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Abstract

Scientists frequently have multiple types of ex-
periments and data sets on which they can test
the validity of their parameterized models and lo-
cate plausible regions for the model parameters.
By examining multiple data sets, scientists can
obtain inferences which typically are much more
informative than the deductions derived from
each of the data sources independently. Sev-
eral standard data combination techniques result
in target functions which are a weighted sum of
the observed data sources. Thus, computing con-
straints on the plausible regions of the model
parameter space can be formulated as finding a
level set of a target function which is the sum
of observable functions. We propose an active
learning algorithm for this problem which selects
both a a sample (from the parameter space) and
an observable function upon which to compute
the next sample. Empirical tests on synthetic
functions and on real data for an eight parame-
ter cosmological model show that our algorithm
significantly reduces the number of samples re-
quired to identify the desired level-set.

model parameters (from the parameter space) which cannot
be statistically rejected by the combination of the obsgrve
data and theoretical models.

When given a single model and data set pair, computation
of the feasible regions of parameter space can be done by
performing a simple hypothesis test for all points in the
space; that is, we are interested in the regions of param-
eter space where the null hypothesis — that the data was
generated by the model — cannot be rejected at some spec-
ified confidence level. Extending this to the multiple model
and data setting, we are interested in determining regibns o
parameter space where we cannot reject the hypothesis that
each of the data sets was generated by its respective model
at a given confidence level.

For example, when determining the spatial location of a
disease outbreak, a researcher might use information de-
rived from medical records (e.g. hospital admits), as well
as sales of over the counter and prescription medications
(Shmueli & Fienberg, 2006). Note that the presence (or
lack thereof) of a single indicator may be enough to ac-
cept or reject a single hypothesis, resulting in a huge in-
formation gain. Specifically, if there are many hospital
admits from a single locality, the probability of disease is
extremely high regardless of the over the counter and pre-
scription drug sales. Moreover, while we believe that the

underlying cause affects each of the signals we observe,
we do not necessary believe that the signals themselves are
Scientists frequently have multiple types of experimentscorrelated. For instance, colds result in significant oler t
and data sets on which they can test the validity of their pacounter sales with few hospital visits or prescription sale
rameterized models and the plausible or optimal regions fopnthrax attacks, however, will affect all three data stream
the model parameters. One task that can be considered i% :
that of computing the parameter setting (from a pre—defined_ ere are many other examples of the multiple model set-

model parameter space) which maximizes the likelihood of "9  Here, we focus on finding — o confidence re-
all the observations given the models. However, this calgions for statistical analyses involving multiple relatida

culation does not determine whether or not the derived p sets. Traditionally, the combination of statistical evide

rameter setting is consistent with the data given the model as been achieved in the sciences in a somewhat ad-hoc

Instead, a more prudent approach is to compute the set @shlon. For mstanc_e, a joint aqaly5|s can be performed
y (loosely) intersecting the confidence regions of several

Appearing inProceedings of the 2_5” International Conference  studies. Additionally, results from one publication might
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008 he used to guide the selection of parameters in future ex-
by the author(s)/owner(s). periments, possibly in the form of a prior.

1. Introduction
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A more rigorous and efficient approach is to consider multi-out loss of generality, we can drop the coefficients from
ple experimental sources of evaluation simultaneously anthe f;'s (as they can be included in thg's) and write
choose samples samples in light of their contribution to thef () = >_." | f;(9) forall § € ©. We are now interested in
combined target function. This target function is the com-finding a specified level set ¢f. That is, we want to learn
position of the “observable” test functions: one for eachS, where

data set and model pair. We assume that the observable .
functions share the same parameter space, but are func- . o .
tionally independent. As such, hierarchical models do not §= {9 € ;‘f’(e) =10 = t}
apply. Moreover, whereas multi-task learning problems are a

based on learning the commonality between the constitued@r some specified threshotd

models, the task of locating confidence regions benefitg, general, computing the value of eagfs may not in-
from the discrepancies between the models to e1‘ficientl3{:ur the sa’me cost. However, we begin by assuming that
accept or reject a pgrameter vector. While in theory W&he costs are similar, and hence try to minimize the total
could check each point in the parameter space to deuarmlr]‘ﬁmeer of samples of observable functions required to ac-
whether or not it should be included within o« confi- curately estimaté. Moreover, we assume thatannot be
dence region, in practice each experiment is expensive. directly sampled, and that neithgmor any of thef,'s is

