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ABSTRACT 
Most classification algorithms are best at categorizing the Web 
documents into a few categories, such as the top two levels in the 
Open Directory Project. Such a classification method does not give 
very detailed topic-related class information for the user because the 
first two levels are often too coarse. However, classification on a 
large-scale hierarchy is known to be intractable for many target 
categories with cross-link relationships among them. In this paper, 
we propose a novel deep-classification approach to categorize Web 
documents into categories in a large-scale taxonomy. The approach 
consists of two stages: a search stage and a classification stage. In 
the first stage, a category-search algorithm is used to acquire the 
category candidates for a given document. Based on the category 
candidates, we prune the large-scale hierarchy to focus our 
classification effort on a small subset of the original hierarchy. As a 
result, the classification model is trained on the small subset before 
being applied to assign the category for a new document. Since the 
category candidates are sufficiently close to each other in the 
hierarchy, a statistical-language-model based classifier using n-gram 
features is exploited. Furthermore, the structure of the taxonomy can 
be utilized in this stage to improve the performance of classification. 
We demonstrate the performance of our proposed algorithms on the 
Open Directory Project with over 130,000 categories. Experimental 
results show that our proposed approach can reach 51.8% on the 
measure of Mi-F1 at the 5th level, which is 77.7% improvement 
over top-down based SVM classification algorithms.  

Categories and Subject Descriptors 
H.4.m [Information Systems]: Miscellaneous; I.5.4 [Pattern 
Recognition]: Applications | Text processing 

General Terms: Algorithms, Performance, Experimentation. 

Keywords: Deep Classification, Large Scale Hierarchy, 
Hierarchical Classification.  

1. INTRODUCTION 
Text classification is at the heart of Web page classification, which 
can find many applications ranging from Web personalization to 
targeted advertisements [1] on Web pages. In text classification, our 
aim is to categorize a given text document into predefined classes, 
where the main techniques used are machine learning methods such 
as support vector machines (SVM). However, most machine 

learning methods confine themselves to classifying a document into 
two or a few predefined categories.  As such, the power of Web-
page classification is severely limited.  In this paper, we take the 
first step in exploring how to scale up the target categories from a 
few to hundreds of thousands, in hierarchies of classes such as the 
Open Directory Project (ODP) and Yahoo! Directories, thus 
elevating text classification to a new, practical level. 
Three main difficulties exist that prevent traditional approaches to 
classification from being applied.  The first is the sheer size of the 
taxonomy of categories. Our experiments show that as the number 
of classes increases to a moderate level, the predictive accuracy 
dramatically decreases to a level that renders the classifiers unusable. 
The second difficulty caused by the large size of the taxonomy is 
that a very long time for training is required by traditional methods. 
Traditional methods become even intractable for large scale 
hierarchies [12][13].  The third difficulty lies in the fact that in 
practice, categories are usually organized as a hierarchical structure.  
As a result, complex relationships, such as parent-child relations, 
often exist among the target classes. However, categories on a large-
scale hierarchy are assumed to be independent by most of previous 
works. Thus, these methods cannot utilize the structure information. 
Moreover, the failure of this assumption may even mislead these 
methods and decrease their performance. Hence, it is important to 
utilize the structure of taxonomy in order to obtain a satisfactory 
performance. 
Previous methods to solving the hierarchical classification problem 
can be classified according to the strategies used in classification 
[18].  These methods can be generally divided into two types: big-
bang approaches and top-down level based approaches. In big-bang 
approaches, a single classifier is trained on the entire target 
hierarchy. Big bang methods may allow the classification model to 
consider the hierarchical structure of classes. Examples are 
hierarchical SVM [2] and Rocchio-like classifiers [10]. However, it 
is proved in [12][13] that it is infeasible to directly build a classifier 
for a large-scale hierarchy.  
A second approach to solving the problem is the top-down approach, 
which constructs classifiers at each level of the category tree where 
each classifier works as a flat classifier at that level. A document is 
first classified by the classifier at the root level. It is then classified 
by the classifiers trained at the lower-level categories until the 
document reaches a final category [6]. In order to classify a 
document to a category correctly, it must be classified perfectly at 
all the ancestors. As a result, a potential problem for the top-down 
approach is that misclassification at a parent or ancestor category 
may force a document to be excluded from the child categories 
before it could be examined by the classifiers of the child categories. 
Moreover, the classifications over high-level categories may fail 
easily since some of the categories are too general and thus harder to 
discriminate as we show in the experiments. In this case, the 
performance of the top-down approach is significantly impaired. 
This indicates that the approach makes very restrictive assumptions 
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on the hierarchies. Liu et al. [12] evaluated a hierarchical SVM 
classification algorithm on the Yahoo! hierarchy, which contains 
132,199 categories. The results show that the performance of 
classification on hierarchy drops quickly when the level of 
categories increased.  
Generally, text classification on large-scale target hierarchies 
remains an unsolved problem. In this paper, we propose a novel 
method that can overcome those difficulties and consequently 
improve the performance of classification in large text hierarchies. 
In particular, we present a two-stage approach for large-scale 
hierarchical classification; we call our method deep classification.  
• In the first stage, we organize the hierarchy into flat categories, 

