N

N
N

HAL

open science

Fixed point semantics and partial recursion in Coq

Yves Bertot, Vladimir Komendantsky

» To cite this version:

Yves Bertot, Vladimir Komendantsky. Fixed point semantics and partial recursion in Coq. PPDP

2008, Jul 2008, Valencia, Spain. inria-00190975v11

HAL Id: inria-00190975
https://inria.hal.science/inria-00190975v11
Submitted on 24 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00190975v11
https://hal.archives-ouvertes.fr

Fixed Point Semantics and Partial Recursion in Cod

Yves Bertot

Vladimir Komendantsky

INRIA Sophia Antipolis, France
{bertot,vkomenda}@sophia.inria.fr

Abstract

We propose to use the Knaster—Tarski least fixed point theae
a basis to define recursive functions in the Calculus of Itideic
Constructions. This widens the class of functions that eambd-
elled in type-theory based theorem proving tools to poadigithon-
terminating functions. This is only possible if we extend thgical
framework by adding some axioms of classical logic. We cliduat
the extended framework makes it possible to reason abonirtat-
ing or non-terminating computations and we show that etitac
can also be extended to handle the new functions.

Categories and Subject Descriptors F.3.1 Logics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams; F.4.1Mathematical Logic and Formal LanguadeMath-
ematical Logic—Lambda Calculus and Related Systems

General Terms Verification

Keywords least fixed point semantics, non-terminating functions,
the Knaster—Tarski theorem, automated theorem proviragram
extraction

1. Introduction

For theoretical computer scientists, the Knaster—Taesst fixed
point theorem, as well as its application — the first fixed poin
theorem of Kleene|[30], is a firm theoretical ground to astest
existence of objects defined by recursive equations. Theisete
can be inductive types or recursive functions as@ , V&3.
consider the following generalised statement of the Kmagteski
theorem [fL]:

Theorem 1 (Knaster—Tarski; complete p.o.). Given a monotonic
function f on a chain-complete partial order, consider the follow-
ing transfinite sequencgr; }:

Xo = 1
f(za)
the least upper bound of the chajiif (z«) }a<g
if 3 is a limit ordinal.

Ta+1l =

T3 =

* This work was partially supported by the French ANR projectipCert

(©ACM, 2008. This is the author’s version of the work. It is pebhere by permission
of ACM for your personal use. Not for redistribution. The défie version was

published in Proc. 10th Intl ACM SIGPLAN Symposium on Prigless and Practice of
Declarative Programming (PPDP’08), Valencia, Spain, 16i17, 2008, pages 89-96.

The functionf has a least fixed point obtained by an iterative
process o z; } starting fromzo. Moreover, iff is continuous then
the least fixed point is obtained in at mastterations.

To use this theorem, one should be able to express that the
domain of interest has the required completeness propeidy a
that the function being considered is continuous. If thel go#o
define a partial recursive function then this requires usixipms
of classical logic, and for this reason the step is seldomenirathe
user community of type-theory based theorem proving. Hewev
adding classical logic axioms to the constructive logic ybet
theory can often be done safely to retain the consistenchef t
whole system.

In this paper, we work in classical logic to reason about pote
tially non-terminating recursive functions. No inconsisty is in-
troduced in the process, because potentially non-teringpéinc-
tions of typeA — B are actually modelled as functions of type
A — B, the fact that a function may not terminate is recorded
in its type, non-terminating computations are given theu@al
which is distinguished from all the regular values, and care rea-
son classically about the fact that a function terminatestrThis
is obviously non-constructive but does not introduce awcpisis-
tency.

One of the advantages of type-theory based theorem proving
is that actual programs can be derived from formal modelt) wi
guarantees that these programs satisfy properties thptedieted
in formally verified proofs. This derivation process, knoas ex-
traction ,], performs a cleaning operation so thapaits of
the formal models that correspond to compile-time verifirat are
removed. The extracted programs are often reasonablyeeffidn
this paper, we also show that extraction can accommodateetlie
class of potentially non-terminating functions.

When axioms are added to the logical framework, three cases
may occur: first, the new axioms may make the system inc@mgjst
second, the new axioms may be used only in the part of the model
that is cleaned away by the extraction process; third, thenax
may be used in the part that becomes included into the derived
programs. There is no need to discuss the first case whichdshou
be avoided at all costs. In the second case, the extractamegs
still produces a consistent program, with the same guazaote
termination even if this guarantee relies on classicatlogisoning
steps. In the third case, the added axiom needs to be linkad to
computation process that implements the behaviour pestlioy
the axiom. We claim that this can be done safely if the Knaster
Tarski least fixed point theorem is given a sensible comjmurtak
content.

Kleene’s least fixed point theorem can be used to justify the
existence of recursive functions, because these functimmge de-
scribed as the least fixed point of the functional that ariisekeir
recursive equation. However, it is necessary to ensurahbdtinc-
tion space has the properties of a complete partial ordetheithe
functional is continuous. These facts can be motivatedyusisim-

ple development of basic domain theory. With the help of thiera

of definite descriptionthis theorem can be used to produce a func-
tion, which we shall calfixp, that takes as argument a continuous
function and returns the least fixed point of this functiorh&h the
argument offixp is a functional, the least fixed point is a recursive
function, which can then be combined with other functionbkuid
larger software models.

With respect to extraction, we also suggest a few improvésnen
to the extraction process that should help making sure iy £f-
ficient code can be obtained automatically from the formatiet®
studied inside our extension of the Calculus of Inductivagiaic-
tions.

