirical evaluation of hypotheses.



Then, we may consider the set of all organisms which meet
objective φ:

Sφ = {α | α ⊢AE x ∧ φ(x)} (7)

Given two objectives, we may compute the set as the inter-
sections: S{φ,ψ} = Sφ∩Sψ. The complexity8 of a niche may
then be defined as:

nC(φ) = min
|α|

{α ∈ Sφ} (8)

Given some organism, x, and a set of objectives of concern,
O = {o1, o2, ..., on}, we define Fx = {o ∈ O | o(x)}. F is
a description of x’s functionality relative to O. Then, we
define the functional complexity as:

fC(x, O) = nC(SFx
) (9)

So, relative to objectives O, fC first asks “what is the sim-
plest agent which accomplishes everything that x does, with
respect to objectives O?”, and returns the genomic complex-
ity of that organism.

4. A DOMAIN OF DISCOURSE: TCAS
Here we define a very simple model of AE for the purpose

of concrete discussion. We consider a simplified finite space-
time version of Cellular Automata, the Terminating Cellular
Automata (TCAs).

Let our developmental environment, E ⊂ Z, be a one-
dimensional toroidal line of cells of length l, let our alphabet
be Σ = {0, 1}, and consider our system governed by a dis-
crete time. At time t = 0, our environment begins with all
states of colour “0”, save a single central cell of colour “1”.
Our system terminates after a specified number of steps.

Then, any particular TCA, α, is specified by a triple
(d, t, φ):

• A diameter, 0 < αd ≤ l.

• A running time, 0 ≤ αt < 2l.

• A transition function, αφ.

We will define the genomic size of any TCA to be its diam-
eter, |α| = αd. A rule set may be defined by enumerating
all possible neighbourhoods of length αd and specifying an
output from Σ for each9.

We will write that a particular TCA, α produces pattern
p = (x1, ..., xl), or

α ⊢TCA p (10)

if running our TCA α for αt steps produces lattice config-
uration p. Given some arbitrary pattern p, we know there
exists some TCA which produces it:

Theorem 4.1. For every pattern p = (p1, ..., pl), there
exists some TCA α such that α ⊢TCA p.

Proof. We define a TCA α which fits the bill. We as-
sume l > 2, proof is trivial otherwise. Let αt = 1 and αd = l.

8We have chosen a measure ultimately linked to genomic
length since we seek a measure of ease of discovery in the
context of evolution; We may well have defined an alterna-
tive nC as, say: nC′(φ) = minoC(x){x | α ⊢AE x ∧ α ∈ Sφ}
9Note: the Elementary Cellular Automata may be consid-
ered TCAs with Σ = {0, 1}, αd = 3, l = ∞ and αt = ∞ ∀α.

Consider each point on the lattice at time t = 0: for each
location xi, we may describe its neighbourhood, µ(xi):

µ(xi) = (x
i− l

2

, ..., xi−1, xi, xi+1, ..., xi+ l

2

)

Since xj = 1 for exactly one j (by initialization), we have
µ(xi) 6= µ(xj) ∀i 6= j.

Now, let’s define a rule set for α as the set {µ(x1) → p1,
..., µ(xl) → pl}, with all other neighbourhoods mapping to
arbitrarily chosen values from Σ. It may be shown point-
wise that following one time step, the lattice will contain
pattern p.

4.1 Measures of Complexity on TCAs
In the case of TCAs, we may define the environmental-

Kolmogorov complexity as:

eKTCA(x) = min
αd

{α | α ⊢TCA x} (11)

where x is a binary string of length l. Similarly, we can
define e-Logical Depth,

eDTCA(x) = α∗t, where α∗ ⊢TCA x (12)

where α∗ minimizes eKTCA.
Given some set of objectives, O = {o1, ..., ok}, we may

define nC and fC:

nCTCA(O) = min
|α|

{α | α ⊢TCA x ∧ o1(x) ∧ ... ∧ ok(x)}

fCTCA(x, O) = nC({o ∈ O | o(x)}) (13)

5. EXPERIMENTS WITH TCAS
We have implemented TCAs, and used them to contrast

the notions of complexity introduced above. Our domain
of discourse is the set of all binary strings of length l ∈
{5, ..., 15}. l is kept reasonably small for computational rea-
sons. For each pattern of length l, we have measured com-
plexity using: Shannon Entropy H (Eq. 1), Environmental-
Logical Depth eDTCA (Eq. 12), the LZW algorithm (Eq. 2),
and Environmental-Kolmogorov Complexity eKTCA (Eq. 11).
In all cases, there were no patterns of eK greater than five10.