where we perform a search process on large-scale hierarchies 
by retrieving the related categories for a given document. We 
rank the categories and take the most related categories as 
category candidates. Thus, a large-scale hierarchy is pruned 
into a much smaller but focused one.  

• In the second stage, we train a classification model on such a 
small subset of original hierarchy and classify the given 
document in that small subset. During this stage, we propose 
several strategies for training classifiers. The structure of the 
original hierarchy is utilized to improve the classification 
performance. 

To evaluate our deep classification approach, we have conducted 
several experiments on the Open Directory Project, which contains 
more than 130,000 categories.  We test the effectiveness of 
proposed deep classification algorithm by comparing to the state-of-
the-art hierarchical classification algorithms. Experimental results 
show that our proposed approach can reach 51.8% on the measure 
of Mi-F1 at 5th level, which is 77.7% improvement over the top-
down based SVM classification algorithm.  
The rest of the paper is organized as follows. In Section 2, we give a 
brief overview of related work. In Section 3, we describe the 
framework of proposed algorithms. In Sections 4 and 5, we focus on 
different strategies at each stage. The evaluation results are shown in 
Section 6. Section 7 concludes with a summary and suggestions for 
future work.  

2. RELATED WORK 
2.1 Traditional Text Classification 
In traditional text classification, many algorithms [17][22] have 
been proposed, such as Support Vector Machine (SVM), k-Nearest 
Neighbor (kNN), Naive Bayes (NB) and so on. Empirical 
evaluations on benchmark datasets such as Reuters 21578 [8] and 
RCV1 [11] have shown that most of these methods are effective in 
traditional text classification applications.  
In Web applications, most of the classification methods, such as 
SVM and NB, utilized the text classification methods for Web 
documents by introducing many novel features related to Web 
document like anchor text, metadata and link structure to optimize 
the performance. As reported in [12], flat classification based on 
SVM generally has worse performance than top-down based SVM 
for the large-scale hierarchical classification. As the first work to 
investigate the performance on large-scale hierarchy, Liu et al. 
conducted a large scale analysis on the entire Yahoo categories and 
reported that the performance of flat SVM is about 30% lower on 
measures of Micro-F1 at the 4th level and deeper. A recall system 
[13] was proposed on performing large scale flat classification in 
which a simple feature based intermediate filtering is used to reduce 
the potential categories for an instance to a small manageable set. 
However, the system did not investigate the rich structure among 

the hierarchical categories. Our experimental results in Section 6.3.4 
show that higher performance will be achieved by considering such 
structure information.   

2.2 Hierarchical Text Classification 
There are generally two approaches adopted by the existing 
hierarchical classification methods [18], namely, big-bang approach 
and top-down approach.  