The Knaster—Tarski least fixed point theorem guarantees two

important properties of the function that is defined by tleeative
process. The first property is that the obtained functioisfsas the
fixed point equatign. The importance of fixed point equatitns
straightforward [[B|{4]. This fixed point equation is usefuien we
want to prove properties of the function, for instance, tinader
some conditions it is guaranteed to terminate. The secaukpy
is that the least fixed point is obtained in at mosterations. As a
result, we can reason by induction on the length of compartati
thus providing a poor man’s approximation of what is cafieed
point inductionin [Bd]. This possibility allows to prove properties
of the function result when it exists, and can also be useddeep
that under some conditions a function fails to terminate.

In this paper, we give an overview of our basic formalisation
of domain theory. Then, we show how this theory can be used
in the definition of simple recursive functions. We give exdes
with proofs about recursive functions. We discuss extoactind
execution of the recursive programs that are obtained swiaiy.
Future work and related work is reviewed at the end of the pape
All the experiments described in this paper were done witly Co
[EB and can be found in the Internet from the first authaweb
page [¥].

2. Domain-Theoretic Constructions

Our domain-theoretic development, found Ht [7], comprisasic
ideas of domain theory built on the notion of a preorder, that
theory of (pointed) complete preorders as formalised byaQliR-
Mohring [P6]. In addition to the constructive complete meers
of Paulin-Mohring, we introduce flat complete preorderd tha
define making certain non-constructive steps which are &pke-
ified below. Various libraries of domain theory already ekissev-
eral proof systems. Therefore we just invite the reader asgthe
basic constructions by reading our development since tbese
structions are quite standard for such a library.

In the present paper we abbreviate “pointed complete pegbrd
as “cpo”, following the convention i6], and we systematiy
omit the word “pointed”. In Figur& 1, we summarise some usefu
notation.

We define the following inductive type which is equivalent to
the standar@ption type of Coq:

Inductive partial (A : Type) : Type :=
Def : A — partial A | Undef : partial A.

The typepartial is introduced in order to provide the hiding mech-
anism that would prevent the user of our library to encodeirfo
stance, a classical proof for the halting problem but s#ithpit un-
constrained use of the standasgtion type of Coq. This hiding
mechanism, which is just a side-effect of the continuitygispen-
sures that no value of the kirldlef x is returned in the casgndef

of a pattern-matching construct. The abstraction of the pgptial
also guarantees the safety of optimisations suggestedciibBB.
(The consistency of the system and the validity of the ektvac
process do not depend on this abstraction.)

ord | preorder
cpo | (pointed) complete preorder, cpo
2 | preordered function space
2% | preordered monotonic function space
5 | preordered continuous function space
S, | function cpo
M - .
= | monotonic function cpo
<, | continuous function cpo
nat_ord | natural numbers ordered by
chain O | nat_ord 30O
_o | (preordered) function application
@ | monotonic function composition
==0p | derived equality on the preordér

Figure 1. Notation

Theflat preorderon a typeA is defined by specifying a binary
relation<pariai 4 such that, foerc y : A, * <partiat 4 y iff z =y or
x = Undef. We denote this flat preorder Byord A.

Lifting of the flat preorder to a flat cpo requires a non-canstive
definition for thelub function. Namely, using the excluded middle
law of classical propositional logic we can pro¥&...q 4 being
complete in a sense that, for each chaion &ord A, there exists
anx such that'n, c n <gord 4 = andvy, (Vn,cn <god a4 y) —

x <gord 4 Y, Which proves the two laws for the required least up-
per bound function. Since we can prove that this least uppendb
is unique, using the classical definite description axiom:

Axiom constructive_definite_description :
VA (P:A—Prop), (A x: A Px) = {x:A|Px}

we obtain aX-type definition for the least upper bound of a chain
¢ on A that contains two parts: an elemenbf &ord A and the
proof of a being the least upper bound afin this way we obtain
the functionlubgord 4 : chain (&ord A) — &ord A as the first
projection of thisX-type object. Thus we have a cpo structure on
&ord A; we denote it by&cpo A.

The constructive definite description axiom is quite strong
However, it does not make the system inconsistent, assutheng
predicativeSet. By introducing this axiom the only thing one loses
is the assurance that it will be possible to extract a sempittigram
form any proof. In SectioE|6 we show how the extraction mecha-
nism can be instructed to extract correct programs from itiefns
made with our library.

The constructive definite description axiom is incompatibl
with variants of the Calculus of Constructions, where $lee sort
is impredicative, due to the Chicli—Pottier—Simpson parafil1]
which was shown to hold for even a weaker version, the claksic
definite description axiom (iRrop rather tharType), in the pres-
ence of classical logic. Therefore our development is itett to
the predicativéSet which is, fortunately, default for Coq.

3. Kleene’s Fixed Point Theorem

The well-known fixed point theorem of Kleene, seEI [30], has a
mild generalisation in the setting of complete preordedo® we
outline a formalised proof for this statement. Our proofdais the
lines of the classical textbook proofs found in, e.f.] [2d}. The
fixed point functional defined for this proof can and will beeds
in this paper to define partial recursive functions and neagmut
them.

The construction of the fixed point functional is closelyated
to the one given i6]. First, we define a functiaiter as follows
(L denotes the bottom element of the dpp

Fixpoint f_iter (D:cpo)(f:D 5 D)(n:nat_ord) : D :=
match n with
0= 1
| Sn" = f (fiter fn’)
end.

