
Practical pluggable types for Java

by

Matthew M. Papi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2008

c© Matthew M. Papi, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2008

Certified by .
Michael D. Ernst

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Practical pluggable types for Java

by

Matthew M. Papi

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This paper introduces the Checker Framework, which supports adding pluggable type sys-
tems to the Java language in a backward-compatible way. A type system designer defines
type qualifiers and their semantics, and a compiler plug-in enforces the semantics. Program-
mers can write the type qualifiers in their programs and use the plug-in to detect or prevent
errors. The Checker Framework is useful both to programmers who wish to write error-free
code, and to type system designers who wish to evaluate and deploy their type systems.

The Checker Framework includes new Java syntax for expressing type qualifiers; declar-
ative and procedural mechanisms for writing type-checking rules; and support for flow-
sensitive local type qualifier inference and for polymorphism over types and qualifiers. The
Checker Framework is well-integrated with the Java language and toolset.

We have evaluated the Checker Framework by writing five checkers and running them on
over 600K lines of existing code. The checkers found real errors, then confirmed the absence
of further errors in the fixed code. The case studies also shed light on the type systems
themselves.

Thesis Supervisor: Michael D. Ernst
Title: Associate Professor

3

4

Acknowledgements

Michael Ernst provided invaluable guidance and discussion throughout the various stages of

this research. Jeff Perkins used the Nullness checker, provided numerous bug reports, and

suggested usability improvements. Mahmood Ali created the IGJ checker and contributed

to the design and implementation of the Checker Framework. Telmo Correa created the

Javari checker. Jaime Quinonez created the Annotation File Utilities. Thanks to my co-

authors for their work on Practical pluggable types for Java [44], which has formed the basis

of Chapters 4–6 of this thesis. Finally, thanks to my family and friends for their support

and encouragement.

This work was supported in part by DARPA grant FA8750-06-2-0189.

5

6

Contents

1 Introduction 15

1.1 Terminology . 16

1.2 Thesis outline . 17

2 Motivation 19

2.1 Example: preventing security-related bugs 20

3 Syntax: Annotations on types 25

3.1 Design Rationale . 25

3.2 Writing annotations on types . 27

3.3 Using the JSR 308 compiler . 29

3.3.1 Invoking the Java compiler . 29

3.3.2 Backward-compatibility . 30

3.3.3 Examining class files with JSR 308 annotations 30

3.4 JSR 308 reference implementation . 31

3.4.1 Parsing JSR 308 annotations . 32

3.4.2 Resolving annotation locations . 35

3.4.3 Writing annotations to the class file 37

3.4.4 Reading annotations from the class file 37

4 Semantics: The Checker Framework 39

4.1 The programmer’s view of a checker . 39

7

4.1.1 Using a checker to detect software errors 40

4.2 Architecture of a type system . 40

4.3 Type qualifiers and hierarchy . 42

4.4 Implicit annotations: qualifier introduction 43

4.5 Defining type rules . 44

4.6 Customizing the compiler interface . 45

4.7 Parametric polymorphism . 45

4.7.1 Type polymorphism . 46

4.7.2 Qualifier polymorphism . 47

4.8 Flow-sensitive type qualifier inference . 48

5 Pluggable type checkers 51

5.1 Experimental evaluation . 51

5.1.1 Methodology . 53

5.1.2 Ease of use . 55

5.2 The Basic type checker for any simple type system 56

5.2.1 Basic checker case study . 57

5.3 The Nullness checker for null pointer errors 57

5.3.1 The Nullness type system . 57

5.3.2 Type system weaknesses . 59

5.3.3 Errors found . 60

5.3.4 Default annotation for Nullness checker 62

5.4 The Interning type checker for equality-testing and interning errors 64

5.4.1 The Interning checker . 65

5.4.2 Interning case study . 66

5.4.3 Errors found . 67

5.4.4 False positives . 68

5.5 The Javari checker for mutability errors . 68

5.5.1 The Javari type system . 68

8

5.5.2 The Javari checker . 70

5.5.3 Errors found . 71

5.6 The IGJ checker for mutability errors . 72

5.6.1 The IGJ type system . 72

5.6.2 Errors found . 74

6 Related work 79

6.1 Frameworks . 79

6.2 Inference . 81

6.3 Null pointer dereference checking . 82

6.4 Interning . 83

6.5 Javari . 84

6.6 IGJ . 84

6.7 Type qualifier systems . 85

7 Conclusion 87

7.1 Future work . 87

7.1.1 Type checkers . 87

7.1.2 The Checker Framework . 88

7.2 Summary of contributions . 89

7.3 Lessons learned . 91

7.3.1 Javari . 91

7.3.2 IGJ . 91

7.3.3 Nullness . 92

7.3.4 Expressive annotations . 92

7.3.5 Polymorphism . 93

7.3.6 Framework design . 93

7.3.7 Inference . 94

7.3.8 Complexity of simple type systems 95

9

A The Interning checker 97

A.1 Qualifier declaration: @Interned . 97

A.2 Compiler interface . 98

A.3 Visitor for type rules . 99

A.4 Qualifier introduction . 105

10

List of Figures

2-1 A fragment of a network chat program with a security bug. 23

2-2 Finding the bug in Figure 2-1 with @Encrypted annotations. 23

3-1 Summary of the JSR 308 Java grammar changes. 28

3-2 The AST for the expression @NonNull List<@NonNull String>. 33

5-1 Type hierarchy for the Nullness type system. 58

5-2 Type hierarchy for the Interning type system. 64

5-3 Type hierarchy for Javari’s ReadOnly type qualifier. 69

5-4 Type hierarchy for three of IGJ’s type qualifiers. 72

5-5 The QuadTreeNode.createTree method of the perimeter program. 75

11

12

List of Tables

5.1 Case study statistics. 52

5.2 Sizes of checkers. 55

5.3 A comparison of our Nullness checker with other bug-finding tools. 62

5.4 The number of annotations required to eliminate null dereference warnings. . 63

13

14

Chapter 1

Introduction

We present a practical three-part system for finding and preventing bugs in Java programs

through user-defined extensions to Java’s type system. Programmers can write type qual-

ifiers, which provide extra information about the types of expressions, and can verify the

correct use of these qualifiers by running a plug-in for a Java compiler. Programmers may

design their own type qualifiers and create type checkers by extending our system, or they

may use the type checkers for the qualifiers that we have defined.

The system has three parts:

1. A syntax for writing type qualifiers in Java programs, and a reference implementation

of an extended Java compiler that accepts this syntax, exposes type qualifiers through

the program’s abstract syntax tree (AST), and persists type qualifiers by writing them

to the class files that the compiler produces.

2. A flexible framework for writing type qualifier verifiers (also known as type checkers,

or just checkers) that integrates tightly with the Java language toolchain. Its fea-

tures include a means for both declarative and procedural specification of type rules

and type qualifier introduction, polymorphism for types and qualifiers, flow-sensitive

intraprocedural type qualifier inference, and a representation of annotated types.

3. Five checkers: four for specific type systems and one for any type system that has

15

no semantics beyond standard Java subtyping rules. These particular type qualifier

systems are useful to programmers; they are non-trivial to implement, serving as useful

evaluation of the framework; and in some cases, they are the only existing verifier

implementation and serve to evaluate the type qualifier system itself.

1.1 Terminology

This section introduces the terms used throughout this thesis.

A type determines the set of values that a variable may contain and the operations that

may be performed on that variable. Examples of types include the composite type File,

which is used for variables that represent files in a filesystem, or the primitive type boolean,

which is used for variables that have either the value “true” or the value “false”.

A type qualifier extends a type with a particular optional attribute. An example of a type

qualifier is encrypted, which denotes that a value is securely encrypted. When qualifying the

type File, the result is a new type, encrypted File; the relationship between encrypted File

and File is part of the semantics of the encrypted type qualifier. We write type qualifiers in

two ways. When discussing type qualifiers in general, we use a form similar to the keywords

of many programming languages: encrypted. When discussing specific type qualifiers in the

context of our system, write them according to our proposed Java syntax: @Encrypted.

A type system defines how a programming language classifies the types of data in a

program and describes how these types interact. The Java type system includes all of the

composite, primitive, and user-defined types in the Java language and specifies the rules of

subtyping, assignment, etc.

A type qualifier system defines a set of type qualifiers and the interactions between them.

The Nullness type qualifier system of Section 5.3.1 defines the nonnull and nullable qualifiers,

specifies that for any type T, nonnull T is a subtype of nullable T, and requires that no

reference with type nullable T may be dereferenced.

A type checker is an algorithm or a tool that verifies that a program does not violate

the rules of a type system. A type qualifier verifier, which we refer to as a type qualifier

16

checker or more commonly as a type checker in the context of qualifiers, is a type checker

that verifies that a program does not violate the rules of a type qualifier system.

A type qualifier system is pluggable if it is optional, after Bracha [9]. We often describe

a type checker as pluggable to mean that it can be invoked as a “plug-in” by a compiler

during compilation (i.e., that it is not built in to the compiler, but is dynamically loaded as

a separate module); note that this is a separate sense of the word “pluggable”.

1.2 Thesis outline

The remainder of this thesis is organized as follows.

Chapter 2 discusses the importance of type systems and the benefits of using type qual-

ifiers, and provides an example scenario for detecting security-related bugs in a program.

Chapter 3 describes the syntactic means we have created for writing type qualifiers in

Java programs. The syntax follows the JSR 308 specification for annotations on types. The

design of the JSR 308 specification was motivated in part by this work and our desire to

have most of the benefits and few of the drawbacks of previous approaches. We have created

the reference implementation for the JSR 308 specification, described in Section 3.4, and use

it as the foundation for our system.

Chapter 4 describes a framework for creating type checkers and how it may be used to

implement the semantics of a type qualifier system. The framework, known as the Checker

Framework, sits atop the JSR 308 Java compiler: type checkers integrate closely with the

Java compiler, and programmers write type qualifiers as Java annotations using the JSR 308

syntax. The Checker Framework provides the essential functionality for writing a pluggable

type checker — an interface to the Java compiler and a facility for determining the quali-

fied type of a program element or expression — as well as a number of powerful optional

features that can make type qualifier systems easier to use and more expressive, like type

qualifier polymorphism, default annotations, and flow-sensitive intraprocedural type qualifier

inference.

Chapter 5 describes the checkers we have built using the framework. There are type

17

checkers for four distinct type systems: the Nullness type system for finding and prevent-

ing null pointer errors, the Interning type system for finding and preventing interning and

equality-testing errors, and the IGJ and Javari type systems for finding and preventing mu-

tability errors (based on the IGJ [57] and Javari [51] languages). We have also created a

type checker that can be applied to any type system that does not have special semantics

beyond standard Java subtyping rules. We have evaluated the checkers by using them to

find bugs in 13 programs of up to 224 KLOC, including the checkers themselves.

Chapter 6 discusses related work.

Chapter 7 describes possibilities for future work, and summarizes the contributions of

this research and lessons we have learned while conducting it.

Finally, Appendix A provides a source code listing for the implementation of the Interning

checker described in Section 5.4.

18

Chapter 2

Motivation

Type systems — a means for specifying the classification of and interactions between data

in a program — are an important part of many modern programming languages. Computer

hardware stores and manipulates program data as groups of bits, regardless of whether these

bits represent integers, character strings, or other data structures. From the point of view

of a programmer or a programming language, these data are distinctly different. Moreover,

they must be treated as such — it does not make sense to multiply a character string and a

list of floating-point values.

Type systems allow programmers to organize and document data according to their

types. This both improves a programmer’s understanding of his own program and helps

communicate his intent to other programmers and program maintainers.

A static type system requires that variables have a type that does not change throughout

a program. Compilers typically use type information to check a program for type errors, in

which data is used nonsensically (for example, attempting to multiply a string and a list of

floating-point values). These errors can be detected and fixed before running the program.

Compilers for statically-typed languages prevent type errors from occurring in programs,

since they reject any program that contains type errors.

Type information can be used in other ways as well: an optimizing compiler could replace

calls to virtual functions with direct function calls, or produce machine code that utilizes

19

specialized instructions such as those for string-processing or floating-point math. Type

information also facilitates many of the conveniences provided by IDEs, including refactorings

and automatic code completion.

Despite the strengths of modern type systems, there is often a great deal of information

about data that a programmer cannot specify. Java has a data type for specifying that

a value represents a string of characters (via the type String), but it has no provision for

specifying other properties of the type of that value — for instance, whether the String

is encrypted, or represents XML or a SQL query. In the same way that only Strings can

be written to a file, only encrypted Strings should be used to transmit secret data over a

network, and only Strings that represent XML should be given to an XML parser.

This extra information is typically known to the programmer ahead of time, and it is

usually conveyed through comments or other forms of documentation. Comments can be

logically inconsistent (e.g., “this integer is nonnegative” versus “this integer is never zero

or less”), and programmers often forget to update them when the specification changes (or

they forget to write them in the first place). Worse, comments convey nothing to tools like

compilers that could use this extra information to enhance error-checking and optimization.

When constraints are specified via type refinements, they can be statically verified. The

programmer learns of errors instantly (literally, if he is using a development environment

that supports this!) and can fix them before running the program. More importantly, if the

compiler emits no errors, the programmer receives a guarantee that the program will not

contain errors related to these constraints.

2.1 Example: preventing security-related bugs

To demonstrate the value of using type qualifiers, consider the hypothetical encrypted quali-

fier. encrypted extends the typical notion of Java types to denote a special version of a type

for values with an encrypted representation. For instance, the type String is used to describe

a sequence of characters that may or may not be encrypted; the addition of the encrypted

qualifier results in a new type, encrypted String, that is used to describe an encrypted se-

20

quence of characters. The Java type Object is a subtype of String: every String is an Object,

but not every Object is a String. Similarly, the qualified type encrypted String is subtype of

String: every encrypted String is a String but not every String is an encrypted String.

We can use the encrypted qualifier to enhance the type of data that we know to be

encrypted. For programs for which security is a concern, this has several advantages. First,

we document in a clear and concise way which methods (for instance) require encrypted

inputs, or which lists contain only encrypted data. Developers and program maintainers

need only to read the method’s signature (its name plus the types of its formal parameters

and return value) to learn how that method is used in the context of security via encryption.