2.2.1 Big-bang Approach 
As described in [18], for the big-bang approach, only a single 
classifier is used by considering the hierarchical structure of the 
categories. Given a document, the classifier assigns it to one or more 
categories in the category tree. The big-bang approach has been 
designed using SVM [2], Rocchio-like classifier [10], rule-based 
classifier [16] and association rules [19]. Assuming the distribution 
of hierarchical categories follows the power law, Yang et al. [24] 
gave a theoretical analysis of scalability of text classification on flat 
and hierarchical methods. As reported in their work, the time cost of 
big-bang classification is larger than that of top-down hierarchical 
classification. In [2], a modified SVM version is applied on the 
whole hierarchy. In [4], a search based approach is proposed to find 
the top K most similar categories for further search result filtering. 
In [14], McCallum et al. proposed a hierarchical classification 
approach using a shrinkage approach, in which smoothed parameter 
estimation of a data-sparse child node is used with its parent node in 
order to obtain robust parameter estimates. An EM algorithm is used 
to evaluate the interpolating parameters. However, it is very difficult 
to conduct this process on our problem setting due to the large 
number of categories.  
Furthermore, in most previous works, experiments were conducted 
with at most a few thousand categories. The task of building even a 
single classifier for a large-scale hierarchy is known to be 
intractable [12]. In contrast, as we show in this paper, our method is 
scalable in handling large text hierarchies with hundreds of 
thousands of categories. 

2.2.2 Top-down Approach 
Top-down level-based classification has been designed based on 
multiple Bayesian classifiers in [9] and SVM classifiers in [5] and 
[6]. In [5] and [6], Dumais and Chen proposed a classifier on the 
top-two levels of the LookSmart categories with 163 categories in 
total. A top-down based SVM is performed on a very large scale 
hierarchy in [12]. As reported in the work, the performance is about 
40% lower on measures of Micro-F1 at the 5th level and deeper on 
Yahoo! directory. Directly building top-down classifiers cannot 
work well in large scale hierarchy due to the problem of error 
propagation. TAPER [3] is a system for large scale hierarchical 
classification using naive Bayesian and feature selection on different 
level categories. TAPER also performed top-down classification on 
the whole hierarchy.  
In Error! Reference source not found., a search result 
classification system was developed by classifying the search results 
into deep hierarchies by using category candidates retrieved by 
query. However, the work focused on the search results analysis 
through the query, and did not directly solve the document 
classification issue. This paper proposes a new algorithm for 
document classification on deep hierarchies.  

3. DEEP CLASSIFICATION  
In this section, we propose a deep-classification algorithm for large 
scale category hierarchy. Our algorithm works as follows. For a 
given document, the entire categories can be divided into two kinds 
according to their similarity to the document: related categories to 



the document and unrelated categories to the document. For a very 
large scale hierarchy, the number of related categories for a 
document is much less than the number of the unrelated categories. 
Traditional hierarchical classification algorithms only focused on 
building a global classification algorithm to optimize the 
performance for all categories despite the fact that most of the 
categories may not be related to a given document. Our deep 
classification approach can utilize such a property and thus focus on 
the categories related to the document. We first extract a small 
subset of related categories from the large-scale hierarchies. We 
then perform classification on these extracted categories utilizing 
the structure of the original hierarchy.  

 
Figure 1.  Flowchart of Deep Classification 

The algorithm is shown in Figure 1, where we present a two-stage 
algorithm consisting of a search stage and a classification stage. In 
the search stage, we try to find a subset of categories from the large 
scale hierarchy related to given document. As a result, the large 
scale hierarchy is pruned into a small one. Then, in the classification 
stage, we train the classifier on this small hierarchy. It is intuitive 
that the classification performance on a few categories will be better 
than that on a larger set of categories. Moreover, structure 
information of the original hierarchy is applied in this stage to 
enhance the classification results.  
In the search stage, a search based algorithm is used to find the 
category candidates for the given document. We begin with a set of 
categories and a pre-classified training set of pages. One can obtain 
the training set from taxonomies like ODP, Yahoo! or from some 
other resources depending on the desired application. Compared 
with the entire hierarchy, this narrowing-down procedure helps 
reduce the number of target category candidates. The details of this 
part will be discussed in Section 4. 
Next, based on the structure of the pruned hierarchy, a classifier is 
trained and used to categorize the document into categories. In this 
stage, by considering the pruned hierarchical structure, three 
training data selection strategies are proposed in Section 5.1 which 
utilize the hierarchical structure. Then, based on selected training 
data, we perform classification for the given document. Since the 
classification model needs building instantly, it is important for the 
algorithm to be efficient in order to make our method scalable. To 
satisfy this goal, we compare different classifiers and propose a 
light-weighting classifier based on naïve Bayes classifier which is 
described in Section 5.2.  

