
Attack Resistant Collaborative Filtering

Bhaskar Mehta
Google Inc.

Brandschenkestr 110, 8004 Zurich, Switzerland
mehta@l3s.de

Wolfgang Nejdl
L3S / Universität Hannover

Appelstrasse 4, 30167 Hannover, Germany
nejdl@l3s.de

ABSTRACT
The widespread deployment of recommender systems has
lead to user feedback of varying quality. While some users
faithfully express their true opinion, many provide noisy rat-
ings which can be detrimental to the quality of the gener-
ated recommendations. The presence of noise can violate
modeling assumptions and may thus lead to instabilities in
estimation and prediction. Even worse, malicious users can
deliberately insert attack profiles in an attempt to bias the
recommender system to their benefit.

While previous research has attempted to study the ro-
bustness of various existing Collaborative Filtering (CF) ap-
proaches, this remains an unsolved problem. Approaches
such as Neighbor Selection algorithms, Association Rules
and Robust Matrix Factorization have produced unsatisfac-
tory results. This work describes a new collaborative al-
gorithm based on SVD which is accurate as well as highly
stable to shilling. This algorithm exploits previously estab-
lished SVD based shilling detection algorithms, and com-
bines it with SVD based-CF. Experimental results show a
much diminished effect of all kinds of shilling attacks. This
work also offers significant improvement over previous Ro-
bust Collaborative Filtering frameworks.

Categories and Subject Descriptors
H.3 [Information Storage And Retrieval]: Information
Search and Retrieval; K.4.4 [Computers and Society]:
Electronic Commerce – Security

Keywords
Collaborative Filtering, Shilling, Robust SVD

1. INTRODUCTION
Personalization for large scale systems is a well researched

topic in Computer Science with several successful algorithms
and improvements over past years. While early algorithms
exploited similarity in small groups amongst a large popula-
tion of users, later algorithms made use of advanced statisti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08,October 19–20, 2008, Singapore.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cal models. Improvement in accuracy was the main objective
of previous research, though research has been conducted to
incorporate aspects like Trust and Privacy. One important
issue with Collaborative Filtering (CF) to emerge recently
is the vulnerability towards well designed attacks. Such at-
tacks require a group of users to collude and insert malicious
ratings on chosen items; this is aimed at manipulating a rec-
ommender system to recommend a chosen item more/less
frequently than normally. Such attacks have been called
shilling attacks [9] or profile injections attacks [2]. While
recent algorithms [2, 10, 11, 21] are successful in identifying
shilling attacks in collaborative filtering, it is desirable to de-
velop algorithms which are robust to shillers from the ground
up. Previous work [21] has used a probabilistic model based
on Singular value Decomposition (SVD) to detect shillers,
however the detection rate is low, and the algorithm is inef-
fective against average attacks.

Recent work [11] introduced a detection algorithm based
on Principal Component Analysis (and hence SVD) which
was very accurate against a broader range of attacks. Our
aim in this paper is to built detection into the CF in a
computationally effective manner. A robust collaborative
filtering algorithm would provide protection from insertion
of random noise as well as attack profiles injected into the
system without any explicit input or tuning. Recent work
concluded that noise resistant statistical methods using ro-
bust regression are not completely effective for robustifying
collaborative filtering [12].

The contribution of this paper is a robust CF algorithm
which is stable against moderate shilling attacks on large
datasets. Our proposed algorithm leverages the accuracy of
PCA-based attack detection [11] while preserving the pre-
dictive accuracy of SVD, which has also been successfully
exploited previously [19, 21].

2. BACKGROUND & RELATED WORK
Collaborative Filtering (CF) [8] is one of the most pop-

ular and successful filtering techniques that has been used
to date. It is used in a setting where users have a choice
of a number of items (say, a book store) and can rate items
that they know about. Collaborative Filtering helps users
to make choices based on the opinions of other similar users
in a system and find relevant items that they may not have
explored so far. The basic idea employed is that users who
agree with each other on some items based on their ratings
are likely to agree or disagree on future items.

Collaborative filtering algorithms have been classified into
two general categories, commonly referred to as memory-
based and model-based algorithms. Memory-based algo-
rithms are the more prevalent of the two categories and use

all available data in order to make a prediction for the se-
lected user. Memory based CF algorithms retain all relevant
data in memory and compute the required prediction on de-
mand in real. Model-based algorithms operate differently by
abstracting from the observed data and creating a statisti-
cal model of observed data. This model is learnt based on
known ratings and is subsequently used in the recommenda-
tion process. The CF algorithm presented in this paper is a
model-based algorithm as well.

2.1 Shilling and Collaborative Filtering
Collaborative Filtering systems are essentially social sys-

tems which base their recommendation on the judgment of
a large number of people. Like other social systems, they
are also vulnerable to manipulation by malicious social ele-
ments. In a well knonw incident, a loosely organized group
managed to trick the Amazon recommender into recommend
to some readers of the book Six Steps to a Spiritual Life
(written by the evangelist Pat Robertson), a book for gay
men1.

A lot of web-enabled systems provide free access to users
via a simple registration process. This can be exploited by
attackers to create multiple identities for the same system
and insert ratings in a manner that affect the robustness of a
system or algorithm, as has been studied in recent work [9,
13]. Shilling attacks add a few user profiles which need to be
identified and protected against. Shilling attacks can be clas-
sified into two basic categories: inserting malicious profiles
which rate a particular item highly are called push attacks,
while inserting malicious profiles aimed at downgrading the
popularity of an item are called nuke attacks [13]. Various
attack strategies were then invented; these include [2]:

1. Random attacks, where a subset of items is rated ran-
domly2 around the overall mean vote.

2. Average attacks, where a subset of items is rated ran-
domly around the mean vote of every item

3. Bandwagon attacks, where a subset of items is rated
randomly around the overall mean, and some popular
items are rated with the maximum vote.