Second, and more importantly, a tool can verify that only data that is guaranteed to

be encrypted is passed to methods that require an encrypted input or added to lists that

only allow encrypted data. This means that some security bugs (like those caused by using

unencrypted data where encrypted data is required) can be detected program compilation

and immediately reported to the programmer. As a corollary, the programmer receives a

guarantee that any program that type-checks in the hybrid Java-plus-encrypted type system

does not contain any such security bugs.

Finally, as a minor point, the use of the encrypted qualifier can improve program simplicity

and performance: programs that use encrypted can eliminate runtime security checks, such

as calls to a verification method that ensures that data at a particular program point is

encrypted; type-checking of encrypted makes these runtime checks completely redundant.

To illustrate the use of an encrypted qualifier, we examine its use as part of a hypothetical

program for communicating securely via a network.

Figure 2-1 shows a fragment of a Java program for sending messages over a network as

part of a chat program. The program has a sendOverNetwork method that is used to send

strings of text to other machines on a network; a comment on that method explains that its

callers should first encrypt messages before sending them. Note that, other than by manual

inspection, this recommendation is not enforced. As a result, a programmer introduces a

bug in which a password is given to sendOverNetwork without any encryption.

21

Figure 2-2 demonstrates the use of an encrypted qualifier — written in the program as

a Java annotation, @Encrypted — which permits a type checker to reveal the bug in the

program. @Encrypted is added to the message parameter of the sendOverNetwork method. This

qualifier effectively restricts the input of the method in the same way that the comment

suggests; in this case, however, the restriction is statically checkable. A type checker for

@Encrypted would notice that password, as passed to the method invocation on line 17, is not

encrypted (since it was not declared as such on line 16), and the checker would emit an error

accordingly.

Note that simply adding an @Encrypted annotation to the declaration on line 16 is not

sufficient for fixing the problem unless the getUserPassword method returns an encrypted

password (and its return type has been accordingly annotated as @Encrypted). A proper

fix would involve calling the encrypt method on the password and passing the result to

sendOverNetwork; as is evident from its signature, the encrypt method takes a message and

returns it in encrypted form.

The addition of @Encrypted annotations made it possible to detect security-related bugs.

It also serves as better (and much more concise) documentation than the code comment in

lines 3–4 of Figure 2-1.

22

1 class ChatProgram {
2
3 // This method performs no encryption! Callers must encrypt

4 // messages before calling this method.

5 void sendOverNetwork(URI destination , String message) {
6 ...
7 }
8
9 // Returns the encryption of ‘‘message ’’.

10 String encrypt(String message) {
11 ...
12 }
13
14 void logIn () {
15 ...
16 String password = getUserPassword ();
17 sendOverNetwork(server , password);
18 }
19 }

Figure 2-1: A fragment of a network chat program with a security bug.

1 class ChatProgram {
2
3
4
5 void sendOverNetwork(URI destination , @Encrypted String message) {

6 ...
7 }
8
9 // Returns the encryption of ‘‘message ’’.

10 @Encrypted String encrypt(String message) {

11 ...
12 }
13
14 void logIn () {
15 ...
16 String password = getUserPassword ();
17 sendOverNetwork(server , password);
18 }
19 }

Figure 2-2: The fragment of a network chat program in Figure 2-1 with @Encrypted annota-
tions added. The annotations enable a type checker for @Encrypted to find the security bug:
on line 17 a value of type String is passed to a method that expects a parameter of type
@Encrypted String.

23

24

Chapter 3

Syntax: Annotations on types

The Checker Framework’s syntax for type qualifiers uses the proposed JSR 308 specification

for writing Java annotations anywhere that types are used; the system itself employs a

modified Java compiler that we have created to support the JSR 308 syntax.

This chapter discusses our syntax design choice (Section 3.1), presents the syntax for

annotations on types (Section 3.2), describes the use of the JSR 308 Java compiler (Section

3.3), and describes our system’s implementation of the JSR 308 specification (Section 3.4).

3.1 Design Rationale

The Checker Framework uses Java annotations to express type qualifiers. This section

presents the rationale behind this design choice and compares it with those of related tools.

We briefly discuss three approaches to type qualifier syntax: language keywords, stylized

code comments, and annotations.

Language keywords Some previous implementations for specific, non-pluggable type sys-

tems have modified the language compiler to add new keywords (syntactically similar to Java

keywords like transient or final) [5]. The advantage to this approach is that the type sys-

tem is fully integrated with the language, making it easy for programmers and analysis

tools to use. The disadvantage is that it is difficult to implement and non-portable — other

25

conforming Java compilers and tools such as IDEs must be reimplemented to support the

changes.

Stylized code comments Other systems use code comments with a special format [29].

The approach requires no changes to the language toolchain, and therefore is completely

portable. However, since the compiler ignores code comments, this approach is not the most

robust; in contrast, compilers and IDEs can emit an error for unrecognized or misplaced

language keywords and annotations.

Annotations Annotations were introduced in Java 5 [7] as a way of expressing program

metadata. For instance, a method may have a @Deprecated annotation to denote that the

method should not be used, or a class might have an @Author annotation to specify the creator

of the class. Annotations are part of Java’s syntax but are user-definable; they combine the

power of language keywords with the flexibility of code comments.

However, standard Java annotations are not powerful enough for use as type qualifiers;

in Java 5 and 6, annotations are permitted only on the declarations of classes, fields, meth-

ods, method parameters, and local variables. There are many places where types are used

but annotations are disallowed: type casts, generic type arguments, type variable bounds,

and array creation expressions name a few. We have defined an extension that permits

annotations to appear on nearly any use of a type [23]. Examples of the new syntax are:

List <@NonNull String > strings;

myGraph = (@Immutable Graph) tmpGraph;

class UnmodifiableList <T>

implements @ReadOnly List <@ReadOnly T> { ... }

Some systems use special annotations to resolve some of these issues, but to date no other

annotation-based proposal exists for writing type qualifiers everywhere that a type can be

used.

Our syntax proposal has been assigned the Sun codename “JSR 308” [23] and is planned

for inclusion in the Java 7 language. These simple changes to Java enable the construction

26

of a type-checking framework, described in Chapter 4, that requires no compiler changes

beyond those planned for inclusion in Java 7.

Changing the Java language is extraordinarily difficult for technical reasons largely re-

volving around backward compatibility, but is worth the effort if practical impact is the

goal. Workarounds are clumsy and inexpressive. For example, stylized comments are not

recognized by tools such as IDEs and refactoring engines; by contrast, our implementation

works with the NetBeans IDE and Jackpot transformation engine. A separate tool is rarely

as robust as the language compiler, but directly modifying a compiler results in an incom-

patible system that is slow to incorporate vendor updates. Programmers are unlikely to

embrace these approaches.

3.2 Writing annotations on types

JSR 308 [23] proposes a syntax that permits annotations to appear on nearly any use of

a type. JSR 308 uses a simple prefix syntax for type annotations, with three exceptions

necessitated by non-orthogonalities in the Java grammar. The changes to the Java language

grammar are:

1. A type annotation may be written before any type, as in @NonNull String.

2. A method receiver (this) type is annotated just after the parameter list.

3. An array type is annotated on the brackets [] that indicate the array, separately from

an annotation on the element type.

4. The component type of a variable-argument (varargs) method parameter is annotated

immediately before the ellipsis (...).

Figure 3-1 shows the changes to the Java grammar in detail; these changes correspond to

the four rules above.

The following examples show the use of annotations on a variety of types, none of which

are valid locations for Java 5 and 6 annotations:

27

Type:
[Annotations] Identifier [TypeArguments] { . Identifier [TypeArguments]} {[[Annotations]]}
[Annotations] BasicType

VoidMethodDeclaratorRest :
FormalParameters [Annotations] [throws QualifiedIdentifierList] (MethodBody | ;)

FormalParameterDeclsRest :
VariableDeclaratorId [, FormalParameterDecls]
[Annotations] ... VariableDeclaratorId

Figure 3-1: A summary of the changes to the Java grammar for JSR 308. Additions are
underlined.

• generic type arguments to parameterized classes:

Map <@NonNull String , @NonEmpty List <@ReadOnly Document >> files;

• generic type arguments in a generic method or constructor invocation:

o.<@NonNull String >m("...");

• type parameter bounds and wildcards:

class Folder <F extends @Existing File > { ... }

Collection <? super @Existing File >

• class inheritance:

class UnmodifiableList <T>

implements @ReadOnly List <@ReadOnly T> { ... }

• method throws clauses:

void monitorTemperature ()

throws @Critical TemperatureException { ... }

• typecasts:

myString = (@NonNull String) myObject;

• type tests:

28

boolean isNonNull = myString instanceof @NonNull String;

• object creation:

new @NonEmpty @ReadOnly List <String >(myNonEmptyStringSet)

• method receivers:

public String toString () @ReadOnly { ... }

public void write () @Writable throws IOException { ... }

• class literals:

Class <@NonNull String > c = @NonNull String.class;

• static member access:

@NonNull Type.field

• arrays:

Document[@ReadOnly][] docs1 = new Document[@ReadOnly 2][12];

Document [][@ReadOnly] docs2 = new Document [2][@ReadOnly 12];

These additional locations allow the Checker Framework to retain tight integration with

the Java language without sacrificing expressiveness.

JSR 308 also specifies a means for persisting type annotations by writing them to a class

file. Section 3.4 discusses this in greater detail.

3.3 Using the JSR 308 compiler

3.3.1 Invoking the Java compiler

The JSR 308 Java compiler can be used in exactly the same way as a standard Java compiler.

The modifications to the OpenJDK compiler concern only the JSR 308 specification and fixes

to bugs in the unmodified compiler to support JSR 308.

29

The OpenJDK compiler provides the -processor command-line switch, which is used to

invoke annotation processors during program compilation. The JSR 308 compiler adds a

-typeprocessor switch that is featurewise identical to -processor but reserves the possibility

for additional functionality in the JSR 308 compiler to support type checking of qualifiers.

3.3.2 Backward-compatibility

The JSR 308 Java compiler permits the use of annotations on types while retaining backward

compatibility with previous versions of the Java toolchain that do not support JSR 308.

Annotations on types can be written using a special syntax which the JSR 308 Java compiler

parses as an annotation but non-JSR 308 Java compilers parse as comments. For example,

a non-JSR 308 compiler will reject the following program fragment:

void deleteFiles(List <@NonNull File > files) {

// ...

}

Since the @NonNull annotation is not written in a location permitted by standard Java anno-

tations, a standard Java compiler will emit a parse error. However, a non-JSR 308 compiler

will accept the following code fragment:

void deleteFiles(List </* @NonNull */ File > files) {

// ...

}

A JSR 308 compiler, on the other hand, constructs an abstract syntax tree that is identical

for the two program fragments above and includes the @NonNull annotation.

3.3.3 Examining class files with JSR 308 annotations

We have also augmented the javap tool, a disassembler for displaying the contents of Java

class files in a human-amenable form.

The standard OpenJDK javap tool displays the structure of a class file, including classes,

fields, and methods, and attributes of those program elements. It does not display detailed

30

information about either standard1 or JSR 308 annotations, instead giving a hexadecimal

representation of their containing attributes.

Enhancements to the javap tool for JSR 308 permit the tool to display detailed informa-

tion about the types, arguments, and location of both standard and JSR 308 annotations.

3.4 JSR 308 reference implementation

The JSR 308 javac compiler is implemented as a modification of Sun’s OpenJDK javac

compiler2. By relying on the existing javac support for standard Java annotations, our

modifications are generally straightforward and robust.

The OpenJDK Java compiler, which is written in Java, is used to transform Java source

files into class files for execution in the Java virtual machine. The OpenJDK compiler is

an open-source version of Sun’s proprietary Java compiler. Our modifications are publicly

redistributed3 under an open-source license.

Our extensions to the compiler must support the four primary features that the Java

compiler provides for standard Java annotations:

• parsing annotations and adding them to the abstract syntax tree (AST) of an input

program;

• resolving (also referred to as entering) annotations present in the AST, which includes

locating the annotation’s definitions, checking uses of the annotations for errors, and

reducing them to a simpler representation for later compilation;

• writing the annotations into the class file, so that they can be read back during compile

time or runtime; and

• reading the annotations from a class file, so that they can be used when compiling

against programs for which the source code is not available.

1(at the time of this writing)
2http://openjdk.java.net
3http://pag.csail.mit.edu/jsr308

31

http://openjdk.java.net
http://pag.csail.mit.edu/jsr308

The following sections describe the implementation of these four features for JSR 308

annotations.

3.4.1 Parsing JSR 308 annotations

Since standard Java annotations are only permitted in the same places as modifier keywords

(e.g., public, static, final), the standard Java compiler represents annotations (as well as

modifier keywords) in an AST node called a ModifiersTree. Reuse of a ModifiersTree for

extended annotations is possible but is not good semantics, since only extended annotations

(and not modifier keywords) should be permitted on types.

The extended compiler introduces a new AST node, the AnnotatedTypeTree, which com-

bines of a list of annotation nodes and a node that represents a type. (Since the standard com-

piler does not have a special designation for trees that represent types, the AnnotatedTypeTree

has two members, one of type List<AnnotationTree> for storing annotations, and another of

type Tree to point to the underlying type of the annotated type.)

The parser then creates an AnnotatedTypeTree for all locations where annotations may be

written on a type. For instance, when parsing the expression List<String>, the standard

Java parser would create a ParameterizedTypeTree to represent List, and add as a child a

IdentifierTree to represent String. Since extended annotations may be written on List (e.g.,

@NonNull List<String>), the parser first creates an AnnotatedTypeTree, then parses annotations

before the type (adding them as the annotations of the AnnotatedTypeTree), and finally parses

the type itself (adding it as the underlying type of the AnnotatedTypeTree).

Extended annotations can be written on type arguments (e.g., List<@NonNull String>),

so the parser also creates an AnnotatedTypeTree for each type argument. That is, it cre-

ates an AnnotatedTypeTree, then parses any annotations before String and adds them to the

AnnotatedTypeTree, then parses the type and adds it as the underlying type. Finally, it adds

this AnnotatedTypeTree as the child of the ParameterizedTypeTree for List. Figure 3-2 shows the

AST that the compiler creates when parsing the expression @NonNull List<@NonNull String>>.