Additionally, we defined a set of objectives. These were:

• osymm: “x is symmetric”, excluding the central cell for
odd l.

• oratio2: “the number of 1’s and 0’s in x differs by no
more than 2”

• otrans4: “the number of transitions from 0 to 1 (read-
ing from left to right) is no greater than 4”

• oright0: “the rightmost cell has value 0”

• oblack80: “the ratio of 1s in x is more than 0.8”

These were divided into two sets, O1 = {osymm, oratio2,
otrans4} and O2 = {osymm, oright0, oblack80}. So, O1 re-
quires a symmetric, equally distributed pattern with few
colour changes. O2 requires a pattern which is mostly 1s,
with a right-most value of 0, also symmetric. Using these
sets, we were able to compute fC (Eq. 13).

Using the patterns and their associated values as data
points, we have computed the statistical correlation between

10At these small lengths, in turns out, there is no such things
as a TCA-random string



Figure 2: Correlations between complexity mea-
sures by pattern length.

the pairs (graphed in Figure 2). Further, for many of the
pairs, we have computed the lines of best fit, in order to
show the directness of the relation between the data.

Note firstly that all measures are generally positively cor-
related; This is not surprising, since all measures award very
simple data low values, and all measures award random data
with high values (save eD, the measure with the lowest cor-
relation values). We will consider higher correlation val-
ues to indicate more agreement between measures (although
that relation need not necessarily be direct).

The measure eD is not well correlated to other measures
at all; This is not necessarily a drawback, since the compu-
tational complexity of a growing agent is quite a unique and
important concept to AE, capturing the notion of difficulty
of development. Unfortunately, eD did not correlate to our
functional measures either, meaning that patterns with close
functional value will not generally have close running times.
Further, values of eD varied substantially for patterns of the
same functional class which had the same measures of other
complexity measures, such as eK. Hence, we find it unlikely
that eD would be of practical use.

High correlation may be observed between H and fC;
This is due to the specification in the objective sets of par-
ticular proportions of cells of type 0 and 1, leading to par-
ticular values for H . Figure 3 compares the lines of best
fit for data plots of H versus fC for the l = 12 data; The
relation for O1 is far more direct, as to be expected from the
criterion oratio2.

Of course, there is no guarantee that patterns which sat-
isfy some given set of objectives will have high complexity
by any non-functional measure; For example, at l = 10, the
number of patterns satisfying all criteria of set O1 was 22,
while there was only one pattern which satisfied all criteria
of set O2. All agents satisfying O1 had an entropy of 0.971,
due to specification. Values for eK and LZW were slightly
higher than mean, but not significantly so. The agent satis-
fying O2 in fact had low values for all fields, such as eK = 2
and H = 0.7219, this since the pattern meeting the crite-
rion was quite simple. A sample of the discussed patters are
shown in the table below, where three patterns of length 10
satisfying O1 are shown at the top (in order of ascending

Figure 4: Two TCAs with low eK generating rela-
tively difficult to compress strings, where (left three)
l = 11 and (right five) l = 14.

eK), and one satisfying O2 is shown below:

Pattern eK Development

0001111000 2

0010110100 3

0101001010 4

0111111110 2

Note further that the correlation between LZW and H is
generally much higher than the correlation between either
LZW and eK, or between H and eK; Lines of best fit are
shown in Figure 3 for l = 12. This is not surprising, since
both H and LZW are frequency-based measures, while K
is more general. While compression algorithms may corre-
late to more difficult problems, and may be perfectly valid
as a statistical estimate of problem complexity, there do ex-
ist forms of pattern formation which they will not measure,
even in the simple case of TCAs. Indeed, the cases where
the difference between eK and LZW were maximized in-
volved the growth of simple TCAs (eK = 2) which pro-
duced patterns which would not compress well due to a lack
of regularity; Two such TCAs are shown in Figure 4.