As such, we develop active learning algorithms to learninvertible. That is, the only way to estimate a level-sef of
the confidence regions. Active learning using informedis to sample points from thg’s and inferf. As we will see
choices of future experiments has long been known to dragh Section 4, this formulation accurately mimics combining
tically decrease a problem’s sample complexity (Angluin,p-values using Fisher's method, as the method for finding
1988). Many sampling heuristics have been developed tghe individualp-values may be entirely unknown.

learn either the entire target function (e.g. MacKay (1992) We must now determine how best to choose samples both
Guestrin, C., et al. (2005)) or some feature of the targehmong and within the/;'s. Ideally, we want to sample the
function_, such as its level sets (e.g. Bryan, B., etal. (3905 observable functiorf; at the pointd € © which best in-
Ramakrishnan, N., etal. (2005)). While we cannot directly o aqe5 our prediction accuracy (e.g. whether anothet poin
observe the value of the target function, we can use the oq-s above or below the threshold) ovgr Since the param-
servable functions to infer its value. By measuring all ob-ge gpace is continuous and multi-dimensional, we cannot

servable functions at a particular parameter setting, We Cayo, 14 test all possible points and observable functions
compute the value of the target function, reducing the prob-

lem to a standard active learning problem. However, suchnstead, we model each of the observable functions inde-
an approach disregards any strong evidence provided bypendently given the current samples taken from that func-
single statistical test, and hence may result in extraneou#on, as illustrated in Figure 1. For each experiment, we
sampling of the remaining statistical models. randomly select a small subset of the parameter space (usu-

h . di ve | . lorith ally 1000 points drawn uniformly at random, although
Rather, we are interested in active leaming algorithms, e gistributions are possible based on domain knowl-

which use information about each observable function toedge) and choose the best point and observable function
learn some composite target function. In Section 2, we probair upon which to experiment from among these candi-

- dates. We find the value of the observable function at the

pose a heuristic for actively learning level sets of comigosi
functions of sums for continuous valued input spaces. INyoocted point and add it to the data set used to model that

Sectipn 3, we show that thi; .heuristic performs the 'evel'function. The process is then repeated.

set discovery task more efficiently than both random and

sequential sampling of the constituent functions usingsta There are several methods one could use to model each
of the art heuristics. In Section 4, we discuss how the théf the f;’s, notably some form of parametric regression.
task of finding joint confidence regions can be formulatedHowever, we chose to approximate tfié&s using Gaussian

as a level set problem, where the target function is the surfirocess regression, as other forms of regression may over
of several observable functions. Section 5 concludes bgmooth the data, ignoring subtle features of the function
demonstrating the computation of 95% confidence regiongat may become pronounced with more data. While much

for eight cosmological parameters using our algorithm. ~ work has been done studying Gaussian processes, we only
touch on the basic concepts here; we refer interested read-

ers to Cressie (1991); Rasmussen and Williams (2006).

2. Active Learning Algorithm

the domain® C R<. Suppose thaf is the linear combi-

. i } : a weighted combination of the function values for those
nation ofm observable functions; (:=1,...,m). With-

points which have already been observed, where a distance-
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select kriging "H choose sample &
candidates models observable functio
compute
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Figure 1.0utline of our sampling algorithm. Given an initial set of points (typically eptie randomly select a set of candidates and
score them using a set of Gaussian process models. The best smmirihgnd observable function pair is chosen, and we evaluate the
selected observable function at the given point. This data is added tortesmonding data set.

based kernel function is used to determine the relativeonly thek nearest neighbors of the query point are used, for
weights. These distance-based kernels generally weigtsome fixed constarit. This reduces the computation time
nearby points significantly more than distant points. Thusto O(k3+klog(n;)) per prediction. Here, we lét = 1000.
assuming the underlying function is continuous, Gaussian

processes will perfectly describe the function given an in-2.1. Choosing Experiments

finite set of unique data points. While, in many applica- _. ) ) ) )
tions the assumption of continuity is violated, GaussianCiven this active learning framework, we must now decide

processes have been successfully used to model resporf§dV t0 choose sample / observable function pairs. We con-

surfaces in many domains with limited smoothness guarSider the following heuristics:

antees (Cressie, 1991; Santner et al., 2003). ) )
Random One of the candidate points and an observable