The modified parser abstracts away the process of parsing annotations on a type via the

32

Figure 3-2: The AST for the expression @NonNull List<@NonNull String>.

typeAnnotationsOpt method (from “optional type annotations”), which parses annotations on

a type and returns a possibly empty list of AnnotationTrees. The modifications to the parser

consist mostly of calls to typeAnnotationsOpt and construction of AnnotatedTypeTrees from the

resulting annotations and the underlying type; exceptions are noted below.

Difficulties

There are two areas that introduce complexity in the modifications to the parser.

AST non-orthogonalities Parse trees for array expressions, which are represented via

ArrayTypeTree, are hierarchical. For instance, when constructing a parse tree for the type

File[][] (an array of arrays of Files), the compiler creates an ArrayTypeTree which has a

child node that is an ArrayTypeTree, which itself has a child node that is an IdentifierTree

for the identifier File. The parse tree that is constructed is structurally similar to the type

itself: an array type that has another array type as a component.

Parse trees for array creation expressions, however, are not always hierarchical. For

instance, consider the following expression:

new File [][] { ... }

33

This expression creates a new array and initializes it to the contents of the braces (“{” and

“}”). Its parse tree consists of a NewArrayTree, which has a child node that is an ArrayTypeTree,

which has a child node that is an IdentifierTree for File. Here, the NewArrayTree implicitly

represents one level of the array, replacing the outermost ArrayTypeTree in case of the parse

tree for File[][].

Furthermore, in the case of an array creation with explicit dimensions (e.g., new

File[5][10]), the child of the NewArrayTree is simply an IdentifierTree and expresses no

hierarchy. Instead, the hierarchy can be determined via a list of dimensions.

Due to the unique way in which NewArrayTrees are constructed, the JSR 308 implemen-

tation enhances the NewArrayTree by storing dimension annotations in a list alongside the

dimensions themselves.

Array conventions Second, different conventions for annotating array types complicate

parsing independently from the non-orthogonalities described above.

The AST has a single semantic meaning, but annotated array expressions in the program

do not. As an example, consider that for an array of Documents (written in Java as Document[]),

there are two types that a programmer may wish to annotate:

• the array type as a whole (of type Document[]), e.g. to specify a @NonNull array of

Documents

• the type of elements in the array (of type Document), e.g. to specify an array of @NonNull

Documents

There are two different conventions for annotating an array type. In one, the arrays

convention, annotations within brackets refer to the array corresponding to those brackets;

in the other, the elements convention, the annotations within brackets refer to the elements

of the array corresponding to those brackets. Under these conventions, we write “array of

@NonNull Documents” as follows:

• arrays : @NonNull Document[]

34

• elements : Document[@NonNull]

It is important to note that, regardless of convention, there is exactly one parse tree that

corresponds to “array of @NonNull Documents”: namely, an ArrayTypeTree, which has as a child

an AnnotatedTypeTree with a child for @NonNull and a child for Document. As a consequence,

the array convention is determined by the parser in the JSR 308 compiler.

The elements convention is simpler to implement: parsing occurs from left to right,

and annotations written under this convention have spacial locality with the types they

annotate. For instance, the leftmost annotation belongs on the type of the entire array,

while the subsequent annotations are added to the intermediate array levels in the parse

tree.

For the arrays convention, however, the leftmost annotation belongs in the deepest level

of the parse tree for the array type, while the rightmost annotation belongs on the outermost

level of the parse tree for the array type. This makes parsing array types under the arrays

convention require additional tree manipulation and traversal that is not needed for the

elements convention.

3.4.2 Resolving annotation locations

Resolution of JSR 308 annotations is identical to that of resolution of standard annotations,

except that JSR 308 annotations require an extra step to determine the precise location of

the annotation in the AST.

Standard annotations appear in attributes in Java class files; attributes are “attached”

to structural elements in the class file: classes, methods, method parameters, and fields.

The possible locations of attributes correspond exactly to the possible locations of standard

annotations.

Since types do not have a direct representation in a class file, JSR 308 requires that

the annotations on a type appear in an attribute that is attached to the nearest enclosing

program element for the type. For instance, if the annotation appears on the type in a

typecast in the body of a method, the annotation must be stored in the class file in an

35

attribute of that method. Likewise, if the annotation appears on a type argument in the

declaration of a field with a generic type, the annotation must be stored in an attribute of

that field.

Since these annotations are not written directly on (for instance) a method or field, extra

information must be stored alongside the annotation so that its exact original location — the

type that it was written on — can be determined when reading back the class file. Therefore,

the JSR 308 compiler must determine the annotation’s exact location. It does this in two

rounds: first, when annotations are entered, and second, during the compiler’s code genera-

tion phase. This second round is required only because JSR 308 requires bytecode offsets as

part of the extra information for some annotations, and this information is unavailable until

code generation.

As an example, an annotation on a typecast can be resolved as follows:

• In the first round, the compiler traverses the AST from the root searching for extended

annotations. As it traverses the tree, it pushes each node that it visits onto a stack;

it then descends into that node’s children and pops the node from the stack when all

its children have been visited. The stack forms a “path” of all the parent nodes of

a tree up to the root. When it encounters an extended annotation, it examines the

path to determine the kind of the annotation. In the case of a typecast annotation,

the compiler notices that the annotation is immediately enclosed by a typecast node.

The compiler then assigns the annotation a “target type” — in this case “typecast

annotation” — and associates with it a pointer to the relevant enclosing tree (the

immediately enclosing typecast node).

• In the second round, which occurs simultaneously with code generation, the compiler

again traverses the AST from the top down, emitting bytecodes corresponding to each

node that it visits. When the compiler reaches a typecast, it performs code generation

as usual (in this case, emitting a checkcast bytecode), and it then looks for annotations

with a context node equivalent to the node it is currently visiting. If one is found, the

compiler can then assign the annotation extra location information — in this case, the

36

offset of the checkcast bytecode emitted for the typecast — as required by the JSR 308

specification.

3.4.3 Writing annotations to the class file

JSR 308 annotations are written to the class file in a similar way to standard Java annota-

tions; there are two major differences.

First, standard annotations are written to the RuntimeVisibleAnnotations and Runtime-

InvisibleAnnotations attributes (and also the RuntimeVisibleParameterAnnotations and

RuntimeInvisibleParameterAnnotations attributes for method parameters), but JSR 308 re-

quires annotations to be written to the RuntimeVisibleExtendedAnnotations and Runtime-

InvisibleExtendedAnnotations attributes. (We note that the Java virtual machine ignores

unrecognized attributes in class files, so no modifications are needed to the JVM to support

this.)

Second, extended annotations are written with location information, so that their precise

location on a type within a class, method, method parameter, or field declaration can be

recovered by an analysis tool that operates on bytecode instead of source code (e.g., a

bytecode verifier).

3.4.4 Reading annotations from the class file

The compiler must only read back JSR 308 annotations that are public-facing. For instance,

when a program refers to a method defined in class file (for which the source code is not

available), the program examine anything in the body of the method, including annotations

written on the types therein. The program only requires the method’s signature to compile

successfully, and therefore tools that utilize JSR 308 annotations only need the annotations

on types in the method’s signature. As a result, the compiler’s class reader ignores annota-

tions that are not on classes, fields, or method signatures. When reading the annotations,

the compiler leaves their location information intact. The compiler does not provide a rep-

resentation for annotated types; tools that require the use of these annotations can use the

37

Checker Framework described in Chapter 4.

38

Chapter 4

Semantics: The Checker Framework

The Checker Framework enables a type system designer to define the rules for a type qual-

ifier system. The Checker Framework then creates a type-checking compiler plug-in (also

known as a checker) that applies these rules to an input program during compilation. This

chapter describes the aspects of the Checker Framework that support this process: how a

programmer uses a checker to find errors in a program (Section 4.1), the architecture of a type

system (Section 4.2) and the corresponding implementation of a checker (Sections 4.3–4.5),

and advanced functionality that the Checker Framework provides to type system designers

(Sections 4.7–4.8).

4.1 The programmer’s view of a checker

This section describes the Checker Framework from the point of view of a programmer that

wishes to find errors (or verify their absence) in a program. Section 4.2 describes it from a

type system designer’s point of view.

The Checker Framework seamlessly integrates type-checking with the compilation cycle.

Programmers add qualifiers to types in their programs using the backwards-compatible ex-

tension to Java’s annotation syntax described in Chapter 3. A checker runs as a plug-in to

the javac Java compiler.

39

4.1.1 Using a checker to detect software errors

Type checkers built atop the Checker Framework are a special case of annotation proces-

sors [14]. The Checker Framework uses Java’s standard compiler flag, -processor, for invoking

an annotation processor:

javac -processor NullnessChecker MyFile.java

Programmers do not need to use an external tool (or worse, a custom compiler) to obtain

the benefits of type-checking; running the compiler and fixing the errors that it reports is

part of ordinary developer practice.

The checker reports warnings and errors through the same standard reporting mechanism

that the compiler itself uses (the public Compiler API, also known as JSR 199[55, 14]). As a

result, checker errors/warnings are formatted like compiler errors/warnings, and the compiler

is aware of checker errors/warnings when determining whether to continue compilation (e.g.,

perform code generation).

Use of @SuppressWarnings annotations and command-line arguments permits suppressing

warnings by statement, method, class, or package. Naturally, the checker’s guarantees that

code is error-free apply only to analyzed code. Additionally, the framework does not reason

about the target of reflective calls.

4.2 Architecture of a type system

The implementation of a type system contains four components:

1. Type qualifiers and hierarchy. Each qualifier restricts the values that a type can

represent. The hierarchy indicates subtyping relationships among qualified types (for

instance, that @NonNull Object is a subtype of @Nullable Object.)

2. Type introduction rules. For some types and expressions, a qualifier should be

treated as present even if a programmer did not explicitly write it. For example, every

literal (other than null) has a @NonNull type.

40

3. Type rules. Violation of the type system’s rules yields a type error. For example,

every assignment and pseudo-assignment must satisfy a subtyping rule. As another

example, in the Nullness type system, only references with a @NonNull type may be

dereferenced.

4. Interface to the compiler. The compiler interface indicates which annotations are

part of the type system, the checker-specific compiler command-line options, which

@SuppressWarnings annotations the checker recognizes, etc.

Sections 4.3–4.6 describe how the Checker Framework supports defining these four com-

ponents of a type system. The Checker Framework also supports parametric polymorphism

over both (qualified) types and type qualifiers (Section 4.7) and flow-sensitive inference of

type qualifiers (Section 4.8). Source code listings from the implementation of the Interning

checker (Section 5.4) are provided in Appendix A as a detailed example of the use of the

Checker Framework.

The Checker Framework offers both declarative and procedural mechanisms for imple-

menting a type system. The declarative mechanisms are Java annotations that are written

primarily on type qualifier definitions; these extend the default functionality in the most

common ways that we have encountered. The procedural mechanisms are a set of Java APIs

that implement the default functionality; in most cases, a type system designer only needs

to override a few methods. Because both mechanisms are Java, they are familiar to users

and are fully supported by programming tools such as IDEs; a type system designer need

not learn a new language and toolset. Users found the checker implementations clear to read

and write.

Our experience and that of others [3] suggests that procedural code is essential when

defining a realistic type checker, at least in the current state of the art. Our design also

permits a checker to use specialized types and rules, even ones that are not expressible in

the source code for reasons of simplicity and usability. Examples include dependent types,

linear types, and reflective types.

41

A more important benefit is expressiveness: while simple type systems are concise, com-

plex ones are possible. Parts of the implementations of the checkers described in Chapter 5

required sophisticated processing that no framework known to us directly supports. One ex-

ample that requires sophisticated processing is that of the Collection.toArray method, which

has a reflective, generic type.

The Checker Framework also provides a representation of annotated types,

AnnotatedTypeMirror, that extends the standard TypeMirror interface of the Annotation Pro-

cessing API [14] (JSR 269) with a representation of the annotations. As code uses all or part

of a compound type, at every step the relevant annotations are convenient to access. This is

particularly important for generic and array types: generic type arguments, array component

types, and the bounds of wildcards and type parameters are themselves AnnotatedTypeMirrors.

As a result, type system designers can express operations over annotated types concisely us-

ing the visitor design pattern or recursive procedures.

4.3 Type qualifiers and hierarchy

Type qualifiers are defined as Java annotations [14], extended as described in Chapter 3. A

type system designer uses the @TypeQualifier meta-annotation to distinguish an annotation

that represents a qualifier (e.g., @NonNull or @Interned) from an ordinary annotation (e.g.

@Deprecated or @Override).

The type hierarchy induced by the qualifiers can be defined either declaratively (via meta-

annotations) or procedurally. Declaratively, the type system designer writes a @SubtypeOf

meta-annotation on the declaration of type qualifier annotations. (Java forbids annotations

from subtyping one another.) @SubtypeOf accepts multiple annotation classes as an argument,

permitting the type hierarchy to be an arbitrary DAG. For example, Figure 5-4 shows that in

the IGJ type system (Section 5.6.1), @Mutable and @Immutable induce two mutually exclusive

subtypes of the @ReadOnly qualifier.

While the declarative syntax suffices for many cases, more complex type hierarchies can

be expressed by overriding the framework’s isSubtype method, which is used to determine

42

whether one qualified type is the subtype of another. The IGJ and Javari checkers specify the

qualifier hierarchy declaratively, but the type hierarchy procedurally. In both type systems,

some type parameters are covariant (with respect to qualifiers) rather than invariant as in

Java. For example, in IGJ a @ReadOnly List of @Mutable Dates is a subtype of a @ReadOnly List

of @ReadOnly Dates.

The @DefaultQualifier meta-annotation indicates which qualifier implicitly appears on

unannotated types. This may ease the annotation burden (by reducing the number of anno-

tations that must be written) or provide backward compatibility with unannotated programs.

A type system whose default is not the root of the qualifier hierarchy (such as @ReadOnly

in Javari and IGJ) requires special treatment of extends clauses. The framework treats the

declaration class C<T extends Super> as class C<T extends RootQual Super> if the class has no

methods with a receiver bearing a subtype qualifier, and as class C<T extends DefaultQual

Super> otherwise. This rule generalizes to hierarchies more complex than 2 qualifiers, and

ensures backward compatibility while maximizing the number of possible type parameters

that a client may use.

4.4 Implicit annotations: qualifier introduction

Certain constructs should be treated as having a type qualifier even when the programmer

has not written one. For example, string literals are non-null and the JVM automatically

interns them. Therefore, in the Nullness type system (Section 5.3.1), string literals implicitly

have the type @NonNull String. In the Interning type system (Section 5.4), they implicitly

have the type @Interned String.