Then we prove monotonicity df_iter and defineiter of type
chain D to bef_iter with the attached proof of monotonicity; and
we define the functiori_fixp to be the least upper bound of this
chain.

Definition f_fixp (D:cpo)(f:D =% D) : D := lub (iter).

We prove the fixed point propertffixp f == f (f_fixp f).
Next, we define the required fixed point functional which is a
continuous version of _fixp, and we also have the corresponding
fixed point property.

Definition fixp (D:cpo) : (D A D) SDi=...
Lemma fixp_eq : ¥ D (fD->D), fixp f == f (fixp f).

In fact, the type offixp with implicit argumentD, that is(D RSA

D) =N D, is not a continuous function cpo as it may seem from
the above definition. It is implicitly coerced by Coq to thass of
functions,Funclass, whose objects are of the for(x:A, B), for

A B : Type. Therefore a proper argument fixp has typeType.
This is exactly the case with: D = D since the type of here

is implicitly coerced toType. Moreover, note that a coercion from
D 5 D to Type requires only one step, whereas a coercion from

D% Dto Type would have required two.
This allows to formalise Kleene's theorem as follows:

Theorem 2 (Kleene).V (D:cpo)(f:D - D),
f (fixp f) == fixp f A (V x, f x < x — fixp f < x).

The fixed point returned bfyxp is the least by construction; it is
the least upper bound of thier chain, which allows reasoning on
partial recursive functions.

4. Fixed Point Definitions of Partial Recursive
Functions

To model partiality of a functiorfy with arguments of typel and
values of typeB, first we define a recursive functioh : A —
&cpo B for which we ought to construct a continuous functional
F of type

(Ag&cpo B)g(Ag&cpo B)
such thatf = F'f. A proof of such a functional’ being continuous
is usually non-trivial but considerably regular. For a groane
might use the following intuition: The condition of contity of
F corresponds to the interpretation of “potential non-temtion”
according to which every expression containing a potdwptrain-
terminating computation should fail to terminate if it aally uses
the value returned by this computation and that computdtide
to terminate. To use the value of a potentially non-terniigat
computation one needs to write a pattern-matching cortstmic
this computation: the continuity condition will be satisfig we
ensure that the valugndef is returned in the caséndef of this
matching construct.

For example, consider the minimisation functiopadefined as
follows: for all A : Type, f : A — nat — nat, the value of.f is
a functiong : A — nat such thaty z is defined and has valugeif
and only ify is the least value for whichf =) y = 0 holds. From
this definition it follows thay « is undefined in case no least value
y is found, that isu can be used to define partial functions.

Let A:Type andf:A — nat — partial nat. First, we specify a
functionalf_mu as follows:

Definition f_mu (mu : A — nat — partial nat) :
A — nat — partial nat :=
funxy =
match f x y with
Undef = Undef
| Def 0 = Defy
| = mux(Sy)
end.

Then we prove monotonicity and continuity folnu and spec-
ify the functionsmono_mu andcont_mu with the proofs of mono-
tonicity and, respectively, continuity attached as fokow

Definition mono_mu :

(A 2 nat_ord > &ord nat) =% (A 2 nat_ord % &ord nat)
Definicgion cont_mou : o o o

(A = nat_ord = &cpo nat) = (A = nat_ord = &cpo nat)

Once the continuity proof is completed, we can define the-func
tional with a command of the following form:

Definition mu := fixp cont_mu.

Now we can illustrate the use of outu. Note that the value
|a — b onnat, for a andb in nat, can be defined using the standard
truncated subtraction omat as(a — b) + (b — a). Consider the
function Azy.|z — y?| with the following definition:

Definition abs_x_minus_y_squared (x y : nat) :=
Def ((x - y*y) + (y*y - x)).

The value ofu(Azy.|x — y?|)k is defined if and only ifk is
a perfect square. This can be defined in Coq as follows (wih th
trailing O being the value foy in f_mu):

Definition perfect_sqrt (x:nat) :=
mu abs_x_minus_y_squared x 0.

Next, we demonstrate some proof ideas concerning thisaparti
recursive function.

5. Certification of Functions

In [], Winskel describefixed point inductioras a technique for
proving properties of least fixed points of continuous fior.
This style of induction is restricted to certain predicatesich

are calledrefining in his work. The same notion also appears in
HOLCEF, see 1], under the nameamfmissiblepredicates and
the authors argue that it is important to provide strong matimn
facilities to manage the corresponding proofs of admilgibOur
work is less advanced than HOLCF — we do not provide automated
admissibility proofs — still we provide basic techniques fiooofs
about recursive functions with flat target types.

In our setting, we want to prove properties of functions oted
usingfixp and we have two tools at hand. The first tool is the lemma
fixp_eq. The second tool is an omnipresent lemma that we employ
to return a value of the least upper bound of a chain on a flat cpo

Lemma lub_flat_cpo_witness :
V (c : chain &cpo), I n, cn = lubec.

The above lemma can be used to prove that, for any input, the va
of fixp f can also be computed Iyer f n for some natural number

n.

Lemma fixp_flat_witness :
V (A B:Type) (f: (Ag&cpo B)g(Ag&cpo B)) (x:A),
3 n, fixp f x = iter f n x.
Proof.
intros A B f x.

Next, we extract a witness usinglub_flat_cpo_witness from the
chainiter f _, x on&cpo B; the witness equalityiter f _, x) n =
lub (iter f _, x) is given the naméin:

destruct (lub_flat_cpo_witness (iter f _, x)) as [n Hn].
We provide this as the witness:

exists n.
and rewrite the goal with the witness equality:

rewrite Hn.