Random and Bandwagon attacks are low-knowledge attacks
requiring information only about some popular items and
overall vote statistics. Average attacks require more infor-
mation , and have been shown to be near optimal [10] in im-
pact. They have also been observedly difficult to detect [21].

The strength of shilling attacks is specified using two met-
rics: filler size and attack size. Filler size is the set of items
which are voted for in the attacker profile, usually measured
in %. Attack size refers to the number of shilling profiles
inserted into user data. The impact of the attacks is mea-
sured by the increase in the number of users to whom an
attacked item is recommended. Generally, average attacks
are strogner than random or bandwagon attacks.

2.2 Detection of Shilling attacks
Recent research in this area aimed at detecting algorithms

for profile injection attacks. The earliest shiling detection al-
gorithm was invented by Chirita et al. [3] and exploited fea-
tures of spam profiles. While this algorithm was successful in
detecting shilling attacks with dense attacker profiles, it was
unsuccessful against attacks, which are small in size or have

1Story at http://news.com.com/2100-1023-976435.html.
2Note that Gaussian distributions Nµ,σ have been used for
generating the random votes rather than the uniform ran-
dom distribution

high sparsity. Mobasher et al. [2] compare their feature-
based classification algorithm which performs significantly
better than the Chirita algorithm by taking more features
into account. The Mobasher et al. [2] algorithm trains a clas-
sifier given enough example spam and authentic profiles and
is fairly accurate in detecting spam attacks of varying sizes
and density. However, as a supervised approach, it needs a
large number of examples, and can detect only profiles simi-
lar to the examples profiles. Secondly, both algorithms per-
form badly when the spam profiles are obfuscated. Adding
noise, shifting targets, or shifting all user ratings differently
makes the attack profiles more difficult to detect for exist-
ing feature based detection algorithms. Williams et al. [20]
discusses these obfuscation strategies and their effect on de-
tection precision. O’Mahony et al. [14] have taken up a more
principled approach using signal processing theory to detect
natural and malicious noise; however, the accuracy remains
low (15–25%).

Recent work [10, 11] provide highly accurate algorithm
called VarSelect for detecting shilling attacks. The algo-
rithm exploites the group effect : a property of shillers being
effective when working in groups. Since shillers want to
maximize their effect, they need to work together. A result
of this is that attack profiles are similar to one another; this
property can be exploited by methods based on dimension-
ality reduction to detect spam with high accuracy. Clearly,
detection procedures can be applied only sparingly due to
their highly computational and batch nature. Our approach
in this paper uses the insight gained in the design of detec-
tion procedures to create a robust Collaborative Filtering
Algorithm; VarSelect is an important step in our proposed
algorithm.

2.3 Robustness in Collaborative Filtering
The earliest work on Robust CF was a modified k–NN al-

gorithm with heuristics for neighbor selection [15] where the
concept of profile utility was introduced. Association rules
have also been used to add robustness to CF at the cost of
decreased accuracy and coverage [16], though at the cost of
decreasd accuracy, and much lower coverage. Recent work
[12] has investigated the effectiveness of robust statistics in
protecting against shilling attacks with an algorithm called
Robust Matrix Factorization (RMF). This approach simi-
lar in spirit to SVD but is more stable to noisy data. The
uniqueness in this algorithm is the usage of M-estimators,
which bounds the effect of outliers and noisy data. Experi-
mental results have shown that application of Robust statis-
tics adds significant stability (10-30% lower prediction shift);
however the algorithm is not completely immune in the face
of attacks.

Still, RMF adds significant stability as compared to other
CF methods like PLSA and k-NN. The major positive out-
come of this work is that RMF outperforms all other algo-
rithms based on latent semantics (PLSA, SVD) in prediction
accuracy.

Clearly, RMF is only a partial success; however it allows
us to understand that attack profiles are quite homogeneous.
Detecting such profiles is clearly possible (see [11]), since
they exhibit characteristic properties; notably, the similari-
ties between attack profiles are much higher than with nor-
mal users, due to the way these profiles are constructed.
Ideally, the detection phase should be built into the recom-
mendation algorithm; detected attack profiles can then be
removed and the recommendation phase can begin. How-
ever, there are two major problems: firstly, the detection
phase is expensive and may need to be repeated periodi-

cally, resulting in high computational costs. Secondly, the
accuracy of detection methods is not 100%, thus removing
false positives will adversly affect the user experiance.

In the next section we explore SVD in detail since the
algorithm describe in this work depends heavily on SVD
based methods.

3. ATTACK RESISTANT CF USING SVD
Our strategy for robust collaboratve filtering is to exploit

previously developed detection strategies in a computation-
aly SVD stands for Singular Value Decomposition; it is a
method of factorizing a matrix into two orthonormal ma-
trices and a diagonal matrix. SVD has become an impor-
tant linear algebra procedure over the last 2 decades due to
its extensive application in Information Retrieval and Data
mining. It has been used for Latent Semantic Analysis [4]
and Collaborative Filtering [18] with much success. Since
SVD is fundamental to the algorithm in this paper, we ex-
plore SVD in detail. Notably, we explain a recent iterative
algorithm for SVD using Generalized Hebbian Learning [6].
Further, we briefly explain the Robust Matrix Factorization
algorithm described in [12] which is also based on SVD and
is robust variant of SVD. Finally, we explain our proposed
VarSelect SVD variant asa robust CF solution.