Type system designers can specify this declaratively using the @ImplicitFor meta-

annotation. It accepts as arguments up to three lists, of types (such as primitives or array

types), symbols (such as exception parameters), and/or expressions (such as string literals)

that should be annotated.

Type system designers can augment the declarative syntax by additionally overriding the

Checker Framework’s annotateImplicit method to apply implicit annotations to a type in a

43

more flexible way. For instance, the Interning checker overrides annotateImplicit to apply

@Interned to the return type of String.intern1.

Implicit annotations are distinct from, and take precedence over, the default annotations

of Section 4.3.

Implicit annotations could be handled as a special case of type rules (Section 4.5), but

we found it more natural to separate them, as is also often done in formal expositions of

type systems.

4.5 Defining type rules

A type system’s rules define which operations on values of a particular type are forbidden.

The Checker Framework builds in most checks of the type hierarchy. It checks that, in every

assignment and pseudo-assignment, the left-hand side of the assignment is a supertype of

(or the same type as) the right-hand side; for example, this assignment is not permitted:

@Nullable Object myObject = ...;

@NonNull Object myNonNullObject;

myNonNullObject = myObject; // invalid assignment

The Checker Framework checks the validity of overriding and subclassing, and it prohibits

inconsistent annotations at a single location.

The framework provides a base visitor class that performs type-checking at each node

of a source file’s AST. It uses the visitor design pattern to traverse Java syntax trees as

provided by Sun’s Tree API2, and issues a warning whenever the type system induced by

the type qualifier is violated. As with all aspects of the Checker Framework, the default

behavior may be overridden, in this case by overriding methods in the framework’s visitor

class.

As an example, the visitor class for the Nullness type system of Section 5.3 overrides

the visitor method for dereferences to issue a warning if an expression of Nullable type is

1String.intern is the only occurrence of a method that performs interning in the JDK.
2http://java.sun.com/javase/6/docs/jdk/api/javac/tree/index.html

44

http://java.sun.com/javase/6/docs/jdk/api/javac/tree/index.html

dereferenced, as in:

@Nullable Object myObject = ...;

myObject.hashCode (); // invalid dereference

If the checker discovers violations of the type rules as it traverses the AST, it reports

errors and warnings via the Java compiler’s messaging mechanism [55].

As a special case, assignment can be decoupled from subtyping by overriding the

isAssignable method, whose default implementation checks subtyping. The IGJ and Javari

checkers override isAssignable to additionally check that fields are re-assigned only via mu-

table references.

4.6 Customizing the compiler interface

The Checker Framework provides a base checker class that is a Java annotation processor,

and so serves as the entry point for the compiler plug-in.

Type system designers associate type qualifiers with a checker by writing the

@TypeQualifiers annotation on a checker class and passing it the classes of one or more

type qualifier annotations (i.e., annotations bearing @TypeQualifier on their declarations, as

in Section 4.3) as an argument. The checker class for the Nullness checker, for instance, has

the following meta-annotation on its declaration:

@TypeQualifiers ({ NonNull.class , Raw.class , Nullable.class})

Other annotations configure the plug-in’s command-line options and the annotations that

suppress its warnings. For details, see the Checker Framework manual3.

4.7 Parametric polymorphism

The Checker Framework handles two types of polymorphism: for (qualified) types, and for

qualifiers.

3http://group.csail.mit.edu/pag/jsr308/current/checkers-manual.html

45

http://group.csail.mit.edu/pag/jsr308/current/checkers-manual.html

4.7.1 Type polymorphism

As noted in Chapter 3, a programmer can annotate generic type arguments in a natural

way, which is critical for real Java programs; the subtyping rules of Section 4.5 fully support

qualified generic types.

Generic type argument inference

The base type factory performs generic type inference for the invocations of generic methods.

It adheres to the Java language specification [32, §15.12.2.7] for inferring type arguments,

using the most restrictive type qualifiers on type arguments when possible.

When a type variable is not used within the type of a method parameter, type arguments

cannot be inferred based on the arguments of an invocation of that method (as in the JDK

method Collections.emptyList).

If type arguments can be inferred from the arguments of an invocation of a method, type

inference does not consider return types. For example, consider the following code:

List <String > lst = Arrays.asList("s", "t", "r");

under the Interning type system (Section 5.4), the return type of Arrays.asList(...) is

List<@Interned String> which is not a subtype of List<String>4, so the Interning checker

emits a compile-time error.

Inferring the qualified types of type arguments from the actual arguments ensures type

safety and is therefore preferred. In the previous example, the reference returned by asList

could be used to mutate the array, as in the following example:

String[@Interned] array = ...

List <String > lst = Arrays.asList(array);

lst.set(0, new String("23"));

The last statement effectively inserts a non-interned value into the array.

4The Interning type system follows Java subtyping rules, under which List is not a subtype of List<A>

even if B is a subtype of A.

46

Generic type argument inference eliminated dozens of false positive warnings between

the case studies described in Chapter 5 and an earlier version of the case studies.

Least Upper Bounds

A conditional expression (“(? :)”) may have true and false expressions with differing

types. The overall type of the conditional expression is determined by applying capture

conversion to the least upper bound the types of the tree and false expressions (according to

JLS §15.25).

Determining the least upper bound of qualified types may not be possible when the ex-

pressions have the same Java types but different qualified types. For example, the least up-

per bound of the types List<@NonNull String> and List<@Nullable String> is List<? extends

@Nullable String super @NonNull String>. However, Java does not allow a wildcards to have

both extends and super clauses. For this reason, the true and false expressions of conditional

expressions ought to have the same type, and the Checker Framework issues a warning when

they are not identical.

4.7.2 Qualifier polymorphism

The Checker Framework supports type qualifier polymorphism for methods, limited to a

single qualifier variable (which we have found to be adequate in practice). Thus, programmers

need not introduce generics just for the sake of the qualified type system. More importantly,

qualified type polymorphism (Java generics) cannot always express the most precise signature

of a method.

The @PolymorphicQualifier meta-annotation marks an annotation as introducing qualifier

polymorphism. For example, the Nullness checker includes the @PolyNull annotation for

polymorphism over nullness. @PolyNull is defined as follows:

@PolymorphicQualifier

public @interface PolyNull { }

47

Then, a programmer can use the marked annotation as a type qualifier variable. For example,

Class.cast returns null if and only if the argument is null:

@PolyNull T cast(@PolyNull Object obj)

For each method invocation, the Checker Framework determines the qualifier on the

type of the invocation result by unifying the qualifiers of the arguments to the invocation.

By default, unification chooses the least restrictive qualifier, but checkers can override this

behavior as necessary.

4.8 Flow-sensitive type qualifier inference

The Checker Framework performs flow-sensitive intraprocedural qualifier inference; any

checker can utilize the qualifier inference via a few lines of code. The inference may compute

a more sophisticated type (that is, a subtype) for a reference than that given in its decla-

ration. For example, the Nullness checker (Section 5.3) issues no warning for the following

code:

@Nullable Integer jsr;

...

// valueOf signature: @NonNull Integer valueOf(String);

jsr = Integer.valueOf("308");

... jsr.toString () ... // no null dereference warning

because the type of jsr is refined to @NonNull Integer, from the point of its assignment to a

non-null value until its next possible re-assignment. This enables a single variable to have

different qualified types in different parts of its scope, and often eliminates the need for

programmers to annotate method bodies, suppressing false warnings that the checker would

otherwise emit.

The inference can be described as a GEN-KILL analysis. For brevity, we describe a por-

tion of the Nullness analysis, though the framework implements it in a generic and extensible

way. For the GEN portion, a reference is known to be non-null after a null check in an assert

statement or a conditional, after a non-null value is assigned to it, or after a dereference

48

(control proceeds only if the dereference succeeds, implying that the reference is non-null).

For the KILL portion, a reference is no longer non-null when it may be reassigned, or when

flow rejoins a branch where the reference may be null. Reassignments include assignments

to possibly-aliased variables and calls to external methods where the reference is in scope.

The analysis is implemented as a visitor for Java ASTs. To compensate for redundancy

in the AST, the implementation provides dataflow abstractions (e.g., the split and merge

methods handle GEN-KILL sets at branches). In addition, a type system designer can spe-

cialize the analysis by extending the dataflow abstractions or, if necessary, visitor methods.

The Nullness checker, for instance, extends the scanCondition method to account for checks

against null, no matter the type of AST node that contains the condition.

Flow-sensitive inference is critical for a Nullness type system. Programmers often over-

load the meaning of null to carry additional information. This often leads to scenarios in

which the nullness of a local variable (for instance) varies throughout a method. Flow-

sensitive qualifier inference for nullness can refine the type of a nullable reference in which

the referent is non-null.

49

50

Chapter 5

Pluggable type checkers

To demonstrate the practicality of the Checker Framework, we have written five type check-

ers. Section 5.1 describes the case studies that evaluate the designs and implementations

of these checkers. The Basic checker (Section 5.2) applies the type rules of any type sys-

tem that has no special semantics. The Nullness checker (Section 5.3) finds and verifies the

absence of null pointer dereference errors. The Interning checker (Section 5.4) finds and

verifies the consistent use of interning and equality testing. The Javari checker (Section 5.5)

enforces reference immutability. The IGJ checker (Section 5.6) enforces reference and object

immutability.

5.1 Experimental evaluation

This section summarizes case studies that evaluate our designs and implementations. Most of

the case studies (approximately 400 KLOC) were completed in summer 2007, and technical

reports give additional details [43], including many examples of specific errors found1. As one

example, the author of FreePastry (http://freepastry.rice.edu/, 1084 files, 209 KLOC)

used the Interning checker (Section 5.4) to find problems in his code.

1Some of our measurements differ slightly from the previous version, because the subject programs are
being maintained, because of checking additional classes, and because of improvements to the checkers and
framework.

51

http://freepastry.rice.edu/

Checker Size Err- False
& Program Files Lines ALocs Ann.s ors pos.

Basic checker
Checker Framework 23 6561 3376 184 0 0

Nullness checker
Annotation file utils 49 4640 3700 107 4 5
Lookup 8 3961 1757 35 8 4
Nullness checker 58 10798 5036 167 2 45

Interning checker
Daikon 575 224048 107776 129 9 5

Javari checker
JOlden 48 6236 2280 451 0 0
Javari checker 7 1520 528 60 1 0
JDK (partial) 103 5478 6622 1208 0 0

IGJ checker
JOlden 48 6236 2280 315 0 0
TinySQL 85 18159 6574 1125 0 0
Htmlparser 120 30507 11725 1386 12 4
IGJ checker 32 8691 4572 384 4 3
SVNKit 205 59221 45186 1815 13 5
Lucene 95 26828 10913 450 13 2

Table 5.1: Case study statistics. Sizes are given in files, lines, number of possible annotation
locations, and number of annotations written by the programmer. Errors are runtime-
reproducible problems revealed by the checker. False positives are caused by a weakness in
either the type system or in the checker implementation.

Table 5.1 lists the subject programs. The annotation file utilities (distributed with the

Checker Framework2) extract annotations from, and insert them into, source and class files.

Lookup is a paragraph grep utility distributed with Daikon3 [22], a dynamic invariant detec-

tor; the Checker Framework is described in Chapter 4; and the Nullness checker is described

in Section 5.3. JOlden is a benchmark suite4 [10]. The partial JDK is several packages from

Sun’s implementation5. The Javari checker is described in Section 5.5. TinySQL is a library

implementing the SQL query language6. Htmlparser is a library for parsing HTML docu-

2http://pag.csail.mit.edu/jsr308/
3http://pag.csail.mit.edu/daikon/
4http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
5http://java.sun.com/
6http://sourceforge.net/projects/tinysql/

52

http://pag.csail.mit.edu/jsr308/
http://pag.csail.mit.edu/daikon/
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
http://java.sun.com/
http://sourceforge.net/projects/tinysql/

ments7. The IGJ checker is described in Section 5.6. SVNKit is a client for the Subversion

revision control system8. Lucene is a text search engine library9.

The sizes in Table 5.1 include libraries only if the library implementation (body) was

itself annotated and type-checked. For example, each checker was analyzed along with a

significant portion of the Checker Framework itself.

5.1.1 Methodology

This section presents our experimental methodology.

First, a type-system designer wrote a type checker using the Checker Framework. The

designer also annotated JDK methods, by reading JDK documentation and occasionally

source code.

Then, a programmer interested in preventing errors annotated a program and fixed warn-

ings reported by the checker, until the checker issued no more warnings. In other words,

the case study design is inspired by partial verification that aims to show the absence of

certain problems (modulo standard static analysis caveats about reflection, unchecked li-

braries, suppressed warnings, etc.), rather than by bug-finding that aims to discover a few

“low-hanging fruit” errors, albeit with less programmer effort. (See Section 5.3.3 for an em-

pirical comparison of the verification and bug-finding approaches.) Therefore, the number

of errors reported in Table 5.1 is less important than the fact that no others remain (modulo

the guarantees of the checkers).

The programmer manually analyzed every checker warning and classified it as an error

only if it could cause a problem at run time, or if an author of the code agreed that the code

needed to be changed. Mere code smells count as false positives, even though refactoring

would improve the code.

When fixing errors, the programmer made the smallest bug fix possible. The checkers

indicated many places that the code could be refactored or its design improved (and this

7http://htmlparser.sourceforge.net/
8http://svnkit.com/
9http://lucene.apache.org/java/docs/index.html

53

http://htmlparser.sourceforge.net/
http://svnkit.com/
http://lucene.apache.org/java/docs/index.html

would have also reduced the number of false positive warnings). Such changes would in-

volve much more time and effort, and the effort would be harder to quantify, biasing the

experimental results. For similar reasons, our studies analyze existing programs rather than

writing new programs matched to the checker’s capabilities. We note possible bias in that

a few of the subject programs are the checkers themselves. The authors might have had

the type system in mind while writing them, though no annotation occurred until after the

checker was complete.

Warnings that cannot be eliminated via annotation, but that cannot cause incorrect

user-visible behavior, count as false positives. The programmer used a @SuppressWarnings

annotation to suppress each false positive. As an exception to this rule, when using the

Nullness checker, the programmer suppressed each false positive with an assertion (e.g.,

“assert x != null;”), which had the positive side effect of checking the property at run

time.