In this work we use ordinary kriging (Cressie, 1991) as itisfunction pair is chosen uniformly at random. This method
both data and computationally efficient. While other formsserves as a baseline for comparison of the other heuristics.
of Gaussian Processes could be used — most notably adap-

tive kernel methods (e.g. Kersting, K. et al. (2007)) — wevariance The candidate point and observable function
find that a learned model based upon a simple kriging appair which has the highest predicted variance (out of all
proximator performs well in practice and ensures that wehe candidate / observable function pairs) is selected. Us-
do not spend more time computing the next sample thafhg model variance to pick the next experiment is com-
we do running the experiment. mon for active learning methods whose goal is to map out

Regardless of the kernel used, Gaussian processes predigf farget function over a parameter space (MacKay, 1992;

that the value of a target poin, will be Normally dis- ~ Guestrin, C., etal,, 2005). In particular, (Guestrin, @.,
tributed with a mean and variancg ((g) anda?(é), respec- al., 2005) showed that greedily picking experiments based
tively) given by: ' upon model variance performs nearly as well as using a

mutual information heuristic when learning the target over

6 = fi+3T.271F (1) the entire parameter space; this is significant, as the hutua
v 7,01 . . .. .

0,5 ST 1R information heuristic can be shown to fle— 1/¢) optimal
o (0) = Ei,ézi 2id ) (Guestrin, C., et al., 2005). Since variance is closelyteela

to distance for kriging models, this heuristic samples {®in

where7; is the set of observed experimentsfof which are far from their nearest neighbors. However, when

7| searching for level-sets, we are less interested in the-func
fi = 1 Z fila;) tion away from the level-set boundary, and instead want to
' |7 = ! focus our sampling resources near the predicted boundary.

Al = f_(e_): 7 In particular, sampling based solely on variance results in
= Ll v substantially worse performance than heuristics that con-

3; denotes the covariance matrix between the elements @entrate on the function level-set (Bryan, B., et al., 2005)

7;, and ii g 1s the covariance vector between elements of ] _ } o
T andd ' Information Gain Information gain is a common my-
i .

opic metric used in active learning. Computing the infor-
For a set of; observed points|7;| = n;), prediction with  mation gain over the whole state space for each observable
a Gaussian process requi@én?) time, as a; x n; linear  function provides an optimal 1-step experiment choice. In
system of equations must be solved. However, for manygome discrete or linear problems this can be done, but is
Gaussian processes — and ordinary kriging in particulaintractable for continuous non-linear spaces. As such we
— the correlation between two points decreases as a funao not consider a traditional information gain heuristiat b
tion of distance. Thus, the full Gaussian process modetely on efficient point estimates which act as proxies for
is approximated well by a local Gaussian process in whickglobal information gain.
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Sequential-Straddle  As noted in Section 1, the problem the information gain of a candidate point and observable
can be simplified to a standard active learning problermfunction pair is:
if one sequentially samples each of the observable func-

tions in order to directly comput¢. (Bryan, B., et al., variance-maxvarstraddle(6)

2005) showed that in a setting where experiments yield the m

(approximately) true values of the target function, a good = max {1.9603(5)} - Z fi0) —t|. (@)
heuristic for level set identification is the straddle heri ! i=1

tic: straddle(d) = 1.9602(A) — | f(0) — t|. This heuristic
balances the need to explore uncertain parts of paramet
space, with the desire to refine the model's estimate aroun
those regions already known to be close to the level-set )
boundary; the constant 1.96 ensures that points with neg3. EXperiments

ative scores are far from the desired level set with at Ieas\tNe now assess the accuracy with which our active learnin
a 95% probability. This heuristic leverages the straddle y 9

: {nodel reproduces synthetic target functions for the sam-
pling heuristics just described. This is done by computing
the fraction of test points in which the predictive model