3.1 Singular Value Decomposition (SVD)
SVD is a more general form of Eigen value decomposition

(EVD) 3 since it is applicable to rectangular matrices as well.
SVD factorizes a rectangular n×m matrix D as follows

D = UΣV
T

, (1)

where U,V are unitary normal matrices and Σ is a diagonal
matrix of size rank(D) ≤ min(m, n), where rank(D) is the
rank of the matrix D. Moreover, the entries on the diagonal
of Σ are in non-increasing order such that σi ≥ σj for all
i < j. Note that we may chose to set all singular values
σi = 0, i > k for some k ≤ rank(D) (say k = 10), leading to
an low rank approximation Dk of the matrix D.

Dk = UkΣkV
T

k , (2)

where U, Σ, V are now n× k, k× k and m× k dimensional
matrices, respectively. It can be shown that Dk is the min-

imizer of ‖D− D̂‖2 for all matrices D̂ of rank less or equal
to k.

SVD for Collaborative Filtering: Applications of
SVD to Collaborative Filtering assume the representation
of user-item ratings by such a n ×m matrix D. Here each
of the n users corresponds a row in the matrix, whereas the
m items are represented as columns, with Dij representing
the vote of user i on item j. The application of SVD to D

leads to a low rank estimate D̂, which generalizes the ob-

served data, since it may result in non-zero values D̂il, even
for user-item pairs (i, l) that are unrated (often set to zero
in D, i.e. Dil = 0).

Typically, user–item matrices are very sparse (≤ 5% non-
zero entries).Initial applications of SVD to CF (c.f. [18])
compensated for sparsity by replacing the missing values by
overall mean. This approach, though more successful than
previous CF approaches, is highly biased towards the used
means. In addition, lack pf sparsity meant a larger compu-
tational problem to solve. In the last decade, there has been

3EVD decomposes a square matrix A as A = UΛUT where
U is an Unitary normal Matrix and Λ is a diagonal matrix
containing eigenvalues of A

significant research on SVD for large and sparse matrices e.g.
PROPACK 4 and SVDPACK 5. However, these approaches
do not treat missing values in a principled fashion, either
treating them as zeros, or doign mean imputation. [21]
discusses the use of the Expectation Maximization [5] pro-
cedure to approximate SVD optimally in the log-likelihood
sense. However, their approach requires a SVD to be per-
formed at each EM iteration, which is computationally very
expensive and not practical for large matrices with millions
of rows and columns.

A recent algorithm by Gorrell [6] proposed a new approach
to computing SVD for virtually unbounded matrices. This
method is based on the Generalized Hebbian Algorithm [17]
and calculates SVD by iterating through only observed val-
ues. The method has been found to be highly accurate for
CF and scales easily to the NetFlix dataset with 100 million
votes. Below we describe this approach in detail.

3.2 SVD using Hebbian learning
Gorrell [6] extends an existing method for eigen decompo-

sition to non-symmetric matrices of arbitrary sizes. In her
approach (referred to now onwards as SVD-GHA), multiple
eigen-values/vectors can be computed with this simple ob-
servation: the second eigen-value/vector of a matrix can be
calculated by removing the projection of the previous eigen-
pair. This means that if u1 and v1 are the first singular
vectors corresponding to the largest eigenvalue σ1, then a
matrix Drem can be defined as follows

Drem = D− u1σ1v
T

1 , (3)

The first eigen-value of Drem is exactly the second eigen-
value of D. This observation can be generalized to compute
the first k eigenvectors/eigenvalues of a large sparse matrix.
This method had been referred to as Hotelling’s Deflation
Method [7].

Mathematically the Hebbian learning rule can be ex-
pressed as follows: suppose u and v are the first eigenvectors
being trained for Matrix D, and Dij = x. Further, suppose
the eigenvalue σ is absorbed into the singular vectors u and
v to yield û and v̂. The estimate for x would then be

xest = ûi · v̂j . with error r(x) = x− xest (4)

The total error is a sum of residuals r(x)

E =
X

x=Dij

r(x)2 (5)

The above error can be minimized by Gradient Descent,
following the derivative of the estimate at every observed
matrix entry:

△ûi = λ · v̂j · r(x) , △ v̂j = λ · ûi · r(x) , (6)

where λ is the learning rate. It can be shown that with
the suitable choice of decaying learning rates, the repeated
iteration of the above equations converges to the required
eigenvectors if the matrix is complete6. After the first pair of
singular vectors has been learnt, their projection can be re-
moved (x← x−u1·v1) and the next pair can be learnt. Webb
[19] modified this basic algorithm by introducing weight de-
cay regularization and range clipping. Several contestants
of the NetFlix Prize use modified versions of the above al-
gorithm.
4http://soi.stanford.edu/ rmunk/PROPACK/
5http://www.netlib.org/svdpack/
6For matrices with missing values, the above minimization
converges to a local minimum.

3.3 Robust Matrix Factorization
Robust regression problems have been studied in a linear

setting where observables Y and inputs X are known and Y
is assumed to be noisy. Robust Matrix Factorization (RMF)
is algorithm which performs a robust SVD for CF using an
Alternating fitting scheme [12]. The core idea is the use
of bounded cost functions, which limit the effect of outliers.
There is an entire body of work on the kind of bounded
functions which are effective against noise; these functions
are called Maximum Likelihood estimators or M-estimators.
Mehta et al. chose the Huber M-estimator which is defined
as follows:

w(r) =

(

r ≤ γ 1 ,

r > γ γ

|r|

(7)

Armed with a robust estimator, we would like the perform
the following Matrix factorization: assume we want to find
the rank–1 factors G,H as for data D. such that

argmin
G,H

X

Dij 6=0

ρ(Dij−Gi ·Hj) , s.t. ρ(r) =

(

|r| ≤ γ 1

2γ
r2 ,

|r| > γ |r| − γ

2

We solve the above optimization using Iteratively Re-
weighted Least Squares (see [12] for details). First H is
minimized with a fixed G; then H is fixed and G is mini-
mized. This repeated till both factors converge. Given the
rank–1 estimates G,H, higher rank estimates can be easily
computed in a similar manner to SVD-GHA.