All but 6 false positives were type system weaknesses, also known as “application in-

variants”. These manifest themselves in code that can never go wrong at run time, but for

which the type system cannot prove this fact. For instance, the checker issues a false positive

warning in the following code:

Map <String , @NonNull Integer > map;

String key;

...

if (map.containsKey(key)) {

@NonNull Integer val = map.get(key); // false positive

}

Map.get is specified to possibly return null (if the key is not found in the map); however, in

the above code the Map.get return value is non-null, because key must be in the Map if line 5 is

reached. The other 6 false positives were caused by weaknesses in a checker implementation.

In 17 cases an edit was necessitated by a questionable coding style where, in order to

create an object, a client must call both a constructor and then an additional method.

The programmer inserted the helper method body, or a call to the helper method, in the

54

Checker Total Type rules Type intro. Flow Compiler i/f
Basic 87 0 20 13 54
Nullness 502 44 187 258 13
Interning 209 129 61 5 13
Javari 334 55 236 n/a 43
IGJ 438 0 338 n/a 94

Table 5.2: Checker size, in non-comment non-blank lines of code. Size for integration with
flow-sensitive qualifier inference is separated from the rest of the type introduction code.
Qualifier definitions are omitted: they are small and have empty bodies. The compiler
interface for the Nullness and Interning checkers has an empty body; package and import

statements account for the majority of the code.

constructor.

Finally, JOlden and Lucene are written in pre-generics Java, so the programmer added

type parameters to it before proceeding with the case study.

5.1.2 Ease of use

The Checker Framework is easy for a type system designer to use, and the resulting checker

is easy for a programmer to use.

It was easy for a type system designer to write a compiler plug-in using the Checker

Framework. Table 5.2 gives the sizes of the five checkers presented in this paper. Most of

the methods are very short, but a few need to take advantage of the power and expressiveness

of the Checker Framework. As anecdotal evidence, the Javari and IGJ checkers were written

by a second-year and a third-year undergraduate, respectively. Neither was familiar with

the framework, and neither had taken any classes in compilers or programming languages.

As another anecdote, adding support for @Raw types [27] to the Nullness checker took about

1 hour. It took about 2 hours to generalize the Nullness-specific flow-sensitive type qualifier

inference [43] into the framework feature of Section 4.8.

It was also easy for a programmer to use a checker. The Interning case study, and

parts of the Nullness case studies, were done by programmers with no knowledge of either

the framework or of the checker implementations. Subsequent feedback from external users

55

of the checkers has confirmed their practicality. Furthermore, using a checker was quick.

Almost all of the programmer’s time was spent on the productive tasks of understanding

and fixing errors. Annotating the program took negligible time by comparison.10 Identifying

false positives was generally easy, for three reasons: many false positives tended to stem

from a small number of root causes, many of the causes were simple, and checker warnings

indicate the relevant part of the code. Good integration with tools such as javac aided all

of the tasks.

5.2 The Basic type checker for any simple type system

The Basic checker performs only checks related to the type hierarchy (Section 4.3). This is

adequate for simple type systems — those with no special semantics beyond Java subtyping

rules — and is ideal for prototyping.

The type system designer writes no code besides annotation definitions (which have

empty bodies). The programmer names the qualifiers that make up the type system on the

command line.

The Basic checker supports all of the functionality provided declaratively by the Checker

Framework, including arbitrary type hierarchy DAGs, type introduction rules, qualified type

and qualifier polymorphism (Section 4.7), and flow-sensitive inference (Section 4.8).

Additional examples of useful type qualifiers include YY (for two-digit year string), YYYY

(for four-digit year string), which helped to detect and verify absence of Y2K errors [20];

the localizable qualifier to indicate where translation of user-visible messages should be

performed; and qualifiers for specifying the format or encoding of a string (e.g. XML or SQL).

The Basic checker is useful for creating prototypes to experiment with these type systems

and others. However, the Basic checker is limited in its abilities to enforce the invariants (e.g.

checking that YY string literals have two-digits), and the user may need to add (qualified)

type casts or wrap the source of values within some methods.

10However, we have since developed inference tools for the Javari and Nullness type systems.
These tools, discussed in the Checker Framework manual (http://pag.csail.mit.edu/jsr308/current/
checkers-manual.html), further reduce the annotation burden, particularly for libraries and legacy code.

56

http://pag.csail.mit.edu/jsr308/current/checkers-manual.html
http://pag.csail.mit.edu/jsr308/current/checkers-manual.html

5.2.1 Basic checker case study

As a case study, a type system designer used the Basic checker to define @Fully and @Partly

annotations that were useful in verifying the Checker Framework itself. The framework

constructs an annotated type (AnnotatedTypeMirror, Section 4.2) of an expression in several

phases, starting from an unannotated type provided by the underlying compiler. It first adds

the annotations that were explicitly written on that expression’s type, then it adds resolved

annotations (e.g., from type variable substitution or generic type inference), and finally

it adds implicit annotations (Section 4.4); the framework must never return a partially-

constructed annotated type to a checker.

The @Fully type qualifier indicates that construction is complete. A @Fully annotated

type is a subtype of a @Partly annotated type. The programmer annotated each use of

AnnotatedTypeMirror in the framework with @Fully or @Partly annotations to verify that the

framework never returns a partially-constructed annotated type to a checker.

The case study required 55 uses of qualifier polymorphism (Section 4.7). For instance,

the component type of an array type has the same annotatedness as the array type, so

the programmer annotated the getComponentType method of the AnnotatedArrayType class as

follows:

@PolyAnno AnnotatedTypeMirror getComponentType () @PolyAnno { ... }

5.3 The Nullness checker for null pointer errors

5.3.1 The Nullness type system

The Nullness checker implements a qualified type system in which, for every Java type T,

@NonNull T is a subtype of @Nullable T (see Figure 5-1). As an example of the difference,

a reference of type @Nullable Boolean always has one of the values TRUE, FALSE, or null. By

contrast, a reference of type @NonNull Boolean always has one of the values TRUE or FALSE

— never null. Dereferencing an expression of type @NonNull Boolean can never cause a null

57

Figure 5-1: Type hierarchy for the Nullness type system. Java’s Object is expressed as
@Nullable Object. Programmers can omit most type qualifiers, thanks to careful choice of
defaults.

pointer exception.

The Nullness checker issues a warning when an expression that does not have a @NonNull

type (i.e. has a @Nullable) type is dereferenced. Additionally, as with all checkers, it warns of

violations of the type system; for the Nullness checker, this is when an expression of @NonNull

type might become null. Either problem might cause a null pointer exception at run time.

The following code example illustrates both kinds of errors:

Object obj; // might be null

@NonNull Object nnobj; // never null

...

obj.toString (); // warning: possible null pointer exception

nnobj = obj; // warning: nnobj may become null

nnobj.toString (); // OK

The Nullness checker supports the @Raw type qualifier for partially-initialized objects [27].

(The @Raw type qualifier is unrelated to the raw types of Java generics.) During the execution

of a constructor, all fields of non-primitive type start out with the value null, including those

with a @NonNull type. If the constructor calls a method, that method could dereference

uninitialized @NonNull fields. @Raw prevents errors like these: if a reference has a @Raw type,

all fields of its referent are treated as @Nullable. this implicitly has a @Raw type within the

constructor, so it can only be passed to methods when the corresponding parameter has a

@Raw type. Similar restrictions apply when assigning this to a field or invoking a method on

it. Implementing support for the @Raw type qualifier took about an hour of work.

58

The Nullness checker’s visitor class implements three type rules: for dereferences of

possibly-null expressions (“type rules” column of Table 5.2), implicit iteration over possibly-

null collections in an enhanced for loop, and accessing a possibly-null array. All three rules

check for dereferences of a possibly-null reference; the last two account for Java’s syntac-

tic sugar. The type introduction rules add the @NonNull annotation to literals (except null

gets @Nullable), new expressions, and classes used in static member accesses (e.g., System in

System.out).

The Nullness checker optionally warns about a variety of other null-related coding mis-

takes, such as checking a value known to be (non-)null against null. These do not lead to

run-time exceptions and so are not tabulated in Table 5.1, but these redundant tests and

dead code are often correlated with other errors [35].

5.3.2 Type system weaknesses

Like other Nullness type systems, ours is good at stating whether a variable can be null,

but not at stating the circumstances under which the variable can be null. In the Lookup

program, entry start re is null if and only if entry stop re is null. After checking just one

of them against null, both may be dereferenced safely. 39 of the 45 false positives in the

Nullness checker case study (Figure 5.1) were due to similar complex nullness invariants,

especially in AST node operations. Expressing such application invariants would require a

substantially more sophisticated system, such as dependent types [46].

The flexibility of the Checker Framework permits type system designers to create more

sophisticated checks even if they are not expressible in a type system. For example, the best

type for Collection.toArray is both reflective and polymorphic, and checkers can treat it as

such.

Another example from the Lookup subject program is that of a variable holding a factory

method for a class. The variable is non-null if the class has no constructor and the class is

not a Java enum; in code implementing that case, the variable is unconditionally dereferenced.

As another example, the compiler API used by the Nullness checker contains a number

59

of methods that return null if and only if their single parameter is null. For example, the

JDK method Class.cast has the following signature:

T cast(Object obj)

cast returns null if and only if obj is null. Using the @PolyNull annotation for polymorphism

over nullness, the signature of Class.cast becomes:

@PolyNull T cast(@PolyNull Object obj)

Then, the return value of cast has type @NonNull T when obj is non-null.

Similarly, one variant of the Properties.getProperty method has the following signature:

String getProperty(String key , String default)

The return value of getProperty has the type @NonNull String if and only if the default

parameter has the type @NonNull String (Properties does not permit mappings to null values).

Using the @PolyNull annotation, the signature becomes

@PolyNull String getProperty(String key , @PolyNull String default)

The occurrence of invocations of methods like Class.cast and Properties.getProperty in the

subject programs motivated the implementation of qualifier polymorphism in the Checker

Framework.

In Table 5.1, the 4 errors detected in the “Annotation file utils” subject program is an

underestimate. Before our case study, the program’s author had already fully annotated the

code with @NonNull annotations, simulated the type rules by hand, and fixed all problems

that arose. After that, the programmer in the case study ran the checker, which revealed 4

additional errors.

All other subject programs used the methodology described in Section 5.1.1.

5.3.3 Errors found

The most frequent null dereference error (both in our case studies, and also in feedback from

other users of the checker) resulted from failure to check a value returned by a method,

especially when the method rarely returns null in practice.

60

A typical example from the Nullness checker subject program (simplified for presentation)

is the following:

if (enclosing.getElement ().getKind () == METHOD)

return enclosing.getReceiverType ();

The method getElement() returns null when enclosing represents the enclosing method of a

statement in a static block. This surprised the programmer, since the Java language requires

compiling the contents of a static block into a static initializer method. The warning message

led the programmer to fix this error before it ever caused a null pointer exception.

As another example from the same subject program, a type warning revealed an error

where the variable nnElement was being checked against null, but a bug fix introduced code

using nnElement before (rather than after) the check. The programmer fixed this by reordering

the statements.

Here are some other example errors from the Lookup program. The deleteDir utility

method throws a null pointer exception if passed a filename that is not a directory, because

File.listFiles returns null in that case. A readLine method can throw a null pointer excep-

tion because Matcher.group (from java.util.regex) can return null. Checking for null permits

a comprehensible error message rather than a crash.

The warnings indicated to the programmer several other problems. (Since they do not

cause a null pointer exception, Table 5.1 does not count them, to avoid inflating our numbers.)

As an example, the Lookup program’s command-line options could set but not disable certain

options: although null is used as a flag, there was nowhere that the variable could be set to

null. As another example, the checker’s advisories revealed dead code, due to null checks of

values that cannot be null, in each of the subject programs.

We evaluated our checker against the null pointer checks of several other static analysis

tools, using the Lookup subject program. Table 5.4 tabulates the results. The other tools

missed all the errors, and did not indicate any locations where annotations could be added

to improve their results. In their defense, they did not require annotation of the code, and

their other checks (besides finding null pointer dereferences) may be more useful.

61

Errors False Annotations
Tool Found Missed warnings written
The Checker Framework 8 0 4 35
FindBugs 0 8 1 0
JLint 0 8 8 0
PMD 0 8 0 0

Table 5.3: A comparison of our Nullness checker with other bug-finding tools.

5.3.4 Default annotation for Nullness checker

The Nullness checker treats unannotated local variables as Nullable, and all other unanno-

tated types (including generic type arguments on local variables) as non-null. We call this

default NNEL, for NonNull Except Locals. The NNEL default reduces the programmer’s an-

notation burden, especially when combined with the flow-sensitive type inference described

in Section 4.8. The default can be overridden on a class, method, or field level.

We believe the NNEL design for defaults to be novel, and our experience indicates that

it is superior to other choices. NNEL combines the strengths of two previously-proposed

default systems: nullable-by-default and non-null-by-default.

Nullable-by-default has the advantage of backward-compatibility, because an ordinary

Java variable may always be null. However, in practice many variables have a @NonNull type,

so this default requires many annotations.

Non-null-by-default is a syntactic convenience that does not affect the type system, but

makes the source code “@Nullable Object” refer to the top of the checker’s type hierarchy

(Figure 5-1), and the source code “Object” refer to its non-null subtype (@NonNull Object).

A disadvantage is that an incremental approach to annotating legacy code is not possible.

However, non-null-by-default reduces clutter and annotation effort in programs that use

more non-null than nullable types. Non-null types are believed to be more prevalent, so

Splint, Nice, JML, and Eiffel have adopted non-null-by-default semantics [26, 27, 8, 38, 17].

(Another reason for a non-null default is to bias programmers away from using nullable

variables. Every program needs some nullable variables, but they should be avoided when

possible.)

62

Nullable NonNull NNEL
Program Tot Sig Body Tot Sig Body Tot Sig Body
Annotation file utils 760 483 277 165 86 79 107 90 17
Lookup 382 301 81 78 31 47 35 33 2
Nullness checker — 282 126 156 146 126 20

Table 5.4: The number of annotations required to eliminate null dereference warnings, de-
pending on the default for nullity annotations. The total number of annotations (“Tot”) is
the sum of those in method/field signatures (“Sig”) plus those in method/initializer bodies
(“Body”).