(\:(\'le choose the candidate point that maximizes this heuristic
%nd the corresponding.

combined straddle score,

m m (the sum of the kriging models associated with each ob-
combined-straddle () = 1.96203(9)— Z fi(6) —t|, servable function) agrees with the true target functioruabo
i—1 i=1 on which side of the threshold the test points lie. This pro-

) cess was repeated 20 times to account for variations due to
and then sequentially sampling @il observable functions  the random nature of the candidate generation process. The
at this point. first three target functions considered were sums of two ob-

servable functions, while the fourth was a sum of four ob-
Variance-Straddle While (Bryan, B., et al., 2005) servable functions. The kriging parameters for each model
showed that thestraddle heuristic works well when di- were computed priori from the observable functions. The
rectly sampling the target function, we can hope to do betconsidered functions are:
ter by considering the output from each observable function
individually. For instance, if a sample pointresultsinaye Gaussian This problem consisted of determining the
large value for one of the observable functions, it may be95% acceptance region of two axis aligned perpendicular
unlikely that the results of the othégt's will be such that two dimensional Gaussian distributions centered at the ori
the resulting value off is near the level-set. In particu- gin. Both Gaussians had diagonal covariance matrices with
lar, when dealing withy? models (see Section 4), we know on diagonal elements of 1 and 16. Since working in prob-
that f; > 0 for all i. Thus, if a singlef; is greater than the ability space results in many near-zero values, the problem
level-set boundary, the target function will also be greate was considered in log-space. As such, the target function
than the level-set boundary, and hence it may be more effivas a 2 dimensional symmetric quadratic function, and the
cient to sample elsewhere. This heuristic simply compute$evel-set was a circle centered at the origin. The range of
the combined-straddle score as in Equation 3, and then the parameter spacé (6, € [—3.4, 3.4])
chooses the candidate point and observable function with
the largest variance. Sin2D The second problem consists of finding where the

two 2D sinusoidal observable functions
Variance-MaxVar Straddle Finally, we consider a vari-
ant of thestraddle heuristic. This heuristic tries to mimic ~ 41(%1:62)
the information gain of choosing a particular point and ob- f2(61,02)
servable function pair. Note that after observing a point,
the variance of the kriging model is effectively zero at that

: . o tions were chosen because 1) the target threshold winds
point (since we have set c to be a very small positive value)throu h the plot aiving ample lenath to test the accuracy of
The originalstraddle heuristic balances the expected gain 9 plot giving amp 9 Y

in the model fit 6(@)) with the expected distance of the th.e approximating mpdel, 2) the bogndary IS cﬁscontmuo_us

. with several small pieces, 3) there is an ambiguous region
point to the level-set boundary. L :

around(0.9, 1), where the true function is approximately

However, with the multiple model formulation, we do equal to the threshold, and the gradient is small and 4) there
not expect the model variance to decreaseoByf)) =  are areas in the domain where the function is far from the
S o2(6), but rather byo;(0) where f; is the observ-  threshold and hence we can see whether algorithms refrain
able function we pick. Thus, a more accurate estimate ofrom oversampling in these regions.

sin(1001) + cos(4602) — cos(36162)
sin(100s) + cos(461) — cos(36162)

sum to zero wheré,, 02 € [0,2]. These observable func-
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Gaussian  SimpleSin2D Sin2D 4-Sin2D

random > 1000 > 1000 > 1000 > 1000
variance 95.0+11.0 > 500 105.0:11.5 188.6-32.2
variance-straddle 89.5+5.0 157.9:12.3 90.4+9.0 72.5:12.0
sequential-straddle 76.2-3.5  150.3:6.5 87.0+7.3 98.1#14.0
variance-maxvarstraddle  71.7+3.3 127.3-6.8 82.9+10.2 54,9-16.9

Table 1.Number of samples required to achieve a 99% accuracy on the Gaassi&BimpleSin2D tests, and a 90% accuracy on the
Sin2D and 4-Sin2D tests based on 20 trials. Vaeance-maxvarstraddle heuristic consistently performs better than competitors.