Experiments show that Robust Matrix factorization algo-
rithm also performs well in the face of moderate attacks.
Clearly, the effect of shilling is low at small attack sizes, as
the majority opinion is given more importance. However,
once the number of votes by shillers are more than actual
users, RMF starts treating the shillers’ view as the majority
opinion. Mehta et al. also show that RMF is more tolerant
to shilling and model deviations than SVD and pLSA: the
prediction accuracy of RMF is higher than any other method
; this trend continues even in the face of attacks.However for
larger attacks, RMF is clearly inadequate at a robust CF al-
gorithm. In the next section, we show how the RMF and
SVD frameworks can be further robustified to yield our de-
sired robust CF algorithm.

3.4 VarSelect SVD for Collaborative Filtering
VarSelect [11] is a variable selection algorithm based on

PCA for detecting attack profiles. Shilling profiles tend to
be highly correlated, which is a result of the colluded nature
of shilling attacks. It is known that for multivariate data,
highly correlated variables add very little information, and
thus are eliminated by dimensionality reduction methods.
VarSelect uses Principal Component Analysis to find which
users add least information, and produces a ranking of users
in order of utility. Experiments have shown that shillers are
found with high precision at the top of these rankings.

VarSelect SVD
We first describe the broad framework for our proposed al-
gorithm. SVD and PCA are closely related since PCA can
be achieved via SVD. In essence, PCA seeks to reduce the
dimensionality of the data by finding a few orthogonal linear
combinations (called the Principal Components) of the orig-
inal variables with the largest variance. A principal compo-
nent is a linear combination of the variables and there are as
many PCs as the number of the original variables. The first
principal component s1 = wT

1 x, where the p-dimensional

coefficient vector w1 = (w1, ..., wp) solves

w1 = argmax
|w|=1

V ar
“

w
T
x

”

, (8)

Principally, PCA is equivalent to performing an eigen de-
composition of the covariance matrix of the original data.
Since we want to combine VarSelect with Collaborative Fil-
tering, SVD provides the required framework. The frame-
work we devise would support two phases: detection (fol-
lowed by removal of profiles/votes), and recommendation
model building. For efficiency, it is required that these
two phases can share computational steps. Since the de-
tection may not be perfect, no user profiles should be com-
pletely deleted and even suspected attackers should be able
to receive recommendations. Further, the entire procedure
should be unsupervised, i.e. no further input should be re-
quired after the detection phase has been performed (e.g.
thresholding how many shillers are there in the system).

An important observation we make here is that Principal
components can be computed directly from the data matrix.
We also observe that for Xn×m, the first n eigenvalues are
identical for XTX and XXT.7

C = X
T
X = UΣV

T
VΣU

T = UΣ
2
U

T (9)

As previously established, the Principal components of X
are given by S = UT X. Thus, calculating the covariance is
unnecessary; we can compute the SVD of X to get the load-
ing matrix U. This saves a significant computation effort
as Eigen-decomposition of large covariance matrices is very
expensive. Note that PCA requires X to be zero-mean.

Notice also, that the VarSelect procedure does not re-
quire all eigenvector-eigenvalue pairs to be computed. Our
experiments have also shown that the first 3–5 Principal
components suffice to detect attack profiles reliably. Thus
a complete SVD is not required: instead, partial eigen-
decomposition can be performed. Such routines are avail-
able as svds and eigs in MATLAB and Octave, using the
Arnoldi method8. Shillers can be easily detected (using the
VarSelect procedure) by applying svds on z-scores of the user
data matrix.

Dealing with Suspect Attack profiles
As noted earlier, Varselect gives a ranked list of user scores,
with the lowest scores corresponding to attack profiles with
high probability. In previous work, the authors have artifi-
cially inserted r attack profiles, and have tested for exactly
top-r users in the ranked list of PCA scores. In general, r
maynot be known in advance, and thus our Robust CF algo-
rithm needs to detect such parameters. We propose below
several heuristics to detect r.

Finding suspected Attack profiles: PCA can find a set of
variables which are highly correlated, a fact exploited in the
design of Varselect. Varselect essentially performs Variable
Selection using a selection criteria called NLC. There are
several other selection procedures discussed in Literature
([1] provides a good overview of these criteria). Table 1
briefly describe various criteria. While several other criteria
have been proposed as well, they require a complete eigen-
decomposition, and/or conditional correlation matrices. As

7Though we don’t use this property here, we note that this
can be used to chose which matrix to use for computing
eigenvalues, especially is one is much smaller.
8The FORTRAN package ARPACK is available as free soft-
ware at www.caam.rice.edu/software/ARPACK/

Algorithm 1 VarSelectSVD (D)

1: D← z-scores(D) {D has N users and M items}
2: UλVT= SVD(D,3) {Get 3 principal components UT }
3: PCA1 ← U(:, 1),PCA2 ← U(:, 2),PCA3 ← U(:, 3)
{First 3 PC loadings }

4: for all columnid user in D do
5: Score(user) ← (|PCA1(user)| + |PCA2(user)| +

|PCA3(user)|)/3 {using LC ranking scheme}
6: end for
7: Normalize and Sort Score {Score now sum to 1.}