We arrive at the godixp f x = lub (iter f _, x) which is proved
by unfolding the structure df

case f; intro f'; case f'; reflexivity.

Qed.

Thus the numben is an upper bound on the number of recursive
calls that are needed to compute the valué &f Thanks to this
theorem, one can reason by inductionroand simulate the fixed
point induction of [30]. Notably, there is an additionahtch goal
with step required before thewrite step in some specific versions
of Coq where the unification algorithm is not powerful enough
solve the given higher-order unification problem.

For instance, usin§jxp_flat_witness we can conclude (by sim-
ulating the fixed point induction) with the following lemmahigh
asserts that the functigrerfect_sqrt never terminates on inputs not
being perfect squares.

Lemma perfect_sqrt_Undef :

V x, (V y:nat, x # y*y) — perfect_sqrt x = Undef.
Proof.

intros x Hx.

unfold perfect_sqrt, mu.

destruct (fixp_flat_witness_2

(©cont_mu nat abs_x_minus_y_squared) x 0) as [n Hn].

rewrite Hn.

apply perfect_sqrt_Undef_iter with (1:=Hx).
Qed.

For the proof, we extract a witneasand give the namein to the
corresponding witness equality:

Hn: fixp (cont_mu abs_x_minus_y_squared) x 0 =
iter (cont_mu abs_x_minus_y_squared) n x 0

then, after theewrite step, we arrive at the goal
iter (cont_mu abs_x_minus_y_squared) n x 0 = Undef

that is proved by a technical lemma we will explain shortly.
In the proof of this lemma we refer to the two-argument ver-
sion of fixp_flat_witness (which can be proved either directly or

by uncurrying followed by an application of the one-arguinen
fixp_flat_witness):

Lemma fixp_flat_witness_2 :
VABC(f: (AgBg&cpoC)g(Ang&cpoC))xy,
In, fixpfxy=iterfnxy.

and then we refer to the following statement proved by inidact
onn:

Lemma perfect_sqrt_Undef _iter :
¥V nxy, (¥ znat, x # z¥z) —
iter (mono_mu abs_x_minus_y_squared) n x y = Undef.
Proof.
induction n.

Now we have to prove the inductive basis:

V x y:nat, (V zinat, x #z * z) —
iter (mono_mu abs_x_minus_y_squared) 0 x y = Undef

and the proof is easy:
reflexivity.
Next, we prove the inductive step:

V x y:nat, (V zinat, x # z * z) —
iter (mono_mu abs_x_minus_y_squared) (S n) x y = Undef

which we do by case analysis:

simpl; unfold f_mu; simpl.
intros x y Hxneq.
caseeq (x-y *y + (y *y-x)).

The first casex-y*y + (y*y-x) = 0; we conclude by contradiction:

intro HeqO.
contradiction (Hxneq y); omega.

The second case;y*y + (y*y-x) = S n0; we conclude by the
inductive hypothesis, that Isin:

intros _ _.
apply (IHn x (S y) Hxneq).
Qed.

The third tool provided in our library is the following lemma
that relates computations done withr and values of a recursive
function:

Lemma iter_Def_eq_fixp :
VY AB (f: (AS&cpo B)S(AL%&cpo B)) x n v,
iter f n x = Def v — fixp f x = Def v.

Using this lemma, one can compute values of recursive fonsti
provided that none of these valuesUsadef. One simply needs
to guess the right argumentthat leads to a definite value of the
form Def v which in this case is known to be the value of the
recursive function for the corresponding argument. Thélera is
to decide whether a given numbeis the right one. If the chosen
value is too small, the value returned by the iterative pgeds the
uninformativeUndef.

For the sake of the example below we can prove the two-
argument versioiiter_Def_eq_fixp by uncurrying and then apply-
ing iter_Def_eq_fixp (the alternative direct proof is easy):

Lemma iter_Def_eq_fixp_2 :
VABC (f:(Ang&cpo C)g(Ang&cpo C)) xynv,
iter f n xy = Def v — fixp f x y = Def v.

Now we can demonstrate a simulation of an iterative comjmutat

Lemma compute_perfect_sqrt_36 : perfect_sqrt 36 = Def 6.
Proof.

unfold perfect_sqrt, mu.

apply iter_Def_eq_fixp_2 with (n:=100); reflexivity.
Qed.

The number 100 used in this example is only required to be an
upper bound on the recursive calls enough to compeitfect_sqrt

36 (in this case 7 would be enough). This approach may be used in
reflexive tactics, for example, in a proof that involves comapion

of the value of a recursive function. One can try a fixed humber
of calls, and if a value of the forref is returned, the proof can
proceed, otherwise the tactic fails, which neverthelesss duot
signify the divergence of the recursive function.

6. Extraction to Functional Programming
Languages

The functionperfect_sqrt from Sectiorﬂ4 can be successfully ex-
tracted using the extraction mechanism provided by Cog.€kae
tracted code exhibits the expected partial behaviour,istiatoops

exactly on arguments which are not perfect squares. Below we

show how this can be made possible.
Some of our lemmas rely on th€lassical and ClassicalDe-

scription extensions of the Coq libraries. These extensions add

only two axioms to the logic of Coqg, namely, the axiom of ex-
cluded middle, and the constructive definite descriptidoraxv A

(P : A=Prop), (3!'x: A, Px) — {x: A | Px}. The antecedent
states that there exists a unigueatisfying the property but it
does not provide a method to construcfThe consequent asserts
that one can use this uniqueas a constructive value. Using this
axiom, one eliminates the distinction between constraciaues
and logically unique values. This of course disrespectslistinc-
tion betweenSet and Prop that plays the central role during the
extraction process of Coq.