4. STRATEGIES IN SEARCH STAGE 
In the search stage, we propose two strategies to find the category 
candidates for a given document: document-based search strategy 
and category-based search strategy.   

4.1 Document based Strategy 
Document based strategy compares the relevance between the given 
document and these documents in the training set. The documents in 
a training set and the given document to be classified are both 
represented with normalized term frequency vectors. A comparison 
is done using the cosine similarity measure. Top N most similar 
documents are selected as related documents to the given document. 
These categories are taken as the category candidates.   

4.2 Category based Strategy 
With Category based strategy, we represent the category with the 
Web pages in this category and then perform the similarity 
calculation between the categories and the given document. From 
these pre-classified pages in the categories, we can build a vector of 
term frequencies for each of the categories. The given document is 
also represented with the term frequency vector of the document. 
Then, we compute the cosine similarity between the vector of a 
given document and the categories.  
Based on the search stage, we can acquire the related categories, 
which can be either a leaf node or an internal node of the hierarchy. 
In the next step, we can classify the given document into these 
category candidates.  

5. STRATEGIES IN CLASSIFICATION 
STAGE 
Based on the related category candidates, a large hierarchy is pruned 
into a narrow one. A category is kept if the category or its child 
category is among the candidates. The remaining categories are 
removed from the hierarchy. An example of pruned hierarchy is 
shown in Figure 2. Nine categories are shown with bold font as the 
related categories to the given document, which are acquired based 
on the related categories search stage.  
Then, we perform classification on the pruned hierarchy. Since the 
pruned hierarchy still has the relationship links among the categories, 
we wish to use these relations to enhance the results of classification. 
We apply classification with different strategies in this stage. Below, 
we consider the steps of this stage in detail.  

5.1 Strategies for Training Data Selection 
5.1.1 Flat Strategy 
The flat strategy is a simple strategy for training data selection in 
which we just consider the category candidates as a flat structure 
without considering the category information of their ancestors.  
From the viewpoint of hierarchical classification, this strategy 
places all the category candidates directly at the root, which is 
shown in Figure 3. Then, we directly train the classifier based on the 
Web pages in the candidate categories.   

5.1.2 Pruned Top-down Strategy 
Considering the tree structure of pruned hierarchy, we can use the 
pruned top-down based strategy to train the classifiers. The pruned 
top-down strategy can be taken as specific type of a top-down 
classification method proposed in [6][12] by firstly simplifying the 
large hierarchy into a narrow one. A document is first classified by 
the classifier at the root level. It is then classified by the classifiers 
of the lower-level categories until it reaches a final category.  



5.1.3 Ancestor-assistant Strategy 

 
Figure 2. Pruned Hierarchy 

 
Figure 3. Flat Strategy 
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Figure 4. Ancestor-Assistant Strategy 

The structure of the hierarchy is largely ignored by previous two 
strategies. However, as discussed in Section 1, an ideal strategy for 
training data selection should take this structural information into 
account. Thus, we propose the ancestor-assistant strategy to utilize 
this information. This strategy is guided by the following two 
observations. First, the training data from the category candidate 
itself may be insufficient in size, especially for a deep category. 
Thus, we need to obtain more data elsewhere. Second, although the 
training data from its higher up ancestors may be too general to 
reflect the characteristics of the deep category candidate, we can 
borrow data from the ancestors. We should not do this for ancestors 
that are too high up. Hence, we propose a trade-off between the 
hierarchical strategy and flat strategy by combining the training data 
from the category candidate itself and the training data from its 
ancestors, as long as they do not share the common ancestors of 
other category candidates. By considering the structure of the 
hierarchy, the scarcity of training data on deep categories can be 
alleviated. In addition, we include the training data from a node 
itself to reserve the characteristics of the categories and the training 
data will not be largely affected by the training data from its 
ancestors.  
As shown in Figure 2, since the common ancestor is category 24, 
the training data for category 874 are from those of 834, 875 and 
874 while the training data for category 902 are from those of 854 
and 902. The tree in Figure 4 can clearly clarify this strategy.  
If the node may go up to a higher level, too many training data will 
be involved. As a result, large amounts of training data may cause 
the data to be unbalanced and degrade the performance. In this work, 
we limit the height a node to be two-level-higher than the node itself 
when applying this method.  