8: r1 ← number of users with Score below 1

N

9: r2 ← N/5 {Cutoff set to 20%.}
10: r ← min(r1, r2)
11: Flag top r users with smallest Score values
12: for Factor fk with k ← 1 to d do
13: D = D−Gk−1 ·H

T

k−1

14: repeat

15: resij = Dij − Ĝi · Ĥj {set κ = 0.01}

16: △Ĝi = λ(Ĥj · resij − κ · Ĝi)
17: if u is not flagged or 1 < Dij < 5 then

18: △Ĥj = λ(Ĝi · resij − κ · Ĥj)
19: end if
20: until Convergence of Ĝi, Ĥj for all i, j
21: end for

Output: Return Matrix factors G,H

an example, consider B2 (see Table 1): this strategy in-
volves doing a thin SVD, however for selecting k variables,
a k-dimension SVD has to be performed. If we want to elim-
inate 500 variables, the computation effort involved is very
high. In contrast, strategies LC, SLC and QLC require
only the first 3–5 eigenvectors. Given that our data is not
suitable for complete decomposition, we omit other variable
selection methods.

Each of the strategies described in Tab. 1 gives a ranked
list as output; however a suitable cutoff point still has to
be selected. Table ?? shows the recall of various variable
selection strategies. we note that the simplest strategy LC
performs the best. The numbers reported use 3 dimensions;
we find no further improvement by using more dimensions.
We choose the following heuristic: normalize the scores so
that the sum to 1, and then choose all user with scores below
1

n
for n users. We observe also that 50% recall is the lowest;

thus we hypothesize that for attacks of upto 10%, flagging
top-20% should suffice. We limit selected users to be less
than 20%. These selected users are known as flagged users.

Table 1: Criteria for Variable Selection based on PCA
Description

LC Select q variable with the lowest average of abso-
lute values of Loading. (1-5 dimensions sufficient)

SLC Squared loading combination, choosing lowest av-
erage of squared loading (1-5 dimensions suffi-
cient)

QLC Exponentiated (to power 4) loading combination,
choosing lowest average of exponentiated loading
(1-5 dimensions sufficient)

B2 Associate each principal component with a vari-
able based on the maximum absolute loading, and
select q variables for the last q dimensions (q di-
mensions required)

Table 2: Detection Accuracy for various Variable Se-

lection strategies on the large MovieLens Dataset (6040

users) for random attacks. We report the number of cor-

rectly identified shillers in the top 10% of the ranked list

generated by each criteria.

Attack size Filler(%)
Variable selection Strategy

NLC SLC QLC

1 60 60 60
3 59 58 58

60 5 57 56 55
7 54 49 48
10 48 42 40
15 40 36 35
1 190 187 190
3 187 184 180

190 5 174 168 163
7 165 155 148
10 147 138 130
15 118 42 95
1 449 445 443
3 413 381 363

450 5 355 339 330
7 317 307 294
10 267 237 226
15 243 219 208
1 563 559 549
3 480 471 421

600 5 466 425 412
7 398 372 364
10 343 328 317
15 294 280 272

Computing Recommendations
The recommendation model is finally based on SVD as well.
In essense, we perform SVD on the data matrix treating
flagged users in a special manner. To simplify the predic-
tion model, we absorb the eigenvalues into the left and right
factors, as in the GHA based SVD method. As in Sec. 3.2,
the data matrix is factorized into a left matrix G and a right
matrix H, such that the Frobenius norm of the error is min-
imized. Under this error function, the factorization reduces
to:

argmin
G,H

||D−GH||F , (10)

In the context of Collaborative Filtering, note that the left
matrix G is user specific, i.e. each user has a corresponding
row encoding their hidden preferences. Similarly, the right
matrix H contains a column for each item. The solution to
the above optimization requires iterating through all user
votes and performing Hebbian updates via Eq. (6). Every
vote influences both G and H.

Our modification in presence of flagged users is to only
update the left vectors and not the right vectors. In other
words, the contributions of suspicious users towards the pre-
diction model is zero, while the model can still predict the
votes for flagged users. For normal users, we update both
left and right vectors as with SVD-GHA. This elegant solu-
tion comes with a very small computational cost of checking
if a given user is flagged as suspicious. Note also that the
model can be initialized with values learnt from the partial
SVD performed for PCA. We note that this results in faster
convergence for the already computed dimensions. Addi-
tionally, we use a regularization parameter κ (set to 0.01);
this step has been found to provide better model fitting and
faster convergence. Algorithm 1 describes all steps of our
algorithm.

One issue with the above algorithm is that coverage is low
for high number of suspected users r. It is possible that some
items are voted on mostly by flagged users, hence enough

information may not be known even interested users may
not be recommended that To improve coverage, we ignore
only the extreme votes of the flagged users (i.e. maximum
vote 5/5 and minimum 1/5); middle votes can be still used
to train the right vectors. This removal significantly weakens
potential bandwagon attacks as well as average attacks.

4. EXPERIMENTAL RESULTS
As outlined in Algorithm 1, we have implemented an SVD

procedure based on Hebbian Learning. We chose the larger
MovieLens dataset with 6040 users and 3942 movies. As in
previous sections, we add artificial shilling profiles generated
using the Average attack model. We then apply SVD using
Hebbian Learning as the baseline Collaborative Filtering al-
gorithm. 20% of the dataset has been randomly taken out
and the used as a test set.