To evaluate the defaults, the programmer annotated subject programs two or three sep-

arate times, using different defaults. (Since the type system and checker are unchanged, the

checker warnings indicated exactly the same errors regardless of the annotation default.) We

are not aware of any previous study that quantifies the difference between using nullable-

by-default and non-null-by-default, though Chalin and James [11] determined via manual

inspection that about 3/4 of variables in JML code and the Eclipse compiler are dereferenced

without being checked.

Table 5.4 shows our results. A non-null default requires fewer annotations than a nullable

default, but NNEL is best of all. Although the nullable default is worse than the non-null de-

fault overall, it requires fewer annotations in method bodies; the flow-sensitive type inference

often permitted a completely unannotated method body to type-check by inferring @NonNull

types for some local variables. NNEL is as good as non-null for signatures, and is even better

than nullable for bodies. The NNEL code was not just terser, but — more importantly —

clearer to the programmers in our study. Reduced clutter directly contributes to readabil-

ity. NNEL mitigates backward-compatibility issues, because programmers usually plan to

annotate signatures anyway; doing so is required for modular checking and is useful and

non-burdensome compared to annotating method bodies. Our choice of the NNEL default

was also motivated by the observation that when using nullable-by-default, programmers

most often overlooked @NonNull annotations on generic types; the NNEL default corrects this

problem (since only the raw types of locals are @Nullable in NNEL). A potential downside of

non-uniform defaults is that an unannotated type such as “Integer” means different things

63

Figure 5-2: Type hierarchy for the Interning type system.

in different parts of the code. However, this was not a problem in practice, perhaps because

programmers think of public declarations differently than private implementations. Further

use in practice will yield more insight into the benefits of the NNEL default. We believe

that the general approach embodied by the NNEL default is also applicable to other type

systems.

5.4 The Interning type checker for equality-testing and

interning errors

Interning, also known as canonicalizing or hash-consing, finds or creates a unique concrete

representation for a given abstract value. That representation can be used in place of any

other concrete representation. For example, many Strings could represent the 11-character

sequence "Hello world"; interning selects a particular one of these as the canonical represen-

tation that a client should use in preference to all others.

Interning yields both space and time benefits. The space benefit stems from the fact that

many references can point to a single, unique representation. The time benefit stems from

the ability to use == instead of equals() for comparisons. As another benefit, x == y is more

readable than x.equals(y), especially for complex expressions, and the equality test reminds

the reader of the invariants on the underlying data structure. However, misuse of interning

can lead to bugs: use of == on distinct objects representing the same abstract value may

return false, as in the expression new Integer(22) == new Integer(22).

64

The Interning type hierarchy is depicted in Figure 5-2. We believe that ours is the first

formulation of a completely backward-compatible system for interning.

5.4.1 The Interning checker

If the Interning checker issues no warnings for a given program, then all reference (in)equality

tests (== and !=) in that program operate on interned types.

The visitor class (type rules) for the Interning checker has 3 parts:

1. It overrides one method to warn if either argument to a reference (in)equality operator

(== or !=) is not interned. For example:

String s;

@Interned String is;

if (s == is) { ... } // warning: unsafe equality

In addition, since it extends the base visitor class, assignments such as the following

are not permitted:

myInternedObject = myObject; // invalid assignment

2. Most of the checker is code to eliminate two common sources of false positives, sup-

pressing warnings when:

(a) the first statement of an equals method is an if statement that returns true after

comparing this and the (sole) parameter, or

(b) the first statement of a compareTo method returns 0 after comparing its two pa-

rameters.

3. The checker optionally issues a warning when equals() is used to compare two interned

objects. These warnings do not indicate a correctness problem, so Table 5.1 does not

report them. However, they did enable the programmer to use == in several instances,

making the code both clearer and faster.

65

The type introduction rules mark as @Interned: string and class literals, values of prim-

itive, enum, or Class type, and the result of the String.intern method. The Interning

checker requires no library annotations, since the only library method that affects interning

is String.intern.

The implementation of the Interning checker is provided in Appendix A.

5.4.2 Interning case study

We evaluated the Interning checker by applying it to Daikon [22]. Daikon is a dynamic

invariant detector — that is, it observes program executions and generalizes from observed

values to likely invariants. Not counting third-party libraries, (even those included in source

form in the Daikon distribution), Daikon consists of approximately 250 KLOC of Java code.

Daikon is relatively mature, at least by the standards of research software. The Daikon tool

has been used in about 100 publications, as well as many additional uses (e.g., by working

developers) that did not result in a published paper.

Daikon is a good subject program because memory usage is the limiting factor in its scal-

ability [45]. Daikon uses the interning design pattern extensively. 1170 lines of comments

or code contain “canonical”, “intern”, or a variant of those words, but not counting unre-

lated words such as “internal”. Over 200 run-time assertions check that values are properly

interned: 67 of those have no other purpose (e.g., x==x.intern()), and 137 others can be

viewed as checking both interning and other types of data consistency (e.g., x.ppt==y.ppt).

The programmer annotated 11 files (12 KLOC) in Daikon with 127 @Interned annotations;

these files contain more than half of Daikon’s 1170 interning comments/calls. The distribu-

tion of interning is uneven in the code: 72% of the files have no interning comments/calls,

and 87% have no more than 2. Furthermore, manual spot inspection indicates that these

files do not use interning in error-prone ways. Daikon contains an intern or canonicalize

method for 10 classes, including both classes defined in Daikon and static interning methods

for types defined elsewhere such as Integer and array types. The Daikon developers use an

Emacs plug-in that checks code for String-related interning errors whenever a file is saved.

66

Despite the fact that its programmers have spent considerable time and effort validating

its use of interning, annotating only part of Daikon revealed 9 errors and 2 optimization

opportunities.

The programmer performed annotation and bug fixing (see below), but no refactoring

nor algorithmic changes.

5.4.3 Errors found

The Interning checker revealed 9 previously unknown interning-related errors in Daikon, 2

performance bugs (unnecessary interning), and a design flaw. The programmer fixed all but

the latter. We briefly describe these problems.

The DeclReader.read data method, which reads trace files, returned interned data in 4

places and uninterned data in 2 places. However, a client (WSMatch) sometimes used == for

comparisons of uninterned results. The programmer added 2 missing calls to intern methods

in read data, so its result is always interned.

A code comment indicated that the VarInfo.str name field was interned, but VarInfo con-

structors failed to intern it on 5 occasions — almost half of all locations where the field is set

in constructors. The uninterned field values escaped via the name() method (also commented

as interned) to many clients that tested them with ==.

The VarInfo.var info name field is also interned. The simplify expression method per-

forms algebraic simplification by side effect (side effects are necessary for preserving object

equality). The method contains 17 branching points and fails to re-intern the new value of

var info name in 2 locations.

In another case there was too much, not too little, interning. Method

FileIO.read data trace record is the inner loop of trace file reading. It interned lines as

they were read from a file, but this interning was taken advantage of in only one location,

and in two cases lines were read without interning into variables that were commented as

interned. The programmer removed the comment and the interning, and changed one use of

== to equals.

67

A design flaw relates to the complex interning behavior of the VarInfoName class.

VarInfoName represents variable names, their formatting, and their relationships to one an-

other and to program points. All external references to this class are interned (and the

programmer verified manually that all clients treat them properly), but within the class

body instances are sometimes uninterned (for instance, in the middle of a sequence of oper-

ations within a method). The programmer discovered locations where uninterned instances

could leak to the outside as private fields or as subcomponents of interned references, but

was unable to determine whether this can cause incorrect user-visible behavior. A simpler

design would be easier to understand, less error-prone, and likely no less efficient. At the

time of the case study, VarInfoName was obsolescent: it had been deprecated for over a year

and was being retained only for backward-compatibility with an older file format.

Our experience so far indicates that the Interning type checker is easy to use and can be

extremely fruitful in identifying errors.

5.4.4 False positives

The programmer added 9 @SuppressWarnings annotations to eliminate false positives, as tab-

ulated in Table 5.1. The false positives in Table 5.1 are due to casts in intern methods, tests

in equality methods, and an application invariant: checking whether a variable is still set

to its interned initial value can safely use ==, even if the variable’s type is not interned in

general.

Beyond the 5 @SuppressWarnings annotations noted in Table 5.1, the programmer added

4 additional ones, to account for calls to files that the programmer did not annotate.

5.5 The Javari checker for mutability errors

5.5.1 The Javari type system

A mutation error occurs when a side effect modifies the state of an object that should not

be changed. Mutation errors are difficult to detect: the object is often (correctly) mutated

68

Figure 5-3: Type hierarchy for Javari’s ReadOnly type qualifier.

in other parts of the code, and a mutation error is not immediately detected at run time.

The Javari [6, 52] type system enables compile-time detection and prevention of mutation

errors.

Javari is an extension of the Java language that permits the specification and compile-time

verification of immutability constraints. Figure 5-3 shows the type hierarchy. Programmers

can state the mutability and assignability of references using a small set of type annotations.

• The @ReadOnly annotation indicates that a reference provides only read-only access; no

side effect may be performed through such a reference.

• The @Mutable and @Assignable annotations exclude parts of an object’s state from the

mutation guarantee — for example, for a field that is used as a cache.

• The @QReadOnly annotation is a mutability wildcard, much like those introduced by ?

extends in Java generics; the “Q” in @QReadOnly stands for “question mark”. This type

permits only operations that are allowed for both read-only and mutable types.

• The @PolyRead annotation simulates mutability method overloading, enabling return

type mutability to depend on the mutability of parameters. For example, the identity

method could be annotated with @PolyRead to indicate that its parameter and return

value are either both read-only or both non-read-only. @PolyRead was previously known

as @RoMaybe.

The type system is specified in greater detail elsewhere [52], including why it is necessary

and correct for @ReadOnly types to be supertypes of their unqualified counterparts.

69

5.5.2 The Javari checker

The visitor class for the Javari checker overrides each method that handles an operation

with the potential to perform a side effect — notably field assignment — in order to warn if

mutation occurs on a reference with a read-only type:

String localString;

// mutable method

void aMutableMethod () {

localString = "a"; // no error

}

// readonly method

void anotherMethod () @ReadOnly {

localString = "a"; // error

aMutableMethod (); // error

}

The type introduction rules handle features that make the type of a reference dependent

on the context, including field mutability inherited from the current reference (Javari’s “this-

mutable”) and parametricity over mutability including wildcards (@PolyRead). The following

code fragment demonstrates the use of @PolyRead:

class DWrapper {

Date localDate;

DWrapper(@PolyRead Date d) @PolyRead {

// new object has same mutability

// as constructor parameter

localDate = d;

}

}

@ReadOnly Date roDate;

Date mutDate;

70

...

DWrapper w1 = new DWrapper(roDate);

// error: cannot assign readonly to mutable

// other assignments are legal:

DWrapper w2 = new DWrapper(mutDate);

@ReadOnly DWrapper w3 = new DWrapper(roDate);

@ReadOnly DWrapper w4 = new DWrapper(mutDate);

5.5.3 Errors found

The Javari checker found a mutability bug in its own implementation. A global variable

containing information about the state of the checker was mutated when the checker visited

the AST node for an inner class, but was not reset upon exiting. (The programmer’s fix

allocated a new object instead.) The checker test suite did contain inner classes, but did not

contain the right combination of different mutabilities on the outer and inner classes, and

additional code after the inner class, to trigger the bug.

The programmer found annotating his own code to be easy and fast. The most difficult

part of the case study was annotating largely undocumented third-party code. Quite a few

methods modified their formal parameters, but this important and often surprising fact was

never documented in the code the programmer examined.

The most difficult method to annotate was Collection.toArray method, which has the

following signature:

<T> T[] toArray(T[] a)

In addition to reflective complexities noted earlier, toArray modifies its argument exactly if

the argument has greater size than the receiver (i.e. the size of the array argument is greater

than the size of the collection on which toArray was invoked).

The annotations did not clutter the code because they appeared mostly on method sig-

natures; leaving local variables unannotated (@Mutable) was usually sufficient. The few local

variable annotations appeared at existing Java casts, where the type qualifier had to be made

71

Figure 5-4: Type hierarchy for three of IGJ’s type qualifiers.

explicit; the flow-sensitive analysis described in Section 4.8 would have eliminated the need

for these.

The programmer was able to annotate more local variables in the Javari checker than in

the JOlden benchmark, due to better encapsulation and greater incidence of getter meth-

ods. Most of the annotations were @ReadOnly (288 annotations on classes, 514 annotations on

libraries and interfaces). The programmer never used the @QReadOnly annotation; the default

inherited mutability was expressive enough. The programmer used @PolyRead extensively:

on almost every getter method and most constructors, but nowhere else. The programmer

used @Mutable only 3 times; all 3 uses were in the same class of the Javari visitor, to annotate

protected fields that are passed as arguments and mutated during initialization. The pro-

grammer used @Assignable 16 times, all while annotating a set of inner anonymous classes in

JOlden that extended Enumeration, that could conceivably be read-only, and that required a

reference to the last visited item to be assignable.

5.6 The IGJ checker for mutability errors

5.6.1 The IGJ type system

Immutability Generic Java (IGJ) [57] is a Java language extension that expresses immutabil-

ity constraints. Like the Javari language described in Section 5.5, it is motivated by the fact

72

that a compiler-checked immutability guarantee detects and prevents errors, provides use-

ful documentation, facilitates reasoning, and enables optimizations. However, the two type

systems are quite different. IGJ is more powerful than Javari in that it expresses and en-

forces both reference immutability (only mutable references can mutate an object) and object

immutability (an immutable object can never be mutated).

The IGJ type system ensures that no object can be mutated through a read-only refer-

ence. The following code illustrates type errors:

@Immutable Date myImmutableDate = ...;

@ReadOnly Date myReadOnlyDate = ...;

myImmutableDate = myMutableDate; // invalid assignment

myImmutableDate.setMonth (2); // invalid invocation

myReadOnlyDate.setMonth (2); // invalid invocation

IGJ is the first proposal for enforcing object immutability within Java’s syntax and

type system, and its reference immutability is more expressive than previous work. IGJ

also permits covariant changes of type parameters in a type-safe manner, e.g., @ReadOnly

List<Integer> is a subtype of a @ReadOnly List<Number>.

Every reference is annotated as @Immutable, @ReadOnly, @Mutable (the default), or

@AssignsFields; Figure 5-4 illustrates the relationship among the first three of these, and

the following list summarizes their semantics:

• A reference with an @Immutable type refers to an immutable object, which cannot be

mutated via the immutable reference or any aliasing reference.