5.2 Strategies for Classifier Selection 
For a given document, we need to train a specific classifier. Thus, it 
is preferred to employ a lightweight classifier that does not cost too 
much time for training. This is because a classifier on various 
collections of categories may be required in response to different 
documents. If a classifier such as SVM is employed, the long 
training time might prevent us from delivering the results to the user 
in a timely manner. To this end, we prefer the Naive Bayes 
Classifier (NBC) by considering that probabilistic estimation of NB 
can be acquired off-line. In the experimental part, we also give the 
experimental results from SVM and compare the efficiency and 
effectiveness among them.  

5.2.1 Standard NBC 
Standard NBC estimates the probability that a test example belongs 
to a category by computing the following:  
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where ci is a category, d is the test example, N is the vocabulary size, 
tj is each term in vocabulary, and dj is the corresponding value in d 
for term tj (usually term frequency).   
During the classification stage, the classifier is to assign the 
category to the given document according to:  
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It is clear that the probability )|( icdP for each category ci can be 
acquired off-line. NBC will take less training time than SVM 
algorithm on the pruned hierarchies. Thus, it is a kind of lightweight 
classifier.  

5.2.2 N-Gram Language Models for Classifiers 
In NBC, terms are considered independent of each other given the 
category. However, in our situation, most of candidate categories 
are very close to each other. It is difficult for NBC to distinguish 
them based on the features of independent terms. In our work, we 
propose to use Markov n-gram language model to perform the 
classification on candidate categories by considering the Markov 
dependency between adjacent terms [7][15].  
For a term sequence Tttt L21 , the probability of the sequence is 
written as:  
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An n-gram model approximates this probability by assuming that 
the only terms relevant to predicting )|( 11 −ii tttP L  are the previous 
n-1 terms; that is, it assumes the Markov n-gram independence 
assumptions  

)|()|( 1111 −+−− = iniiii tttPtttP LL  

We make a straightforward maximum likelihood estimate of n-gram 
probabilities from a corpus by the observed frequency. We note that 
different smoothing strategies have been proposed and evaluated in 
[15].  
By using n-gram features to text classification, our prediction is:  
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In this work, we use a 3-gram for our classification based on the 
result reported in [15], which states that 3-grams can often result in 
the best performance for text classification.  

6. EXPERIMENTS 
6.1 Experimental Setup 
6.1.1 Dataset 
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Figure 5. Documents Distribution on Different Level 
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Figure 6. Categories Distribution on Different Level 

To evaluate the performance of our algorithm, experiments are 
conducted using a set of classified Web pages extracted from the 
Open Directory Project (ODP) (http://dmoz.org/).  ODP has about 
4,800,870 Web pages and 712,548 categories, in which each Web 
page is classified by human experts into 17 top level categories 
(Arts, Business and Economy, Computers and Internet, Games, 
Health, Home, Kids and Teens, News, Recreation, Reference, 
Regional, Science, Shopping, Society, Sports, Adult and World). 
Because the Web pages in the regional category are also included in 
other categories and because many Web pages in the category of the 
world are not written in English, these two categories are removed 
in our experiments. Accordingly, 15 categories in all are used in the 
experiments. After downloading from the Web, we obtain about 1.3 
million Web documents in all. The data are divided into a training 
set and a testing set.  
The distribution of these Web pages on 130,000 categories is shown 
in Figure 5. As shown in the figure, about 76.8% of the documents 
belong to the top six level categories and about 68.6% of the 
documents belong to forth-to-sixth-level categories. The distribution 
of 130,000 categories is shown in Figure 6. As shown in the figure, 
about 67.8% of the categories are in the top 6 level categories and 
about 64.1% of categories belong to four-to-six-level category. This 
shows that classifying the Web pages into deep categories is very 
important.  

As we mentioned in Section 1, the number of related categories for 
a given document is small. In this part, we present statistics to show 
the category number for each document. As shown in Table 1, about 
93.46% of the documents belong to one category. Only 6.54% of 
the documents have two or more categories. It is thus reasonable to 
select a small subset of the large scale hierarchy to perform the 
classification in this dataset.  