Our experimentation strategy involves adding attack pro-
files generated by well established and standard models, and
then applying various CF algorithms on this data. Three
metrics are crucial to testing robustness of a CF algorithm:
these are prediction shift, hit ratio, and Mean Average error.

Metrics
Prediction Shift measures the change in prediction of the
attacked item (before and after attack) of a CF algorithm.
This metric is also sensitive to the strength of an attack,
with stronger attacks causing larger prediction shift.

P =
1

N

X

u

|v̀ui,y − vui,y| =
1

N

X

u

Pu , N = # users (11)

Hit Ratio measures the effect of attack profiles on top-k
recommendations. Since the end effect of a recommender
system is a list of items recommended to a particular user,
this metric captures the fraction of users affected by shilling
attacks. Let Hu,i = 1 if an item i is a top-k recommendation
to user u, and Hu,i = 0 otherwise. Hit ratio is a fraction
between 0–100% and is defined as follows:

H =
100

N
×

X

u

∆Hu,i , N = # users (12)

Finally, Mean Average Error is the overall prediction er-
ror on missing values. We measure MAE over the test set,
which contains 20% of all votes in the dataset. MAE is
commonly used to compare the predictive accuracy of CF
algorithms; here, we are interested in finding out the effect
of flagging users. Clearly if too many users are flagged, the
prediction model is trained with lesser data. A comparison
of prediction accuracy of our proposed algorithm with the
CF on original data (without attack profiles) provides us a
measure of accuracy sacrificed for gain in robustness.

Experimental Strategy
We vary the attack and filler size of the inserted profiles
and measure the Mean average error over the existing votes
in the test set. We do not use Prediction shift in order to
make different algorithms comparable; prediction shifts for
more effective algorithms can give artificially good results as
compared to less accurate CF approaches. We also compare
our results with CF run on the original dataset without any
inserted spam.9

9An underlying assumption is that the MovieLens dataset
itself has no shilling profiles. This assumption is unverified.

Table 3: Effect of random Shilling attacks on various

CF approaches

Attack

size

Filler

size

SVD-GHA RMF PCARobustCF

Hit Ratio Pred Shift Hit Ratio Pred Shift Hit Ratio Pred Shift

1%

1% 4.90 1.23 2.15 0.96 0.00 0.26
3% 5.32 1.22 2.21 0.97 0.00 0.25
5% 5.90 1.23 2.59 0.96 0.00 0.25
7% 6.57 1.23 2.30 0.95 0.00 0.25
10% 6.49 1.19 2.08 0.92 0.01 0.33

3%

1% 9.42 1.63 14.34 1.71 0.00 0.25
3% 12.63 1.69 12.18 1.69 0.00 0.26
5% 12.71 1.65 11.32 1.61 0.00 0.29
7% 13.30 1.62 10.91 1.56 0.01 0.35
10% 12.18 1.55 10.10 1.51 0.24 0.40

7%

1% 22.74 2.07 25.43 2.20 0.00 0.24
3% 24.07 2.04 23.34 2.10 0.00 0.28
5% 21.77 1.95 21.17 1.98 0.05 0.31
7% 19.86 1.85 21.06 1.92 2.46 0.60
10% 17.28 1.73 20.04 1.53 4.69 0.78

10%

1% 30.54 2.21 30.53 2.29 0.00 0.24
3% 30.92 2.16 27.72 2.20 0.10 0.35
5% 26.22 2.04 25.93 2.10 2.74 0.66
7% 22.70 1.93 25.28 2.03 5.09 0.84
10% 19.50 1.78 21.60 1.89 7.86 0.99

Discussion
The impact of shilling attacks: Tables 3 and 4 shows the de-
sired results; the proposed Robust CF algorithm performs
significantly better than all approaches in all conditions.
Our experiments show that VarSelect SVD adds significant
robustness over SVD and RMF. For smaller random attacks,
VarSelect SVD is virtually unaffected by the presence of at-
tack profiles. Note that the hit ratio is close to perfect (0%)
for such attacks, and the prediction shift is less than one-
fourth that of SVD and a third that of RMF. Till addition
of 450 attackers, VarSelect SVD is almost perfect, suffering
only when higher filler rates are used. For huge attack vol-
umes numbering 10% of the entire user propulation, there
is noticible impact. However, this impact is still far less of
SVD or RMF. Note that our baseline methods are already
significantly better than k-NN and PLSA; thus the improve-
ment due to VarSelect is very significant.

The picture is a little worse for average attacks. Average
attacks are stronger than other forms of attack and are also
dangerous in small amounts, We note that for large attacks,
the impact is higher than for random attacks; prediction
shifts increase as the strength of the attack increases. The
reason for this is that VarSelect is less accurate for detecting
Average attacks; thus shillers who are not flagged continue
to have an impact. This is akin to a setup where is no
detection and a small number of shillers are present.

We also notice that hit ratios are lower for all attack sizes
than SVD & RMF; occasionally however, we notice a nega-
tive hit ratio. This indicates some users (say set mathcalUs)
who might have been normally recommended the attacked
item, may not be recommended that item any more. On de-
tailed examination we observe that this is a result of users
in Us being flagged. Thus recommendations for some users
may change with VarSelect SVD due to flagging. We finally
note that bandwagon attakcs have simialr results as random
attacks, with slightly higher prediction shift; we omit the
results due to lack of space.