6. CONCLUSIONS
We have argued that it is not sufficient to use terms such

as “complexity” or “complexification” naively; this, since
the stated interests are not complementary. It is preferable
to spell out what form of complexity one is interested in,
even if vague. Several possibilities were discussed in our
review, and a simple proposal was made for a näıve notion
of organismal complexity.

We have further argued that Kolmogorov complexity in
its classic definition is probably not desired; Instead, an
environment-based Kolmogorov complexity is needed to dis-
cuss the “easiness” of specification of pattern formation in a
given embryogenic context. From similar arguments, we fur-
ther define some additional measures, eD, and functionally-
defined measures.

Based on our initial experimentation with short binary
strings and TCAs, we have contrasted our measures and de-
rived some insight into their behaviour. Firstly, the various
measures disagree on wide classes of data, showing clearly
that they are not equivalent. Frequency-based measures,
such as entropy and LZW compression do not agree well
with Kolmogorov-like measures like eK, which do not corre-
late well with functional measures, such as fC. There does
not appear to be any immediately obvious “correct” notion
of complexity — for now, a practitioner must simply choose
an intuitive perspective. This is likely to make evaluation
of claims like the “edge of chaos” or complexification more



Figure 3: Best fit for: H and fC for (far left) O1 and (left) O2; (right) H and LZW ; (far right) eK and LZW .

difficult, as lacking a single accepted notion of complexity,
the hypotheses lose falsifiability. To properly evaluate such
claims, we must first find which class of measures, if any,
has predictive value in the evolutionary process.

Further, we have determined several specific insights: (a)
that environmental-Logical Depth does not display any par-
ticularly predictive properties, at least not with TCAs; (b)
that our functional examples mapped to specific values for
other more general measures, dictated by the objectives
which the patterns met. The example serves to highlight
that high fitness agents need not necessarily correspond to
any particular range of values of complexity by other more
general measures at all. Finally, (c) that no other measure
correlated well with environmental-Kolmogorov complexity,
including compression-based measures.

It is our suspicion that measures based on minimal ge-
nomic length, like environmental-Kolmogorov complexity,
will prove most useful to practitioners in AE, since they
readily capture factors significant to how easily a string can
be found via Machine Learning. Alas, although computable,
eK is likely intractable for a problem of any significant phe-
notypic dimension. However, it is our hope that further re-
search can find reasonable approximations, perhaps through
statistical approximation or some implementation of an AE-
based Universal Codes.
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[20] M. Li and P. Vitányi. An Introduction to Kolmogorov
Complexity and Its Applications. Springer, 1993.

[21] C. J. Lowe and G. A. Wray. Radical alterations in the
roles of homeobox genes during echinoderm evolution.
Nature, 389:718–721, 1997.

[22] D. McShae. Complexity and evolution: What
everybody knows. Biology and Phil., 6:303-324, 1991.

[23] D. McShae. Functional complexity in organisms: Parts
as proxies. Biology and Phil., 15:641–668, 2000.

[24] R. M. H. Merks and J. A. Glazier. A cell-centred
approach to developmental biology. Physica A,
352:113–130, 2005.

[25] C. Shalizi, K. Shalizi, and R. Haslinger. Quantifying
self-organization with optimal predictors. Phys. Rev.
Lett., 93(118701), 2004.

[26] C. E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423 & 623–656, 1948.

[27] K. Stanley. Exploiting regularity without
development. In AAAI Fall Symposium on
Developmental Systems, 2006.

[28] T. A. Welch. A technique for high-performance data
compression. Computer, 17:8–19, 1984.

[29] E. Zamir, P. Rupp, and C. Little. Studying in vivo
dynamics of vasculogenesis using time-lapse
computational imaging. In New Frontiers in
Angiogenesis. Springer-Verlag, 2006.


	Introduction
	Review
	Artificial Embryogeny
	Cellular Automata
	Some Measures of Complexity
	Complexity in Artificial Embryogeny
	The Importance of Environment to Embryogenesis

	What Notion of Complexity is Desired?
	``Naïve'' Organismal Complexity
	Genomic Complexity
	Environmental Kolmogorov Complexity

	Functional Complexity
	Niche- and Funcplexity


	A Domain of Discourse: TCAs
	Measures of Complexity on TCAs

	Experiments with TCAs
	Conclusions
	References