2 _a % & B IAlal\elé_ 2@ & & Id\ & 2B T T T A
- \ - - - -
_é 2 Ro Oﬁx\Cg\\@_ - . {ﬂ‘ \?. | A
AR : § e :
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Figure 2.Predicted level-set (solid), true level-set (dashed) and experimsguargs, circle, triangles and x’s) for the 4-Sin2D func-
tion after sampling 100 points using the Variance heuristic (left), dbguential-straddle heuristic (center), and theariance-
maxvarstraddle heuristic (right).

SimpleSin2D  This problem is a simplified version of the variance-weighted heuristics sample the observable func-
previous problem, where the observable functions tions over the entire parameter space, while the straddle-
) based heuristics focus on the level-set of interest. Addi-
fi(01,02) = sin(461) + cos(462) — cos(6162) tionally, the advantage ofariance-maxvarstraddle over
J2(01,02) = sin(460z) + cos(46;) — cos(0162) sequential-straddle grows as the number of observable
, S functions increases, indicating that the relative cost of a
were chosen to “?duce the pmblem S semi-variances (@%aL 4 choice is increased. These results strongly suggést tha
01,02 < [0 : 2]). Since pr_oblems V\,”th Iarg.e sémi-variances learning the models independently allows for better overal
resultin large model variance estimates in the kriging mOd'prediction.
els, such problems require extensive sampling to correctly
identify function level-sets. Performance on this funstio One surprising result of our experimentation is that the
highlights an algorithm’s ability to quickly rule out por- Ssequential-straddle performs as well as theariance-
tions of the function. straddle heuristic on the test functions which are sums of
two observable functions. We believe that this result illus
4-Sin2D  This task consisted of finding where four 2D si- trates the fact that theariance-straddle heuristic is over

nusoids sum te-2. The sinusoids chosen for this problem estimating the importance of the variance component of the

were similar to those of the SimpleSin2D problem: candidate points to the information gain of a point, while
the fact that there are only two observable functions re-
f1(61,02) = sin(461) + cos(202) — cos(361) duces the efficiency of theequential-straddle heuristic
f2(01,65) = sin(203 — 2) + cos(26;) — cos(36;) only by a factor of two. Thevariance-straddle heuristic
f3(01,02) = sin(30,6) + cos(261) + 1 will be as likely to choose a candidate point where the pre-
. dicted observable functions are moderate but equal, as it is
f4 (91, 92) = COS(9192) — s1n(9102)

to choose a point with a large predicted variance for one
both high and low derivatives near the specified threshold OPservable functions. However, the second candidate has

much more information than the first, as selecting the sec-
Classification accuracy results for the four tests are giveryng candidate will give us the (approximately) exact value
in Table 1.variance-maxvarstraddle out performs all of o the target function, while selecting the first will only:-re

prisingly, the straddle-based heuristics beat out theaand - sin2p task thevariance-straddle heuristic is able to make
and variance-weighted heuristics, as both the random and
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use of the individual observable functions, but still does n and B respectively, and 4 5 is the covariance of the data

do as well as thgariance-maxvarstraddle heuristic. points between data setisand B. If data setsd andB are

To illustrate the differences in sampling patterns betweerandependent, then all elgment.f,mm are zero and we can
" write the above expression as:

these heuristics, we plot the samples chosen for the ob-

servable functions (with squares, circles, triangles dsad x ) TSN (A — 1ia)

respectively) with the true (dashed) and predicted (solid) . Y T . 9

function level-sets for the 4-Sin2D task in Figure 2. The +(@p —ip)" X (T = MB) ~ X{att)-

variance-maxvarstraddle heuristic is much better at pick- That is, the target function is merely the sum of the two

ing points than the other two heuristics. Note that thegbservable functions: the variance weighted sum of squares

variance-maxvarstraddle heuristic is able to learn that for both data sets.

some regions of the space are poor by sampling just one , , o

of the observable functions: as such, its samples lie mucANOther approach to performing simultaneous joint anal-

closer to the target level-set. This reinforces our hypsithe YSIS i to combine the modelg-values. There are many

that modeling the observable functions separately ressults Ways 0 combine test procedures, including using Bonfer-
additional learning opportunities. roni corrections, the inverse normal method, and inverse

logit methods (Hedges, 1985). A common method to com-
. I bine p-values is Fisher's method (Fisher, 1932). Fisher
4. Joint Statistical AnaJyseS noted that since a-value, p;, has a Uniform distribution,