Table 4: Effect of Average Shilling attacks on various

CF approaches

Attack

size

Filler

size

SVD-GHA RMF PCARobustCF

Hit Ratio Pred Shift Hit Ratio Pred Shift Hit Ratio Pred Shift

1%

1% 8.14 1.25 10.78 1.24 -0.02 0.38
3% 10.11 1.28 9.09 1.25 -0.14 0.40
5% 9.93 1.24 7.30 1.22 -0.11 0.40
7% 10.67 1.24 7.79 1.22 0.14 0.42
10% 11.10 1.24 6.29 1.19 0.82 0.74

3%

1% 17.16 1.59 18.92 1.61 -0.14 0.41
3% 19.51 1.61 15.20 1.56 -0.13 0.41
5% 19.93 1.58 14.87 1.54 0.11 0.43
7% 19.12 1.55 13.04 1.27 1.74 0.57
10% 19.50 1.52 13.98 1.49 13.44 1.01

7%

1% 31.24 1.86 24.16 1.85 -0.09 0.40
3% 32.86 1.85 21.31 1.79 -0.02 0.44
5% 31.66 1.80 21.60 1.73 6.43 0.75
7% 30.64 1.78 20.78 1.71 16.25 1.12
10% 31.76 1.76 21.76 1.68 24.32 1.38

10%

1% 39.57 1.96 29.44 1.96 0.08 0.39
3% 39.98 1.94 23.71 1.89 0.82 0.37
5% 38.27 1.90 25.49 1.84 14.11 1.08
7% 38.20 1.87 24.88 1.79 23.53 1.35
10% 36.86 1.77 24.39 1.70 31.44 1.48

Predictive performance: We also investigated the predic-
tive performance of various CF algorithms on a held out test
set, when shilling attacks are added. Table 6 shows the ef-
fect on VarSelect SVD in comparison to other algorithms.
We note that all SVD based algorithms in the test perform
well and significantly better than k-NN. Also, there is very
small departure from the baseline (SVD without attackers);
RMF infact outperforms SVD, a result which has also been
noted in [12]. VarSelect performs slightly better than SVD,
but is less accurate in prediction than RMF. Note however,
that all results are in a band of ±1.5% which is not very
significant statistically. The important conlcusion is that
VarSelect SVD provides additional robust at no additional
cost of predictive accuracy.

The impact of parameter r: We are also interested in find-
ing how stable the VarSelect algorithm is to the selection of
the number of flagged users r. We fix r to values between
5–90% and run the VarSelect algorithm over a dataset where
350 attackers have been added following an Average Attack
model. One caveat though: to improve coverage of predic-
tion, we ignore only extreme vote for the flagged users, thus
losing only limited data and not complete data; this is also
necessary for numerical stability. We know from previous
experiments that a 5% attack is a rather large attack, how-
ever we expect the model to be more stable at higher fraction
of untrusted users. Fig. 1 & 2 provide experimental proof of
this hypothesis. As the nubmer of flagged users is increased,
we observe a decreasing hit ratio, with zero additional users
being recommended the attacked item. Similarly, the predic-
tion shift also decreases quickly at first, and then stabilizes
to a minimum. At higher values of r, we observe a slight in-
crease in prediction shift, this is possibly due to a converge
of predicted values towards the user mean, which is what
the SVD model predicts in the absense of much data about
an item.

Dependence on Dataset: One additional characteristic of
the algorithm we explore is data dependence. It is well
known that different datasets show different characteris-

tics. Specifically, the small Movielens and large Movielens
datasets have different number of users (944 vs 6040), spar-
sity (6% vs 4%) and average votes per user. Since Mehta et
al. report much higher detection rates for average attacks
with the smaller ML dataset, we verify if there is indeed
such a large difference. Our results (Tab. 5) show that in-
deed VarSelect works much better on the smaller dataset,
and has worse results with more data. This shows that the
success of VarSelect is dependant on the characteristics of
the dataset; the ranking mechanisms used for Variable Se-
lection may have to be modified based on data. This is a
direction for future work.

Table 5: Effect of random Shilling attacks on the smaller

MovieLens dataset.
Attack

size

Filler

size

SVD-GHA RMF PCARobustCF

Hit Ratio Pred Shift Hit Ratio Pred Shift Hit Ratio Pred Shift

5%
7% 18.01 1.46 19.07 1.62 0.00 0.35
10% 20.41 1.50 17.94 1.61 0.00 0.37
15% 23.66 1.55 19.17 1.61 0.00 0.38

10%
7% 29.52 1.69 27.47 1.78 0.00 0.37
10% 30.72 1.73 25.78 1.75 0.00 0.34
15% 34.11 1.77 24.54 1.77 0.00 0.36

15%
7% 35.45 1.83 30.01 1.86 0.00 0.30
10% 39.83 1.88 30.19 1.86 0.00 0.33
15% 41.84 1.88 29.55 1.85 0.04 0.32

The impact of pure noise: Often, a lot of spam is purely
junk, with no specific pattern, but random insertion of data.
This phenomenon has been observed both with email spam
and web spam. We investigated the effect of random noise on
the predictive accuracy of SVD, RMF and Varselect. Such
attack profiles have a subset of filler items filled with a uni-
form random generator between 1 and 5. We observe that
the predictive accuracy of both RMF and VarSelect SVD
is higher than SVD-GHA; SVD-GHA suffers from a 2% in-
crease in MAE on a hidden test set as compared to SVD
without any noise. The impact on RMF and Varselect is
less than 0.5%, or too little for statistical significance. No-
tably, attack based on uniform random generators have very
low prediction shift and hit ratio.