Table 1. Categories Number Distribution 
Number of Categories Number of Documents Percentage

1 1214977 93.460%
2 74237 5.711%
3 2410 0.185%

>=4 195 0.015%  
Since the whole data set is too large, we take 130, 000 documents 
from 1.3 million documents as the testing data. Furthermore, in 
order to tune the performance of different strategies, 2,000 
additional documents are also randomly selected, which is called 
validation data. The remaining data set is taken as the training data. 
We build the documents indexing and the categories indexing at the 
related categories search stage.  

6.1.2 Evaluation Metrics 
In typical classification experiments, the number of documents is 
usually a magnitude greater than the number of categories. However, 
the number of target categories in our tests exceeds 130,000. 
Conducting experiments with 130K*10 or even more testing 
documents is very time-consuming. To avoid the ‘undefined’ 
problem of Ma-F1 measurements on a number of categories, we use 
the metric Mi-F1 [21] described in [12] to measure the Mi-F1 on 
different level. 
The process of evaluation is as follows. First, we classify a 
document into the whole deep hierarchy. For example, a Web page 
p can be classified into the category 
Top/Computers/Programming/Languages/JavaScript/W3C_DOM. 
Then, we evaluate the performance for each level of the hierarchies 
according to the classified category. That is, when evaluating the 
performance of level one, we will judge whether p belongs to the 
category Top/Computers. When evaluating the performance of level 
2, we will judge whether the Web page p belongs to 
Top/Computers/Programming. Hence, it is different from that 
traditional method that trains the classifier at level 1 or level 2 by 
aggregating the data of children nodes into its parent category and 
only evaluating the performance at that level.  

6.2 Overall Performance  
Three algorithms are compared in this work:  
- Hierarchical SVM: Top-down classification is an efficient 

algorithm. In this work, we employ the hierarchical SVM as a 
representative algorithm for top-down classification.  

- Search based Strategy: As described in our deep classification 
algorithm, we can take the most similar category as the category 
for the given document, which is similar to the nearest neighbor 
approach.  

- Deep Classification: This is our proposed algorithm. As we 
mentioned, there are several strategies for each step. We tune 
these strategies in Section 6.3. Then, we take the strategies which 
achieve highest performance. Top 10 categories are taken as 
category candidates. Category-based search, ancestor-assistant 
strategy and 3-gram language model for classifiers are taken as 
the setting for deep classification.  



Each algorithm is tuned to achieve the highest performance on the 
validation data. The overall performance for three algorithms is 
shown in Figure 7.  
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Figure 7. Performance on Different Level 

As shown in Figure 7, our proposed deep classification algorithm 
can achieve consistent improvement over other algorithms at 
different levels of the hierarchy. As shown in Figure 7, the 
performance of our proposed algorithm can reach 51.8% at level 5 
while the hierarchical SVM only achieve 29.2% at same level. The 
result shows that our algorithm can get about 77.4% improvements 
over the top-down approach at level 5. By using the two-stage 
schema, our algorithm can make accurate classification on a pruned 
hierarchy. Since the hierarchical SVM is conducted through a top-
down method, as we discussed above, the structure of the hierarchy 
is not properly utilized, so the error at higher levels will be 
propagated to deeper level. As a result, the deep-level classification 
cannot achieve good performance. Another reason is that 
hierarchical SVM cannot construct training set that are sufficient in 
size when learning deep categories of the hierarchy. As a result, the 
performance of hierarchical SVM is significantly reduced over the 
deep level categories. 
Furthermore, as shown in the Figure 7, the deep classification 
algorithm also achieves higher performance than the search based 
strategy. The result can prove that it is very necessary to perform the 
classification stage for deep classification algorithm, which can lead 
to more precise results for the deep hierarchy.  

6.3 Strategy Selection 
In this section, we will evaluate different strategies used in each 
stage of proposed deep classification algorithm. Both algorithms are 
tested on 2000 documents in the validation data, which are 
randomly chosen. We tune these strategies one by one and fix the 
other strategies when tuning one strategy.   