Now let us look at a concrete application of this sampling_mog(pi) will have aX(22) distribution. Again, using the
algorithm: joint statistical analyses. L&f; be a random fact that the sum of independeyt random variables has a
variable denoting a data source andbe a generic obser- x? distribution, the test becomes: rejéef if and only if

vation of X;. For each data sets{;, let m; be a corre-
sponding model ofX; given somef € ©. We are inter-
ested in constructing a confidence region for the true valudlistribution for some particular level. Again, we see that
of the parameter, denotéd, based on the observation that the target function is the sum of observable functions.

X,; = x; for each model / data set pair.

k
—2 3" log(p;) > C whereC is the critical value of &,
i=1

Thus, given the models:; and data set¥;, we are in-

For a single data set, consider testing the hypothesis th&grested in locating those € ©, such that the the result-
6* = 0 at level o for some arbitraryd € ©. The as- ing modelsm; (i = 1,...,m) are accepted by the chosen
sociated acceptance region for the tedt(6), is the set hypothesis test. This, in turn, reduces to testing whether
of data values (model outputs) for which the test will notthe sum of a set of observable functions is below a spec-
reject the hypothesi§* = 6 for model m;. Since we ified threshold. Specifically, given a threshaldve want
are interested in tests with significance lemele require  to find the set of points®’, where the target functiofi is
Py(X; € Ai(0)) > 1 — . We can then usel; to con-  equal or less than the thresholé’ = {6 € ©[f(¢) < t}.
struct al —a confidence regiorG 4, (z;), for 6* based on  However, note that we need only discover the boundary,
the observed data;: C 4, (7;) = {0 € Olx; € A;(0)}. S =1{0 € ©]f(0) = t}, asS implicitly defines®’. There-

. . ... fore, using eithex? tests or Fisher's method, we can apply
There are typically two approaches to combine the individ+g 5orithm described in Section 2 to locate the bound-
ual confidence tests above into joint confidence regions. 1 ias of thel — o confidence region.

the first we create a statistical model which simultaneously

considers all data sets. For instance, when performing an .

analysis on two data sets using tests, we will have one - Cosmological Data Example
x? test for data setl and a second for data sBt Since the

x? test assumes that each of the data points have depe
dencies given by the covariance matrix, we can combin
the two tests into a singlg? test of the form

To illustrate our algorithm and its application to joint

Sfatistcal analyses, we show how it can be applied to an
@nalysis of eight cosmological parameters that affect the
formation and evolution of our universe using three data
sets. For this task, we consider data from the Comic Mi-

- - T -1 . -
{ Ta—ma } [ EZA %‘B } { Ta—ma } crowave Background (CMB) power spectrum as observed
B~ MB AB =B s —Mmsp by Wilkinson Microwave Anisotropy Project (WMAP)
~ X{atn) (Bennett, C. L., et al., 2003), the Davis, T. M., et al. (2007)

supernovae (SN) survey and a large scale structure survey

wherem;,zy and X; are the associated test model, ob- (LSS) by Tegmark, M., et al. (2006).

served data and observed covariance of datg gpen
some vector from the parameter spacendb are the de- While models for each of these data sets try to determine
grees of freedom of the tests associated with data4ets what the Universe is formed of and how it has evolved, they
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Figure 3.Comparison of the confidence regions derived for WMAP (a), super (b), and LSS (c) data sets with those derived using
all three data sets together (d). Regions of solid color indicate valug2yfoand$2, for which some combination of the remaining
parameters results in a model with probability greater thamnv. The WMAP and LSS models are 7 parameter models, while the
supernova is a 3 parameter model, and the combination model is anrBgtaranodel.

measure significantly different aspects of the Univers& Ththe expected observations for the CMB data set is much
CMB data set records temperature fluctuations in the Unimore time consuming. Typically one employs a numeri-

verse just after the Big-Bang. The size and spatial prox<al solver, such as CMBFast to approximate the Boltzmann
imity of these temperature fluctuations depict the types anéquation and yield the expected power spectrum.

rates of particle interactions in the early universe anadtben To alleviate the problem posed by the computational costs

characterize the formation of large scale structure (galax o .
ies, clusters, walls and voids) in the current observabile un of QMBFas_t, we initialize the Gaus_S|an process ”.‘O.de' as-
' ’ sociated with the WMAP data using the one millipn

Verse. Meanwhllg, the supernovae data measures the e\)/(alues derived by Bryan, B., etal. (2005). (Bryan, B., etal.

pansion of the universe as a function of time, in order to d g .