5. CONCLUSIONS
In this paper, we describe a robust and accurate algorithm

for Collaborative filtering which is very stable in the face of
shilling attacks. This algorithm combines the detective ac-

Table 6: Overall MAE on a test set for various CF ap-

proaches after attack profiles (Average Model) have been

inserted.
Attack
Size

Filler
Size

SVD
without
attack

SVD RMF SVD
with
VarSelect

Pearson
based
k-NN

2% 0.6755 0.6760 0.6691 0.6762 0.8095
3% 5% 0.6755 0.6763 0.6694 0.6768 0.8115

10% 0.6755 0.6776 0.6699 0.6763 0.8135
2% 0.6755 0.6761 0.6689 0.6764 0.8077

5% 5% 0.6755 0.6767 0.6699 0.6761 0.8087
10% 0.6755 0.6783 0.6703 0.6769 0.8093
2% 0.6755 0.6766 0.6719 0.6768 0.8062

10% 5% 0.6755 0.6774 0.6723 0.6783 0.8062
10% 0.6755 0.6785 0.6769 0.6778 0.8073

0.2 0.4 0.6 0.8

Cutoff Parameter 'r'

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr
o
r

MAE

PredShift

0.2 0.4 0.6 0.8

0
2
4
6
8
10
12
14
16
18

H
it
 R
a
ti
o
 (
%
) Hit Ratio

Figure 1: MAE, Pred Shift and Hit ratio for 5%

Average Attacks (7% filler) with various values of r.

0.2 0.4 0.6 0.8

Cutoff Parameter 'r'

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr
o
r

MAE

PredShift

0.2 0.4 0.6 0.8

0

5

10

15

20

H
it
 R
a
ti
o
 (
%
) Hit Ratio

Figure 2: MAE, Pred Shift and Hit ratio for 5%

Average Attacks (10% filler) with various values of r.

curacy of previously established detection models based on
SVD, and is also extremely accurate. A variety of experi-
ments show that attacks of different strength are rendered
much weaker by VarSelect SVD. In addition, the algorithm
is highly scalable due to its computational efficiency and use
of sparsity.

Directions of future work include improved ranking mech-
anisms for eliminating users. We also believe that the di-
mension of time brings important information and has not
been exploited in this algorithm; shillings attacks are con-
centrated in a short period of time as opposed to real users.
We also need to devise more accurate ways of detecting the
cutoff parameter to save flagged users from any potential
impact. Finally, we would like to explore more about the
properties of this algorithm e.g. prediction shifts on items
related to the attacked item.

6. REFERENCES
[1] N. M. Al-Kandari and I. T. Jolliffe. Variable selection and

interpretation in correlation principal components.
Environmetrics, 16(6):659–672, 2005.

[2] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik.
Classification features for attack detection in collaborative
recommender systems. pages 542–547. ACM Press New York,
NY, USA, 2006.

[3] P.-A. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling
attacks in online recommender systems. In WIDM ’05: 7th
annual ACM international workshop, New York, USA, 2005.
ACM Press.

[4] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of
the American Society for Information Science, 41(6):391–407,
1990.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the
Royal Statistical Society, 39(1):1–38, 1977.

[6] G. Gorrell. Generalized hebbian algorithm for incremental
singular value decomposition in natural language processing. In
EACL, 2006.

[7] H. Hotelling. Analysis of a Complex of Statistical Variables
Into Principal Components. 1933.

[8] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl. GroupLens: Applying Collaborative
Filtering to Usenet News. Communications of the ACM,
40(3):77–87, 1997.

[9] S. K. Lam and J. Riedl. Shilling recommender systems for fun
and profit. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages 393–402,
New York, NY, USA, 2004. ACM Press.

[10] B. Mehta. Unsupervised shilling detection for collaborative
filtering. In AAAI, pages 1402–1407, 2007.

[11] B. Mehta, T. Hofmann, and P. Fankhauser. Lies and
propaganda: detecting spam users in collaborative filtering. In
IUI ’07: Proceedings of the 12th international conference on
Intelligent user interfaces, pages 14–21, New York, NY, USA,
2007. ACM Press.

[12] B. Mehta, T. Hofmann, and W. Nejdl. Robust Collaborative
Filtering. In In Proceedings of the 1st ACM Conference on
Recommender Systems. ACM Press, October 2007.

[13] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre.
Collaborative recommendation: A robustness analysis. ACM
Trans. Inter. Tech., 4(4):344–377, 2004.

[14] M. P. O’Mahony, N. J. Hurley, and Silvestre. Detecting noise
in recommender system databases. In Proceedings of the
International Conference on Intelligent User Interfaces
(IUI’06), 29th–1st, pages 109–115, Sydney, Australia, Jan
2006. ACM Press.

[15] M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre.
Efficient and secure collaborative filtering through intelligent
neighbour selection. In Proceedings of the 16th European
Conference on Artificial Intelligence, 22nd–27th, pages
383–387, Valencia, Spain, Aug 2004. IOS Press.

[16] J. Sandvig, B. Mobasher, and R. Burke. Robustness of
collaborative recommendation based on association rule
mining. Proceedings of the 2007 ACM conference on
Recommender systems, pages 105–112, 2007.

[17] T. D. Sanger. Optimal unsupervised learning in a single-layer
linear feedforward neural network. Neural Networks,
2(6):459–473, 1989.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application
of dimensionality reduction in recommender systems–a case
study, 2000.

[19] B. Webb. Netflix update: Try this at home.
http://sifter.org/~simon/journal/20061211.html, 2006.

[20] C. Williams, B. Mobasher, R. Burke, J. Sandvig, and
R. Bhaumik. Detection of Obfuscated Attacks in Collaborative
Recommender Systems. In Workshop on Recommender
Systems, ECAI, 2006.

[21] S. Zhang, Y. Ouyang, J. Ford, and F. Makedon. Analysis of a
low-dimensional linear model under recommendation attacks.
In SIGIR, pages 517–524, 2006.