The extraction mechanism relies on the assumption thagvfor
ery element of the forn§x : A | P x}, there exists a constructive
procedure for obtaining thes part. However, the axiom produces
elements of that form without providing any constructiveqs-
dure. For example, thiéat_cpo type extracts to OCaml as

let flat_cpo = {
0_cpo = flat_ord;
bot = (Obj.magic (Obj.magic Undef));
lub = (fun x — projT1 (ExistT
((match excluded_middle_informative with
| Left — constructive_definite_description __
| Right — Obj.magic Undef), __))) }

Obj.magic casts a value of any type into typ@bj.t, which is
convertible with any type, and is used, in this example, by th
Coq extraction mechanism to represent implicit coercidhgfixp
functional in OCaml, after systematic inlining of funct®rand
erasing occurrences @fbj.magic, becomes

let fixp d = fun n — d.lub (f_iter d ((fun ¢ — ¢) n))

Thus one can see that, in OCaml, the of a flat_cpo has essen-
tially no computational content, and therefdigp on a flat cpo
does not compute the expected value. For this reason, thecext
tion mechanism expects the user to handwrite the procediate t
returns the expected value wherever the axiom is used.
We propose the following solution to this problem. The con-
structive definite description axiom is only used in the dgén of
the functionfixp, to transform the existential statement of Theorem
into a value that can be used in other functions. We can geovi
a handwritten constructive content for the functfop, so that the
logical value of this function is not used, and hence make that
the definite description axiom is never used in the extractete.
We simply need to choose a constructive proceduréxpthat can
be written in the target language of extraction and whosexiebr
corresponds to the behaviour described in the Coq develupme
We construct a functiotix that computes the fixed point of
functionals. This function should satisfy the followinguadjty:

f(fixdf)=fixdf
The introduced argumedtcorresponds to the cpo argument in Coq

that is in most cases implicit there but explicitin OCamla@bing
the orientation of the equation seems enough to do the job:

let rec fix d f = f (fix d f)

(** val mu : ("al — nat — nat partial) — Obj.t **)
let mu f =
Obj.magic (Obj.magic (fixp (funcpo (funcpo flat_cpo))))
(Obj.magic
(Obj.magic
(Obj.magic (fun x x0 x1 —
match f x0 x1 with
| Def n —
(match n with
| O — Def x1
| Sn0 — x x0 (S x1))
| Undef — Undef))))

Figure 2. Unoptimisedmu

However, this is not satisfactory in a call-by-value langgiasince
this code directly attempts to computie f again and enters a
looping computation. Execution can be delayed as follows:

let rec fixd f =f (funy — fix d f y)

The obtained functiorfix is the function we propose to attach
to the functionfixp for extraction purposes. The corresponding
instruction to the Coq extraction mechanism is the follayvin

Extract Constant fixp =
"let rec fix d fx = f (funy — fixd fy) x in fix"

There is a leap of faith in this binding, which is as strong as
the leap of faith one does when using extra axioms. In oureatrr
understanding of this extraction strategy, we can give digbar
correctness result: when computation terminates andheaufirst-
order value, the result is still predicted by the Coq model.

The_extracted OCaml code is for the functiem is shown in
Figure[2. Occurrences @bj.magic correspond to implicit coer-
cions that appear in Coqg.

For the rest of this section we assume that the argudhehfix

is implicit.
Theorem 3. If the extracted code fofixp f a is some expression
fix f* a’, and the computation dfx f' a’ terminates in the target
language, then the expressiéirp f a can be proved to terminate
with the corresponding value in Coq.

Proof. Assume that the extraction process behaves correctly for
expressions that do not contditxp. We reason by induction on
the number of steps in executionfof f' a’. Whenfix f' a’ is being
executed, the first steps lead to executiorf’'offun y — fix f’

y) a, and the subsequent steps concern executianaofdf’. Any
execution of &fix expression occurring ifi or a uses less steps;
hence, these executions behave as predicted by the candiésgo
fixp expression in the Cog model. Moreover, executio(fof y —

fix f' y) e has the same behaviour as executiofiof e. Together
with the assumption that the extracted codef’irand a’ outside

of fix expressions behaves as expected, the latter consideration
ensures the property. |

In our model of recursive functions, the valilndef is only
used for functions that are undefined because they fail toitate
(and hencéJndef expressedivergencg We say that a Coq expres-
sion contains apontaneous divergendat contains an instance of
Undef which is not encapsulated inside a pattern-matching con-
struct on the typeartial, or if it appears in any of the partsand
e2 of a pattern matching construct of the following shape:

match e with Undef = e; | Def = e2 end

The functions we produce in Coq always satisfy the property (** val mu : ('al — nat — nat) — Obj.t *¥)
that they contain no spontaneous divergence. We can alamass
that programs extracted to OCaml or Haskell inherit theesorr let mu f =

sponding property from the initial Coq functions. We willdlis- Obj.magic (Obj.magic (fixp (funcpo (funcpo flat_cpo))))
cuss optimisations that can be performed for this classagframs. (Obj.magic
We have the following result: (Obj.magic