. . 2005) used confidence balls — a statistical procedure sim-

constrain the total mass and eventual fate of the Universe 2 . . :

. ifar to x° tests, generally with better inference properties

Finally, the large scale structure survey measures the de- . .
L . — to map out the level-set associated with the 95% con-

gree of galaxy cluster clumping in order to determine the,

relative importance of dark matter and Baryonic (normal)fldence region of the seven CMB parameters. Additional

matter. Combined, these data sets can be used to determimeo dels were selected using thariance-maxvarstraddle

- . euristic with one small change: If the heuristic selects th
the age, compositional and eventual fate of the Universe . : : .
. . bservable function associated with the CMB data, we first
as well as provide strong evidence for the presence of dar

) - compute thep-values associated with the supernova and

energy — a large-scale negative gravitational force. .
large scale structure data sets to see if we can exclude the

In this analysis we look at an eight dimensional parameparameter vector without needing to run CMBFast. That
ter space comprised of the optical deptf), (dark energy is, we determine whether the sum of the jegalues from
mass fraction{Q,), total mass fraction({,,), baryon den- the supernovae and large scale structure data sets alone is
sity (wp), dark matter density.(;.,), neutrino fraction f,,), larger than the threshold for the combined model. This
spectral indexs{,) and galaxy biastj. The CMB model modification allows us to reduce the number of CMBFast
constrains the first seven parameters while the supernov@mputations by about a factor of five. Using this modified
model constrains g, wi, Qv andQ,. The LSS model  variance-maxvarstraddle heuristic, we sampled roughly
constrains all of the parameters exceptifor 1.5 million additional parameter vectors, about 300,000 of
these points resulted in CMBFast runs. Note that 1.5 mil-
lion parameter vectors corresponds to a grid with roughly
six elements per side. Since the variance-based metrics
sample the entire parameter space, their prediction perfor
mance is typically similar to this naive gird. Thus, using an
active learning metric that focuses on the boundary that we
are interested in (and ignores large parts of the parameter
space which can be proved to be infeasible) significantly
Computing expected observations given parameter vectoreduces the computational complexity of the algorithm.
is fast for the supernovae and large scale structure model
and hence we can quickly compute th&alues associated
with these two models using? tests. However, computing

Fisher's method was used to combinealues from each
of the three models. While for smaltvalues the log of the
p-value goes to infinity, note that the algorithm is interdste
in determining where the sum of thevalues corresponds
to the 95% quantile of Q(%ﬁ) distribution. Since this results
in t ~ 12.6, the algorithm has no incentive to select points
which are expected to have near zgraalues.

™ Figures 3(a)-3(c) we depict 95% confidence regions de-
rived using only a single data set projected intothever-
sus{2, space. Confidence regions are derived by binning
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the samples selected by the algorithm and including thosbetween three data sources. Using the CMB, supernovae
bins in the confidence region which contain points whereand large scale structure data sets results in much tighter
f < t, resulting in the blockiness in the diagrams. Fromconfidence regions than those obtained using only a single
the figures illistrate that the shapes of the 95% confidencsource of data, allowing for much tighter scientific infer-

regions for each of the data sources are quite different, valence. We note that standard ad hoc techniques for combin-
idating our supposition that different observable funtsio ing evidence, such as intersecting the data, or using weak
can be used to efficiently reject parts of parameter space. priors do not result in such a significant reduction in the

In Figure 3(d), depicts the 95% confidence region the joimacceptable parameter space.

analysis using all three data sets. It is clear that using the

combination of all three data sets dramatically improvesReferences

the inferences that can be made on the cosmological pPgxngluin, D. (1988). Queries and concept learingachine
rameters values. In particular, note that the derived confi- Learning, 2, 319-342.