6.3.1 Search Strategy 
As proposed in Section 4, there are two strategies in finding the 
category candidates for a new document: document-based strategy 
and category-based strategy. Here we evaluate which strategy can 
produce higher performance. NB classifier is used as the classifier 
for its simplicity.  All top 10 categories are used.  
The experimental results are shown in Figure 8. As shown in Figure 
8, the category-based strategy can produce higher performance than 
the document-based strategy at each level. At level 5, the category-
based strategy can achieve 69.2% improvement over the document-
based strategy on the measure of Mi-F1. We explain this 
observation by the fact that the similarity score between several 
retrieved documents in a category and a given document cannot 
represent the similarity between the whole category and the given 
document. The category can provide more information than an 
individual document in that category. Furthermore, the time cost for 

category-based strategy is much less than the document-based 
strategy. Thus, we use the category-based strategy in the search 
stage for the deep classification algorithm.  
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Figure 8. Performance on Different Search Strategies 

6.3.2 Candidate Category Number Selection 
In the search stage, the system can return different numbers of 
category candidates. We try to decide how many top ranked 
categories to be used so the category candidates are adequate. If we 
only choose one category, the two-stage method is degenerated to 
the search based strategy only.  
We perform evaluation on the tuning data.  Our experimental result 
is reported in Figure 9. As shown in Figure 9, the more categories 
chosen by the search stage, the more likely we can find the correct 
target category in the classification stage.  However, too many 
categories also aggravate the burden on training time in the 
classification stage. 

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

M
i-F

1

# of category candidatesTop Level Level 2 Level 3
Level 4 Level 5 Level 6
Level 7 Level 8  

Figure 9. Performance on Different Number of Category 
Candidates 

As shown in the figure, the performance on the top-3 levels is 
reduced when the number of candidate categories is increased from 
1 to 10, although very slightly. However, in deeper levels, the 
performance increases significantly and tends to be stable near 10 
categories. Thus, the number of category candidates is set to 10 
considering the trade-off between the time complexity and the 
performance.  
In the following experiments, we set the search strategy as the 
category-based strategy and use the top 10 categories as the number 
of category candidates.  

6.3.3 Feature Selection 
Based on the search stage, category candidates for a new document 
are found to reduce a large hierarchy into a small one. In our 
problem, the number of all features exceeds 10,000 in most 
situations.  To solve this problem, we carry out feature selection and 
show the performance based on using different numbers of features. 
We perform the CHI-Square feature selection, which is verified as 
the best feature selection method for text classification in [23]. Two 
different learning methods are evaluated: Hierarchical SVM and 
naïve Bayesian (NB). As shown in Figure 10, we can find that the 
performance with selected 2000 features is similar to that with the 
whole features. But it is an obvious advantage that fewer features 



can reduce time of training and testing. Therefore, in this work, the 
feature number is limited to 2000 selected by CHI-Square feature 
selection.  
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Figure 10. Performance on Feature Selection 

6.3.4 Training Data Selection 
Based on the pruned hierarchy, we considered three strategies of 
training data selection for further classification. In order to show the 
performance of different strategies, we conduct an experiment on 
the small hierarchy generated from the category candidates using 
the naïve Bayesian classifier. The experimental results are shown in 
Figure 11. As shown in the figure, we can find the Ancestor-
Assistant strategy for training data selection can achieve highest 
performance. There are about 131.6% and 9.5% improvement over 
the hierarchical strategy and the flat strategy on the measurement of 
Mi-F1, respectively, at level 5.  
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Figure 11. Performance on Different Strategies on Training 

Data Selection  
As shown in these figures, we can find that the performance of the 
flat strategy is lower than that of the Ancestor-Assistant strategy 
since this strategy ignores the structure of the hierarchy. Thus it 
cannot acquire enough training data at some cases since the 
information from the ancestors is not used to enhance the classifier. 
The information from the ancestors is vitally important when the 
training data from the category candidate itself is insufficient. The 
performance of the flat strategy will be very poor in this case.  This 
experiment also proves that using rich structure of hierarchical 
categories can enhance the performance of large scale classification, 
which is largely ignored in [13].  
The low performance of the Top-down strategy is due to two factors:   
(1) In the top-down scheme, error rates are accumulated at each 
level which gradually reach an unbearable amount at some deep 
level of the hierarchy. This problem is overcome in our flat and 
Ancestor-Assistant strategies where the classification is performed 
using a flat classifier. 
(2) The training data from an ancestor may be too general and 
cannot characterize the category candidates. In other words, this 
method improperly utilizes the structure information and thus 
introduces noise when supplementing the training examples. For 
example, in Figure 2, training data from category 834 and 854 are 
used to train classifier when classifying the documents in category 
874 and 902, respectively. Our Ancestor-Assistant strategy can 
overcome this problem since both generalized information from the 

structure and specific information from the category itself are 
employed together.  