. . . (Obj.magic (fun x x0 x1 —
Theorem 4. If an expressiomr contains no spontaneous leergence match f x0 x1 with

then its value can never be the valuedef. | O — x1
Proof. One proves the statement by induction on the length of 11510 =50 (5 x1)))))
execution ok. The only sub-expressions that can produce the value - — -
Undef are theUndef expressions that appear in tbedef branch Figure 3. mu, optimised according to Theorefh 5
of a pattern-matching construct. In the pattern-matchomstruct,

the matched expression also has the property of containing n
spontaneous divergence and one can therefore use theigmuct

let x = e1] inea|

hypothesis. O If v1 is the value ofe;, we know thatv; necessarily has the
» .) shapeDef w for somew, because; contains no spontaneous
We verified a formal Cogq model of this proof in the context of divergence and therefore the result cannotndef. Therefore
the Mini-ML language [12] extended with a data-type repnéisg the result of evaluation of is the result of evaluation of,

the typepartial and the corresponding pattern-matching construct in the environmentz, Def w) - p. We call this valuev,. By

: . induction hypothesis on evaluation@f, we have that the result
If valuesUndef can never be produced then the encapsulations of evaluation ofe; | is v1] = (Def w)| = w]. Hence the

of expressions inside the construcoef and the operations of result of evaluation ot | is the result of evaluation of | in

removing the constructddef done by pattern-matching turn out to (z,w]) - pl = ((=, Def w) - p)|. By induction hypothesis, this

be redundant. These, along with the occurrences ofiiypgal, can evaluation yields, | .

be recursively eliminated from the program since everyainsg of

Def e can be replaced with and every instance of the construct |
match e with Undef = e1 | Def 2 = ez A model of this proof was formally verified using the Mini-ML

description of the language. This proof is availablg |n [7].

The extracted code of theu function can be optimised accord-
ing to Theorerr[|5 as shown in Figuﬂe 3. Thus we have eliminated
Theorem 5. If e is an expression containing no spontaneous diver- the typepartial from the code. Occurrences 6hbj.magic still re-
gence and the value of executiored$ v then the value of execution main as traces of coercions that appear in the Coq codeifoAll
ofelisv]. these occurrences can be safely erased from the code.

can be replaced witlet x = e in e2. In what follows, we denote
by e| the result of this recursive elimination in

Asin Theoren{|4, the statement can be proved by induction on . . . o
the length of execution ef. We actually prove a more general state- 7. Automation of the Least Fixed Point Definition
ment which also includes the environments inuwhﬁiachndel are We develop a command we call€dpo Function that allows to
executed: we need to assume that the expressioaxecuted inan gefine least fixed points of partial recursive functions andmate
environmenp and the expression| is executed in an environment e rtain routine steps in this process. The definitiomafusing the

pl, so that the value associated to each variablelifs obtained new command (in its current version) is the following:
by applying the elimination to the corresponding valug.in
For example, if the value of is Def 3 then the value of | is 3. Variable A : Type.
If e is fun x — Def a, and the current environment bindswith Variable f : A — nat — partial nat.
Def 3 andb with 4, then the value of is the closure that can be
written Fcpo Function mu : A — nat — partial nat :=
(fun x — Def a, (a, Def 3) - (b, 4)) funxy =
. . . . match f x y with
In this caseg] isfun x — a, the transformed environment binsls
ith th e 3 and with 4. and th It of th luati Undef = Undef
with the value 3 and with 4, and the result of the evaluation of | Def 0 = Def y
IS | = mux(Sy)
(fun x — a,(a,3) - (b,4)) end.
Proof. Here we focus on the two most important cases: Then the command generates the recursive functional, as in

Section[h, and two proof obligations that the user is reqgutce

1. If e has the formDef e; thene; also contains no spontaneous satisfy in order to complete the definition:

divergence, and we can use the induction hypothesis on the

evaluation ofe;. Hence ifv; is the value ofe;, the value of

e1] iswv1|. Butin this case, we hav€ = e; | and the value of

e is Def v1 |. However, we obviously haviDef v1])]| = v1],

which justifies the result. 2. The second obligation is the continuity proof fesno_mu, fol-
2. If e has the form lowed by the definition of the continuous versionneéno_mu,

that iscont_mu.

1. The first obligation is the monotonicity proof férmu, fol-
lowed by the automated definition of the monotonic version of
f_mu, that ismono_mu (see SectioE|4).

match e; with Undef — ... | Def x — e2)
Finally, the required least fixed point eént_mu is defined auto-

thene] is the expression matically asfixp cont_mu.

The syntax ofcpo Function is the following:

Fcpo Function ident [bindery [... bindery]] :
termy = terms

whereterm, is a type with targepartial A, for A a type.

This command is compatible with the standard Coq extraction
procedure augmented by the two extraction constants, asewe d
scribed in SectioElG.

8. Future Work

There are a few features relatedRepo Function that are now in
an early development stage:

1. Comprehensive automation of monotonicity and contynuit
proofs.

. Automated elimination of thepo structure (and hence occur-
rences ofObj.magic) from the extracted code.

. Techniques that allow to hidertial from the user of the com-
mand.

In fact, hiding techniques would require full proof autoioatas
well since otherwise one would still need to work at the lenkl
partial types during the work on proof obligations generated by the
command.

Our effort to formalise optimisations of the extracted code
should also be compared with efforts done to give a formal de-
scription of the extraction procedure, as studied by L&WL@]
and GIondu@S].