dence region is significantly smaller than what would have

. ; . . . ennett, C. L., et al. (2003). First-Year Wilkinson Microwave
been obtained using a simple intersection. As a result, w8 Anisotropy Probe (WMAP) Observations: Foreground Emis-

cannot blindly combine the WMAP-values of Bryan, B., sion. Astrophysical Journal Supplemental, 148, 97—117.
et al. (2005) withp-values derived for the supernova and

large scale structure data sets, as the surface of the corﬁ[)t’r?rr‘e’sﬁalgtb"’(‘)'u%%?;‘_’e)é Alzgxgn'sgm”nge;?;i?;g:mggrf“pr;gtion
bined target function is dras_tlcally different from_the sur cessing systems 18, Cambridge, MA: MIT Press.

faces of each of the models independently. Specifically, all

of the models in the Bryan, B., et al. (2005) data set can bé&ressie, N. A. C. (1991)Satistics for spatial data. New York:
rejected at the 95% confidence level by the supernova and Wiley.

large scale structure data. This is not surprising; the #sode payis, T. M., et al. (2007). Scrutinizing Exotic Cosmologi-
chosen by Bryan, B., et al. (2005) defined the 95% confi- cal Models Using ESSENCE Supernova Data Combined with
dence regions using only the WMAP data, and hence are Other Cosmological Probesstrophysical Journal, 666, 716.

not near the 95% confidence region boundary of the lo'n,hsher, R. (1932)Satistical methods for research workers. Lon-
model. Thus in order to accurate compute the 95% confi- gon: Oliver and Boyd. 4 edition.

dence regions of the joint model (using all three data sets), _ _ )
we must sample new models in the multiple model frame-Guestrin, C., et al. (2005).’ Near-optimal sensor placements in
work, as we did in Figure 3(d). Only then will we correctly gaussian processeCML *05: Proceedings of the 22nd Inter-

. . national Conference on Machine learning (p. 265). New York,
learn the true level-set of the composite target function. NY: ACM Press.

. Hedges, L. V. (1985)Xatistical methods for meta-analysis. Aca-
6. Conclusions demic Press.

We have described the problem of learning a target funcKersting, K. et al. (2007). Most likely heteroscedastic gaussian
tion based on a set of related observable functions; this Process regressionCML '07: Proceedings of the 24th Inter-
problem naturally arises in many situations including the national Conference on Machine Learning (p. 393). New York,

D . . - . . NY, USA: ACM Press.

joint analysis of multiple data sets which describe a sin-

gle physical phenomenon. We have developed an algavacKay, D. (1992). Information-based objective functions for
rithm for locating the level set of this target function wehil ~ active data selectiorNeural Computation, 4, 590.

minimizing the number of experlmenfts necessary. We deRamakrishnan, N., et al. (2005). Gaussian processes for active
scribed and showed how several different heuristics for data mining of spatia| aggregateﬁroceedings of the SAM
choosing experiments from a set of candidates perform International Conference on Data Mining.

on synthetic target functions. Our experiments indicat
that variance-maxvarstraddle outperforms both random
and variance-weighted heuristics typically applied tivact
learning problem. Moreovenariance-maxvarstraddle ~ Santner, T. J., Williams, B. J., & Notz, W. (2003}he design and
is better than both theequential- andvariance-straddle analyis of computer experiments. Springer. 1 edition.

heuristics, as it appears to better approximate the informashmueli, G., & Fienberg, S. E. (2006).Statistical methods

eRasmussen, C. E., & Williams, C. K. I. (2006)zaussian pro-
cesses for machine learning. MIT Press.

tion gain of a candidate point. in counterterrorism, chapter Current and Potential Statistical
. . o . Methods for Monitoring Multiple Data Streams for Biosurveil-
Using thevariance-maxvarstraddle heuristic in an active lance, 109. New York: Springer.

learning framework, we were able to efficiently learn the
level set of an eight dimensional surface. This level-set co
responds to the 95% confidence region of a joint analysis

Tegmark, M., et al. (2006). Cosmological constraints from the
SDSS luminous red galaxieBhysical Review D, 74, 123507.