6.3.5 Classifier Selection 
Classifier selection is a key step to get the final category for the new 
document. Since the model is trained instantly when given a 
document, NB and 3-gram NB are proposed to use by considering 
their efficiency. Here we conduct the experiments to show the 
performance of two algorithms and also compare to the SVM 
algorithm. We show the performance of SVM with the features 
generated by the 3-gram language model. We call it as 3-gram SVM.  
As shown in Figure 12, we find that our proposed 3-gram based 
classification method can achieve higher performance than 
traditional NB. Since the candidate categories are much similar with 
each other, it is difficult for NB to distinguish them without 
considering dependency between words.  Another explanation for 
this issue is that since the category candidates are acquired based on 
the independent term features, if we still rely on such features to do 
classification, the effectiveness of classifiers will be decreased. 3-
gram classifier takes associated terms into account and thus more 
discriminative features are used than NBC method. As a result, 3-
gram classifier will achieve higher performance.  
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Figure 12. Performance on Different Classifier Selection 

Generally, SVM and 3-gram SVM based algorithms can achieve 
higher performance that NB algorithm and 3-gram NB algorithm, 
respectively. However, the second stage of deep classification needs 
an efficient classifier because of the online computation. If we use 
the 3-gram based SVM, it is very time-consuming to train the model 
in the online step. Hence, in this work, a 3-gram NB is taken as the 
second-stage classifier because of its higher performance and 
efficiency.  
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Figure 13. Performance for Different Classifier on Far-Distance 

Categories 
We also conducted additional experiments to validate this 
conclusion. We randomly picked three groups of deep categories. 
Each group contains three categories which are far apart from each 
another (they differ at the first level). We then performed both 3-
gram classifier, NB, 3-gram SVM and SVM with a linear kernel on 
the same training and testing data under each category group. As 
shown in Figure 13, these classifiers achieve comparable 
performance to each other. Furthermore, SVM and 3-gram SVM 
can achieve better performance than NB and 3-gram classifier, 
respectively.  



6.3.6 Time Complexity 
The indexing process and the training process for NB classifier and 
3-gram language model for classification are conducted off-line. 
The time complexity of online computation is calculated as follows. 
As estimated in [24], the average time for document-based search 
and category-based search are )(|)|/( 2 nOVnlO n +  

and )(|)|/( 2 mOVmlO n + , respectively. Here ln is the average length 
of new documents, V is the vocabulary size, m and n is the number 
of categories and training document, respectively. Since n is much 
bigger than m, testing time for category-based search will be less 
than that of document-based search. For the classification stage, we 
perform the classification only on a narrow hierarchy. Assume that 
we have m’ categories, which is a constant, the time cost is about 
O(ld*m’+m’logm’) for NBC and about )'log''*( 3 mmmlO d +  for 3-
gram language model. Therefore, the online time complexity is 
acceptable, which indicates that our algorithm is scalable and can 
handle very large hierarchies efficiently.  

7. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a novel algorithm for Web 
classification on a large scale text hierarchy. A two-stage algorithm 
is presented, consisting of a search stage and a classification stage. 
The search stage prunes the original large hierarchy into a small and 
tractable one.  The structure of the original hierarchy is considered 
when we train a classifier in the classification stage. As a result, our 
method is both efficient and effective in handling very large scaled 
hierarchies.  Experimental results showed that our proposed 
algorithm can achieve 77.7% improvement over top-down based 
SVM classification algorithm on the accuracy at 5th level on the 
large-scale hierarchies.  
As one future work, we will extend the deep classification algorithm 
for different kinds of applications, such as online advertisement 
classification. Another work is to improve the efficiency of the 
search stage algorithm of deep classification. We will develop more 
effective indexing algorithms to improve the classification 
performance.  
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