9. Related Work

The work described here contributes to all the work that veaed
to ease the description and formal proofs about generatsigeu
functions. A lot of effort was put into providing relevant lise-
tions of inductive types with terminating computation ged from
the notion of primitive recursio ﬂ 2]. In particyldrwas
shown that the notion of accessibility or noetherian ingurceould
be described using an inductive predicate|in] [24]. This ssibd-
ity predicate makes it possible to encode well-founded nséon
when one can prove that all elements of the input type satiefy
accessibility predicate for a well-chosen relation (suatelation
is called well-founded). If it is not true that all element® ac-
cessible (or if one cannot exhibit a well-founded relatibattsuits
the function being defined), the recursive function may kélde-
fined but have well-defined values only for the elements thate
proved to be accessible. This idea was further refine@ﬂm,
where termination is not described using an accessibiligdip
cate, but directly with an inductive predicate that actud#scribes
exactly those inputs for which the function terminates. Aea
sult, formal developers still need to prove that a potelytiabn-
terminating function is only used for inputs for which temafion
is guaranteed and extracted programs inherit the terroimatiiar-
antee. By contrast, the approach of this paper relievesabeaper
from the burden of proving termination and does not guaraiite
either, which can be useful for some applications, likerjteters
for Turing-complete languages (where termination is uitdigte)
or functions for which potential non-termination is an guteel de-
fect.

There are analogous techniques that also do not requiren& ter
nation proof. One such_method Bop-bounded recursion based
on a coinductive mona ﬂ 9]. In this method the coindectype
permits to represent infinitely long computations as (ptéaé) in-
finitely large objects of coinductive types. One is also @blerite
a function that directly refers to itself, which would be amapati-
ble with, e.g. Fixpoint due to syntactic restrictions. However, the

coinductive methods require a more complex notion of egjudlie
to the presence of infinite objects, such as, in the casElﬁ;flﬂm
John Major equality which relies on thdleq axiom of Coq.

Another work ,[b] attempts to provide tools that stay ctose
to the level of expertise of programmers in conventionatfiomal
programming. The key point is to start from the recursiveatign
and to generate the recursive function definition from thjisadion.
Users still need to prove that the recursive calls happenredes
cessors of the initial input for a chosen well-founded ielgtbut
these requirements appear as proof obligations that aerafed
as a complement of the recursive equation. The tool prodilees
recursive function and a proof of the recursive equatioraiAghis
approach is restricted to total functions. Following thisrkvas an
inspiration there was provided a more general comnfandtion
[L3] that supports several ways of defining recursive fumsgiand
related objects such as induction principles.

In one of our experiments{l [5], we defined the semantics of a
small programming language in the spirit [30]. We utdes
Knaster—Tarski fixed point_theorem to describe the semmumtic
while loops as suggested iE[BO]. Then we were able to proake th
when a value is returned, the same computation can be mddelle
by a natural semantics derivation, using an encoding of dteral
semantics based on an inductive predicate. This reprogusis-
ilar formalised proof in ES]. Once extracted to ML, this g&va
certified interpreter for the language.

In an early version of the Calculus of Constructions, foimal
sations of the Knaster—Tarski least fixed point theorem vaése
used to show how inductive definitions could be encoded tiyrec
in the pure (impredicative) Calculus of Constructio@ [1A]this
respect, it is also worthwhile to mention th[16] shows hbis
theorem can be used to give a definitional justification ofiztitve
types in higher-order logic.

In this paper, we formalised only the minimal amount of do-
main theory just enough to make it possible to define simplerpo
tially non-terminating functions and perform basic reasgrsteps
on these functions. More complete studies of domain theamew
performed in the LCF systenp [28]. It was also formalised in Is
abelle’s HOL instantiation to provide a package known as @6L
[E,]. We believe these other experiments can give ustjnes
for improvements.

10. Conclusion

There is a popular belief that type-theory based proof tcafsonly
be used to reason about functions that are total and terimifat

all inputs, because termination of reductions is neededsuore the
consistency of the systems in question. The major aim ofiduier
is to provide yet another way to model potentially non-terating

functions. Our inspiration comes from the Knaster—Tarskst
fixed point theorem.

Our contributions can be summarised as follows.

First, we formalised a domain theory based on the notion of a
preorder and equipped it with flat cpos. This work is analegou
to Isabelle/HOLCF and allows one to provide potentially non
terminating functions with a least fixed point semantics agC

Second, we provided arguments in favour of our claim that the
fixed point combinator is the right computational value fbet
Knaster—Tarski theorem and should therefore be used faactidn
of functional programs from Coq.

Third, we used two extraction axioms (least fixed point ang co
structive definite description) in course of extraction abthined a
powerful way to represent in Coq potentially non-termingtiunc-
tions and reason about them.

Acknowledgments

The authors are grateful to the anonymous referees fordbtiiled
comments. This work has also benefited from suggestions hy Be
jamin Werner, Hugo Herbelin and Peter Aczel, and also frortyea

experiments by Kuntal Das Barman. The first author also wgishe

to remember the late Gilles Kahn, who started work on forseali
domain theory in the context of the Calculus of Inductive aunc-
tions in mid-90’s].

References

[1] S. Abian and A. B. Brown. A theorem on partially orderediss&ith
applications to fixed point theorem€anadian J. Math.13:78-82,
1961.

P. Aczel. An introduction to inductive definitions. In Barwise,
editor, Handbook of Mathematical Logizolume 90 ofStudies in
Logic and the Foundations of Mathematidéorth Holland, 1977.