• A reference with a @ReadOnly type provides only read-only access to its referent. No

mutation may occur via the reference, but mutation of the referent is possible via an

aliasing reference.

• A reference with a @Mutable type refers to an object which may be mutated via the

reference.

• A method whose receiver type is annotated with @AssignsFields is permitted to mutate

the receiver in a limited manner, for use in helper procedures called by constructors.

73

• A field with an @Assignable annotation excludes the field from the abstract state of

the enclosing object and may be reassigned, irrespective of the immutability of the

enclosing object.

• A type with an @I annotation simulates mutability overloading; the annotation plays

a role similar to that of type variables in Java’s generics system.

The IGJ checker does not extend the visitor class; the base functionality provided by the

framework is sufficient for the IGJ checker.

The checker class overrides the handler for re-assignment to warn against re-assignment

of non-assignable (i.e. final) fields. It inherits functionality to warn against invoking a mu-

tating method on a read-only reference and about assignment of incompatible immutability

types (e.g., assigning an immutable object to a mutable reference). The type introduction

rules handle context-sensitive references, including parametricity over mutability including

wildcards (@I); resolve mutabilities not explicitly written on the code (i.e., inherited from a

parent reference, determined with the mutability wildcard @I, or specified by default annota-

tion); add @Immutable to literals (except null) and primitive types; and infer the immutability

types for method return values.

The checker also emits an optional warning when casts increase the mutability access of

a reference.

5.6.2 Errors found

The IGJ checker revealed 42 representation exposure errors in the case study programs. For

example, in the SVNKit library, the SSH authentication class constructor takes the private

key as a char array, and assigns it to a private field without copying; an accessor method also

returns that private field without copying. Clients of either method can freely mutate the

array’s contents. In Apache’s Lucene, Document stores a list of Fieldable items it contains.

Document.getFields returns a mutable raw reference to the list. Clients of that method can

mutate the list contents and add non-Fieldable items.

74

public static
QuadTreeNode createTree(QuadTreeNode parent ,...) {

QuadTreeNode node;
if (...) { node = new BlackNode (...); }
else if (...) { node = new WhiteNode (...); }
else {

node = new GreyNode (...);
sw = createTree(node , ...);
se=...; nw=...; ne=...;
node.setChildren(sw,se ,nw ,ne);

}
return node;

}

Figure 5-5: The QuadTreeNode.createTree method of the perimeter program. Class
QuadTreeNode should be immutable, so the call to setChildren on line 10 fails to type-check.

The checker also revealed an error in the Checker Framework itself. AnnotatedTypeFactory

cached the resulting mutable AnnotatedTypeMirror for Elements without copying. The

AnnotatedTypeMirror were mutated afterwards, corrupting the result for subsequent retrieval

of the Element.

The perimeter program from the JOlden benchmark computes the perimeter of a region

in a binary image represented by a quad-tree. This program has ten classes in three hierar-

chies. All instances of Quadrant and QuadTreeNode are immutable. Therefore, the programmer

transformed these two classes into immutable classes, which turned all their 7 subclasses into

immutable classes as well.

Conversion to IGJ also allowed the programmer to find and fix a conceptual problem in

several immutable classes. For example, in JOlden’s QuadTreeNode (see Figure 5-5) the con-

structor left the object in an inconsistent state that was later corrected by another method.

This is illegal when a class is immutable; the second method is not permitted to modify the

(immutable) object. The programmer solved such problems by adding parameters to the

constructor and factory method to grant access to the complete state of the new object, or

by moving all of the logic of object construction into a single method.

Conversion to IGJ revealed an unusual design pattern in SVNKit: some getters have

side effects, and some setters have none! For example, getSlotsTable is actually a factory

75

method that returns the same SlotsTable object on each invocation, but mutates that object

according to the argument to getSlotsTable. setPath is also a factory method that returns a

new SVNURL object like the receiver, but with one field set to a different value. Documenting

these unexpected mutation facts (about both arguments and results) made the code much

more comprehensible.

Preliminary conversion to IGJ revealed a code smell related to a complex im-

mutability specification in Google Guice11, a dependency injection framework for Java.

InjectorImpl.findBindingsByType returns a read-only list of the bindings for a type. If the

type has a binding, the returned list is backed by an internal map, so future changes to the

bindings are reflected in the list, except for the removal of the type in the binding. If the

type has no binding, it returns an empty immutable list that does not reflect future biding

changes.

Pre-existing unchecked casts (due to Java generics limitations) in the subject programs

led to 11 false positives. The other 3 false positives stemmed from AST visitors. In the IGJ

checker and framework, visitors are used to collect data on types (via read-only references)

and to add implicit annotations on the types (via mutable references). To eliminate these

false positives, the programmer could write separate abstract visitor classes: one for read-

only nodes and one for mutable notes. Using the design pattern, the class for each node in

the structure has an accept method, typically implemented as follows:

public <R> R accept(Visitor <R> visitor) {

return visitor.visit(this);

}

where R is the return type of visitor method for that node. If the accept method’s receiver

has a @ReadOnly type, the visitor is passed a read-only reference to the object, and cannot

mutate it; in another words, we cannot have a mutating visitor. On the other hand, if the

accept method’s receiver is mutable, the accept method cannot be invoked via a read-only

reference, even if the visitor does not mutate the object.

11 false positives were due to unchecked casts. The IGJ type system inherits the Java 5

11http://code.google.com/p/google-guice/

76

http://code.google.com/p/google-guice/

limitation of unchecked casts for generic types. For example, In SVNReader.getMap(Object[],

int), an Object was casted to Map<?,?>. This cast cannot be checked soundly and may allow

for a mutable reference to immutable objects. The IGJ checker is only sound when used to

check type-safe Java code.

Adding annotations made the code easier to understand because the annotations pro-

vide clear, concise documentation, especially for method return types. For example, they

distinguished among unmodifiable and modifiable collections.

The annotated IGJ programs use both immutable classes and immutable objects. Every

object of an immutable class is immutable, but greater flexibility is achieved by the ability

to specify particular objects of other classes as immutable. The annotated SVNKit program

uses immutable objects for Date objects that represent the creation and expiration times for

file locks, the URL to the repository (using IGJ, a programmer could simplify the current

design, which uses an immutable SVNURL class with setter methods that return new instances),

and many Lists and arrays of metadata. The programmer noted other places that code

refactoring would permit the use of immutable objects where immutable classes are currently

used, increasing flexibility.

Some classes are really collections of methods, rather than representing a value as the

object-oriented design paradigm dictates. Mutability types are a poor fit to such classes,

but leaving them unannotated worked well, since the default qualifier for unannotated types

is mutable (for backward compatibility with Java).

We gained insight into how IGJ’s type rules apply in practice. Less than 10% of classes

had constructors that call setter methods. Programmers showed discipline regarding the

mutability of references: no single variable was used both to mutate mutable references

and to refer to read-only references. Most fields re-used the containing class’s mutability.

The programmer used few mutable fields; one of the rare exceptions was a collection (in

SVNErrorCode) that contains all SVNErrorCodes ever created. The programmer used @Assignable

fields only 13 times, to mark as @ReadOnly the receiver of: a tree rebalancing operation; a

method that resizes a buffer without mutating the contents; and getter methods that lazily

77

initialize their fields.

78

Chapter 6

Related work

6.1 Frameworks

The idea of pluggable types is not new, but ours is the first practical framework for, and

evaluation of, pluggable type systems in a mainstream object-oriented language. Several

previous attempts suggest that this is an important goal, but not simply a matter of engi-

neering.

Several previous attempts have been made to build a framework for pluggable type sys-

tems in Java. The most direct comparison comes from the fact that JQual [34], JavaCOP [3],

and our framework have all been used to implement the Javari [52] type system for enforcing

reference immutability. The version implemented in our framework supports the entire Javari

language (5 keywords). The JQual and JavaCOP versions have only partial support for 1

keyword (readonly), and neither one correctly implements method overriding, a key feature

of an object-oriented language. The JavaCOP version has never been run on a real program;

the JQual one has but is neither scalable nor sound [4]. Another point of comparison is

JavaCOP’s Nullness type system. Initially ineffective on real programs, recent work [41] has

enabled it to scale to programs as large as 948 LOC, albeit with higher false positive rates

than our Nullness checker. The JavaCOP Nullness checker, at 418 non-comment, non-blank

lines, is smaller than ours (502 lines), but lacks functionality present in ours such as support

79

for generics, arrays, and fields, checking implicit dereferences in foreach loops and array ac-

cesses, customizable default annotations, the @Nullable annotation, optional warnings about

redundant checks and casts, optional warning suppression, other command-line options, etc.

Both JQual and JavaCOP support a declarative syntax for type system rules. This is

higher-level but less expressive than the Checker Framework, which uses declarative syntax

only for the type qualifier hierarchy and the qualifier introduction rules. This reflects a

difference in design philosophy: they created their rule syntax first, whereas we first focused

on practicality and expressiveness, introducing declarative syntax only after multiple case

studies made a compelling case.

A declarative syntax even for type rules would have a number of benefits. Research

papers define type systems in a syntax-directed manner; a similar implementation may

be more readable and less error-prone. However, many research papers define their own

conceptual framework and rule formalism, so a general implementation framework might

not be applicable to new and expressive type systems. For example, JQual handles only a

very restricted variety of type qualifier. To implement a type system in JavaCOP requires

writing both JavaCOP-specific declarative pattern-matching rules, and also procedural Java

helper code [3]; the declarative and procedural parts are not integrated as in our system.

Another advantage of a declarative syntax is the potential to verify the implementation of

the rules. However, any end-to-end guarantee about the tool that programmers use requires

verifying Java helper code and the framework itself. So far, we have not found type rules

to be particularly verbose or difficult to express in our framework, nor have the type rules

been a significant source of bugs. It would be interesting to compare the difficulty of writing

checkers, such as the one for Javari, in multiple frameworks, but first all the frameworks must

be capable of creating the checkers. Future work should address the challenge of creating

a syntax framework that permits purely declarative specification (and possibly verification)

of expressive type systems for which the framework was not specifically designed. It would

also be interesting to use a proposed declarative syntax as a front end to a robust framework

such as the Checker Framework, permitting realistic evaluation of the syntax.

80

JavaCOP was first released1 after we completed our case studies [43]. Markstrum [41]

reports that the JavaCOP framework has recently acquired some of the features of the

Checker Framework, such as flow-sensitive type inference2 and integration with javac3. As

of May 2008 these features do not seem to be a documented part of the JavaCOP release.

In some respects, the JavaCOP framework provides less functionality than the Checker

Framework. For example, it does not construct qualified types (checker writers are on their

own with generics). JavaCOP had a declarative syntax earlier than the Checker Framework,

though the designs are rather different. Programmers using JavaCOP checkers suffer from

the inadequacies of Java 5 annotations, limiting expressiveness and causing unnecessary

false positives. The JavaCOP authors have been unable to run JavaCOP’s type checkers on

substantial programs. A strength of JavaCOP is its pattern-matching syntax that concisely

expresses style checkers (e.g., “any visitor class with a field of type Node must override

visitChildren”), and case studies [41] suggest that may be the context in which JavaCOP

really shines.

Fong [30] describes a framework for implementing pluggable type systems (more precisely,

verification modules) for Java bytecodes. These are implemented by the classloader and can

replace or augment the standard bytecode verifier. By contrast, our work focuses on source-

code checking. A byte-code verifier could augment a source-code checker.

6.2 Inference

JQual [34] supports the addition of user-defined type qualifiers to Java. JQual differs from

our work in two key ways.

First, JQual performs type inference rather than type checking. Since type inference

is a harder problem than type checking, JQual’s restriction to simpler type rules is under-

1http://www.cs.ucla.edu/∼smarkstr/javacop/
2Publicly available and documented in our framework, and downloaded and examined by the JavaCOP

authors, in February 2008.
3JavaCOP uses the private javac internal AST rather than the documented Tree API as the Checker

Framework does. Another difference is that JavaCOP adds a new pass rather than integrating with the
standard annotation processor switch.

81

http://www.cs.ucla.edu/~smarkstr/javacop/

standable. JQual can be seen as translating the ideas of earlier CQual [31] research to the

object-oriented context: JQual generates type constraints from syntax-directed rules, then

solves them to produce a new typing of the program.

Second, JQual is less expressive, with a focus on type systems containing a single type

qualifier that induces either a supertype or a subtype of the unqualified type. JQual does

not handle Java generics—it has an incompatible notion of parametric polymorphism and it

changes Java’s overriding rules. JQual is not scalable [34, 4], so an experimental comparison is

impossible. Our framework requires annotations on signatures, which has benefits in terms

of documentation. Given signature annotations, our framework’s local qualifier inference

seems to be as effective as a more complex full type inference would be. Our framework

interfaces with scalable inference tools for the Nullness and Javari type systems.

By contrast, we target richer type qualifier systems and also Java’s full built-in type

system. JQual does not handle generic types, but it does permit programmers to enable

field-sensitivity on a field-by-field basis (enabling it globally is not scalable) as a stand-in.

JQual also operates context-sensitively, similar to the @PolyRead qualifier of Javari. JQual

has been used in two case studies: to identify the enums and addresses that are part of a

public JNI interface, and to infer types for a fragment of Javari (Section 5.5).

Our NNEL (NonNull Except Locals) approach can be viewed as being similar to type

inference: users can leave bodies largely unannotated. Even in the presence of type inference,

it is still useful to annotate interfaces: as documentation, for modular checking, or due to

limitations of type inference.