R. C. Backhouse. Fixed point calculus. In R. C. Backho&seCrole,
and J. Gibbons, editordlgebraic and Coalgebraic Methods in
the Mathematics of Program Constructjovnlume 2297 oLNCS
Springer-Verlag, 2002.

[2

—

3

—

[4] A. Balaa and Y. Bertot. Fonctions récursives gérésgar itération
en théorie des types. Wournées Francophones pour les Langages
Applicatifs, Jan. 2002.

[5] Y. Bertot. Theorem proving support in programming laage
semantics, 200%http://hal.inria.fr/inria-00160309.

[6] Y. Bertot and P. Castérarinteractive theorem proving and program
development, Cog'art: the calculus of inductive consinrt Texts
in Theoretical Computer Science: an EATCS series. Sprikigdag,
2004.

[7] Y. Bertot and V. Komendantsky. Proofs on domain theorg an
partial recursion, 2008http://www-sop.inria.fr/marelle/
Yves.Bertot/tarski.html.

[8] A. Bove. General recursion in type theory. In H. Geuvensl a
F. Wiedijk, editors,Types for Proofs and Programs, International
Workshop TYPES 2002, The Netherlanasmber 2646 in Lecture
Notes in Computer Science, pages 39-58, March 2003.

[9] A. Bove and V. Capretta. Computation by prophecy. In SDR.
Rocca, editor;Typed Lambda Calculi and Applications, 8th Inter-
national Conference, TLCA 2007, Paris, France, June 262287,
Proceedingsvolume 4583 of_ecture Notes in Computer Science
pages 70-83. Springer, 2007.

[10] J. Camilleri and T. Melham. Reasoning with inductivelgfined
relations in the HOL theorem prover. Technical report, @rsity of
Cambridge, 1992.

[11] L. Chicli, L. Pottier, and C. Simpson. Mathematical ¢jeats and
quotient types in Cog. In H. Geuvers and F. Wiedijk, editdsges
for Proofs and Programsnumber 2646 in LNCS, pages 95-107.
Springer, 2003.

[12] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kakhsimple
applicative language: Mini-ML. Iproceedings of the 1986 ACM
Conference on Lisp and Functional Programmigig. 1986.

[13] Coq development teanT.he Coqg Proof Assistant Reference Manual,
version 8.12006.

[14] C. Dubois and V. V. Donzeau-Gouge. A step towards thehaec
nization of partial functions: domains as inductive praths, July
1998. www.cs.bham.ac.uk/ “mmk/cade98-partiality.

[15] S. Glondu. Garantie formelle de correction pour I'extion Coq,
2007.http://stephane.glondu.net/rapport.2007.pdf.

[16] J. Harrison. Inductive definitions: Automation and Bqagion. In
P. J. Windley, T. Schubert, and J. Alves-Foss, editdigher Order
Logic Theorem Provoing and Its Applications: Proceedinfithe 8th
International Workshopvolume 971 ofLecture Notes in Computer
SciencesSpringer-Verlag, 1995.

[17] G. Huet. Induction principles formalized in the calesl of
constructions. IMTAPSOFT'87 volume 249 ofLNCS pages 276—
286. Springer, 1987.

[18] G. Kahn. Elements of constructive geometry group theard
domain theory, 1995. available as a Coq user contribution at
http://coq.inria.fr/contribs-eng.html.

[19] P. Letouzey. A new extraction for Cog. In H. Geuvers and/fedijk,
editors, TYPES 2002volume 2646 of_ecture Notes in Computer
ScienceSpringer-Verlag, 2003.

[20] A. Megacz. A coinductive monad for prop-bounded remms In
A. Stump and H. Xi, editorsProceedings of the ACM Workshop
Programming Languages meets Program Verification, PLPV7200
pages 11-20, New York, NY, USA, 2007. ACM.

[21] O. Miiller, T. Nipkow, D. v. Oheimb, and O. Slotosch. HOE =
HOL + LCF. Journal of Functional Programming®:191-223, 1999.

[22] H. R. Nielson and F. NielsorSemantics with Applications: A Formal
Introduction Wiley, 1992.

[23] T. Nipkow. Winskel is (almost) right:towards a mecheed semantics
textbook. Formal Aspects of Computing0:171-186, 1998.

[24] B. Nordstrom. Terminating general recursioBIT, 28:605-619,
1988.

[25] C. Paulin-Mohring. Inductive Definitions in the Syst&@oq - Rules
and Properties. In M. Bezem and J.-F. Groote, editersceedings
of the conference Typed Lambda Calculi and Applicationsnber
664 in Lecture Notes in Computer Science, 1993. LIP resaambrt
92-49.

[26] C. Paulin-Mohring. A constructive denotational setianfor Kahn
networks in Coq, 2007http://www.1lri.fr/~paulin/PUBLIS/
paulinO7kahn.pdf.

[27] C. Paulin-Mohring and B. Werner. Synthesis of ML pragsin the
system CogJournal of Symbolic Computatipd5:607-640, 1993.

[28] L. C. Paulson. Logic and computation, Interactive proof with
Cambridge LCF Cambridge University Press, 1987.

[29] F. Regensburger. HOLCEF: Higher order logic of complgab
functions. In P. J. Windley, T. Schubert, and J. Alves-Foss,
editors,Higher Order Logic Theorem Provoing and Its Applications:
Proceedings of the 8th International Workshoplume 971 of
Lecture Notes in Computer Scienc&pringer-Verlag, 1995.

[30] G. Winskel. The Formal Semantics of Programming Languages, an
introduction Foundations of Computing. The MIT Press, 1993.