6.3 Null pointer dereference checking

Null pointer errors are a bugaboo of programmers, and significant effort has been devoted to

tools that can eradicate them. Engelen [21] ran a significant number of null-checking tools

and reports on their strengths and weaknesses; Chalin and James [11] give another recent

survey. We mention four notable practical tools. ESC/Java [29] is a static checker for null

pointer dereferences, array bounds overruns, and other errors. It translates the program to

82

the language of the Simplify theorem prover [16]. This is more powerful than a type system,

but suffers from scalability limitations. The JastAdd extensible Java compiler [18] includes a

module for checking and inferencing of non-null types [19] (and JastAdd could theoretically

be used as a framework to build other type systems). To handle manipulation of partially-

initialized objects, JastAdd implements a raw type system [27], which increases the number

of safe dereferences in the program from 69% to 71%. JastAdd has not yet been extended

to full generics and other features of Java. The JACK Java Annotation ChecKer [39] is

similar to JastAdd and the Checker Framework in that all use flow-sensitivity and a raw

type system and have been applied to nontrivial programs. Unlike JastAdd but like the

Checker Framework, JACK is a checker rather than an inference system. The null pointer

bug module of FindBugs [35] takes a very different approach than the other work (and our

own). Rather than trying to prove the absence of errors via an analysis that is as precise

as practical, FindBugs assumes that many errors exist and aims to find a few of them. Like

the inference systems, FindBugs requires only a few user annotations. FindBugs uses an

extremely coarse analysis that yields mostly false positives — it would indicate that most

dereferences are of possibly-null values. Then, FindBugs uses heuristics to discard reports

about values that might result from infeasible paths, flow through a catch clause, are returned

by a method invocation, etc.

6.4 Interning

Interning (use of a canonical representation) has been used since at least the 1950s; Er-

shov [24] discusses checking for duplicate formulas in an arithmetic optimizer. Interning has

been widely used in Lisp data structures [33, 2], where the name “hash-consing” referred

to the construction of objects making use of a hash table. More recently, Vaziri et al. [53]

give a declarative syntax for specifying the interning pattern in Java. They use the term

“relation type” for an interned class. They found equality-checking and hash code bugs

similar to ours. Marinov and O’Callahan’s [40] dynamic analysis identifies interning and

related optimization opportunities. Based on the results, the authors then manually applied

83

interning to two SpecJVM benchmarks, achieving space savings of 38% and 47%. A more

representative example is the Eiffel compiler; interning strings resulted in a 10% speedup

and 14% memory savings [56]. We are not aware of a previous implementation as a type

qualifier. As a result, our system is more flexible, and less disruptive to use, than previous

interning approaches [40, 28, 53] in that it neither requires all objects of a given type to be

interned nor gives interned objects a different Java type than uninterned ones.

6.5 Javari

Our implementation is the first checker for the complete Javari language [52, 51], and incor-

porates several improvements that are described in a technical report. There have been three

previous attempts to implement Javari. Birka [6] implemented, via directly modifying the

Jikes compiler, a syntactic variant of the Javari2004 language, an early design that conflates

assignability with mutability and lacks support for generics, among other differences from

Javari. Birka’s case studies involved 160,000 lines of annotated code. The JavaCOP [3] and

JQual [34] frameworks have been used to implement subsets of Javari that do not handle

method overriding, omitting fields from the abstract state, templating, generics (in the case

of JQual), and other features that are essential for practical use. JavaCOP’s fragmentary

implementation was never executed on a real program. JQual has been evaluated, and the

JQual inference results were accurate for 35 out of the 50 variables that the authors exam-

ined by hand. This comparison illustrates the Checker Framework’s greater expressiveness

and usability.

Javarifier [51, 13, 48] is a sound and precise type inference for Javari. Artzi et al. [4] give

a detailed comparison of four immutability inference tools, including JQual and Javarifier.

6.6 IGJ

Our implementation is the second checker for the IGJ language. The previous IGJ dialect [57]

did not permit the (im)mutability of array elements to be specified. The previous dialect

84

permitted some sound subtyping that is illegal in Java (and thus is forbidden by our new

checker), such as @ReadOnly List<Integer> ⊆ @ReadOnly List<Object>.

6.7 Type qualifier systems

Additional examples of useful type qualifiers abound. We mention just a few others. Java

uses final to indicate a reference may not be assigned to (this is orthogonal to the notion

of immutability of the referred-to object). C uses the const, volatile, and restrict type

qualifiers.

Type qualifiers YY for two-digit year strings and YYYY for four-digit year strings helped to

detect, then verify the absence of, Y2K errors [20].

Range constraints, also known as ranged types, can indicate that a particular int has a

value between 0 and 10; these are often desirable in realtime code and in other applications,

and are supported in languages such as Ada and Pascal.

Type qualifiers can indicate data that originated from an untrustworthy source [42, 54];

examples for C include user vs. kernel indicating user-space and kernel-space pointers in

order to prevent attacks on operating systems [36], and tainted for strings that originated

in user input and that should not be used as a format string [49].

A localizable qualifier can indicate where translation of user-visible messages should be

performed. Annotations can indicate other properties of its contents, such as the format

(e.g., XML, SQL, human language, etc.) or encoding of a string (multibyte, UTF, etc.).

An interned qualifier can indicate which objects have been converted to canonical form and

thus may be compared via object equality. Type qualifiers such as unique and unaliased

can express properties about pointers and aliases [25, 12]; other qualifiers can detect and

prevent deadlock in concurrent programs [31, 1]. Flow-sensitive type qualifiers [31] can

express typestate properties such as whether a file is in the open, read, write, read/write, or

closed state, and can guarantee that a file is opened for reading before it is read, etc. The

Vault language’s type guards and capability states are similar [15].

85

86

Chapter 7

Conclusion

We conclude with a discussion of possibilities for future work (Section 7.1), a summary of

the contributions of this research (Section 7.2), and a collection of lessons learned (Section

7.3).

7.1 Future work

The construction of a framework for building pluggable type checkers permits both a variety

of new type checkers and several extensions for the framework itself. The following is a list

of opportunities for future work.

7.1.1 Type checkers

• Extensions to the Basic checker (Section 5.2) to expose a richer set of the framework’s

functionality. Currently, the Basic checker only permits a user to specify a set of type

qualifiers and (using the declarative syntax in Section 4.4) some of the properties of

these qualifiers. Interactions with other checkers, checker-specific error messages, and

specialization of the flow-sensitive inference cannot be specified. One potential solution

involves exposing this functionality through additional declarative syntax.

• New type checkers for a variety of type qualifier systems. Among those proposed are

87

checkers for concurrency and thread-safety, numeric sign errors (e.g., @Positive and

@NonNegative), data tainting, and string representation (e.g., @XML, @RegExp, @SQL).

7.1.2 The Checker Framework

• More powerful inference than the flow-sensitive intraprocedural analysis described in

Section 4.8. In particular, an interprocedural analysis could help address some of the

shortcomings of the intraprocedural analysis when dealing with fields by determining

whether a method invocation may modify a field.

• Declarative syntax beyond that described in Sections 4.3 and 4.4. Declarative syntax

reduces the amount of code required to create a checker and simplifies the checker

implementations, but the framework does not currently provide a declarative way to

specify type rules, advanced type introductions, and specializations to flow-sensitive

type inference.

• Interactions between type systems. Specifying the relationships between different type

qualifiers in different type system extensions could improve various analyses and help

programmers find more bugs in their programs. For instance, if an object is interned

it should also be immutable. A programmer simultaneously using both the Interning

(Section 5.4) and IGJ (Section 5.6) checkers could receive a warning whenever an object

violates this constraint.

As a second example, the flow-sensitive intraprocedural qualifier inference assumes

that properties of fields may no longer hold after a method call, since the method

may modify those fields. However, if a method’s receiver has a @ReadOnly annotation

(from Javari or IGJ), it cannot modify its fields, so the inference does not need to clear

inferred annotations for fields after calls to that method.

• Typestate checking. As an example, one may specify @Open and @Closed as typestate

qualifiers for the type File, and use them to ensure that the read method is only

called on references of type @Open File. The current implementation of flow-sensitive

88

inference may be sufficient for some typestate checkers, but explicit support could

guarantee applicability for typestate checkers in general.

7.2 Summary of contributions

The Checker Framework is an expressive, easy-to-use, and effective system for defining plug-

gable type systems for Java. It provides declarative and procedural mechanisms for ex-

pressing type systems, an expressive programming language syntax for programmers, and

integration with standard APIs and tools. Our case studies shed light not only on the positive

qualities of the Checker Framework, but also on the type systems themselves.

The contributions of this research include the following.

• A backward-compatible syntax for writing qualified types that extends the Java lan-

guage annotation system. The extension is naturally integrated with the Java language,

and annotations are represented in the class file format. The system, now known by

its Sun codename “JSR 308”, is planned for inclusion in the Java 7 language.

• The Checker Framework for expressing the type rules that are enforced by a checker —

a type-checking compiler plug-in. The framework makes simple type systems easy to

implement, and is expressive enough that powerful type systems are possible to imple-

ment. The framework provides a representation of annotated types. It offers declara-

tive syntax for many common tasks in defining a type system, including declaring the

type hierarchy, specifying type introduction rules, type and qualifier polymorphism,

and flow-sensitive local type qualifier inference. For comprehensibility, portability, and

robustness, the framework is integrated with standard Java tools and APIs.

• Five checkers written using the Checker Framework. The Basic checker permits use

of any type qualifier, with no type rules beyond standard Java subtyping rules. The

Nullness checker verifies the absence of null pointer dereference errors. The Interning

checker verifies the consistent use of interning and equality testing. The Javari checker

89

enforces reference immutability. The IGJ checker enforces reference and object im-

mutability. The checkers are of value in their own right, to help programmers to detect

and prevent errors. Construction of these checkers also indicates the ease of using the

framework and the usability of the resulting checker.

• A new approach to finding equality errors that is based purely on a type system and

is fully backward-compatible.

• An empirical evaluation of the previous proposals for defaults in a Nullness type sys-

tem. This led us to a new default proposal, named NNEL (NonNull Except Locals),

that significantly reduces the annotation burden. Together with flow-sensitive type

inference, it nearly eliminates annotations within method bodies.

• Significant case studies of running the checkers on real programs. The checkers scale to

programs of >200 KLOC, and they revealed bugs in every codebase to which we applied

them. Annotation of the programs indicates that our syntax proposals maintain the

feel of Java. Use of the checkers indicates that the framework yields scalable tools that

integrate well with developers’ practice and environments. The tools are effective at

finding bugs or proving their absence. They have a relatively low annotation burden

and manageable false positive rates.

• New insights about previously-known type systems (see Section 7.3).

• Public releases, with source code and substantial documentation, of the JSR 308

extended annotations Java compiler, the Checker Framework, and the checkers, at

http://pag.csail.mit.edu/jsr308/. (The first public release was in January 2007.)

Additional details can be found in the Checker Framework documentation. We hope

that programmers will use the tools to improve their programs, and that type theorists

will use them to realistically evaluate their type system proposals.

90

http://pag.csail.mit.edu/jsr308/

7.3 Lessons learned

To date, it has been very difficult to evaluate a type system in practice, which requires

writing a robust, scalable custom compiler that extends an industrial-strength programming

language. As a result, too many type systems have been proposed without being realistically

evaluated. Our work was motivated by the desire to enable researchers to more easily and

effectively evaluate their proposals. Although three of the type systems we implemented have

seen significant experimentation (160 KLOC in an earlier version of Javari [6], 106 KLOC in

IGJ [57], many implementations of Nullness), nonetheless our more realistic implementation

yielded new insights into both the type systems and into tools for building type checkers.

We now note some of these lessons learned.

7.3.1 Javari

A previous formalization of Javari required formal parameter types to be covariant, not for

reasons of type soundness but because it simplified the exposition and a correctness proof.

We found this restriction (also present by default in the JastAdd framework) unworkable in

practice and lifted it in our implementation. We discovered an ambiguous inference rule in

a previous formalism; while not strictly incorrect, it was subject to misinterpretation. We

discovered and corrected a problem with inference of polymorphic type parameters. And,

we made the treatment of fields more precise.

7.3.2 IGJ

A rich immutability type system is advantageous; many programs used class, object, and

reference immutability in different parts or for different classes. The case studies revealed

some new limitations of the IGJ type system: it does not adequately support the visitor

design pattern or callback methods.

In just two cases, the programmer would have liked multiple immutability parameters

for an object. The return value of Map.keySet allows removal but disallows insertion. The

91

return value of Arrays.asList is a mutable list with a fixed size; it allows changing elements

but not insertion nor removal.

IGJ was inspired by Java’s generics system. To our surprise, the programmer preferred

annotation syntax to the original IGJ dialect. The original IGJ dialect mixes immutability

and generic arguments in the same type parameters list, as in List<Mutable, Date<ReadOnly>>.

Prefix modifiers such as @Mutable List<@ReadOnly Date> felt more natural to the programmer.

7.3.3 Nullness

Nullness checkers are among the best-studied static analyses. Nonetheless, our work reveals

some new insights. Observing programmers and programs led us to the NonNull Except

Locals (NNEL) default, which significantly reduces the user annotation burden and serves

as a surrogate for local type inference. The idea is generalizable to other type qualifiers

besides @NonNull.

Another observation is that a Nullness checker is not necessarily a good example for

generalizing to other type systems. Many application invariants involve nullness, because

programmers imbue null with considerable run-time-checkable semantic meaning. For in-

stance, it can indicate uninitialized variables, option types, and other special cases. Com-

pared to other type systems, programmers must suppress relatively more false positives with

null checks, and flow sensitivity is an absolute must. Flow sensitivity offers more modest

benefits in other type systems, apparently thanks to programmers’ more disciplined use of

those types. For example, the inference only reduced the number of necessary annotations

in the Interning case study by only 3.

7.3.4 Expressive annotations

The ability to annotate generic types makes a qualitative difference in the usability of a

checker. The same is true for arrays: while some people expect them to be rare in Java

code, they are pervasive in practice. Lack of support for array annotations was the biggest

problem with an earlier IGJ implementation [57], and in our case studies, annotating arrays

92

revealed new errors compared to that implementation.

Some developers are skeptical of the need for receiver annotations, but they are distinct

from both method and return value annotations. Our case studies demonstrate that they

are needed in every type system we considered. Even the Nullness checker uses them, for

@Raw annotations, although each receiver is known to be non-null.

7.3.5 Polymorphism

Our case studies confirm that qualifier polymorphism and type polymorphism are com-

plementary: neither one subsumes the other, and both are required for a practical type

system. Qualifier polymorphism expresses context sensitivity in ways Java generics cannot,

and avoids the need to rewrite code even when generics suffice. Qualifier polymorphism is

built into Javari and IGJ, but after we found it necessary in the Nullness checker, and useful

in the Interning and Basic checkers, we promoted it to the framework. Given support for

Java generics, we found polymorphism over a single qualifier variable to be sufficient; there

was no real need for multiple qualifier variables, much less for subtype constraints among

them.

Supporting Java generics dominated every other problem in the framework design and

implementation and in the design of the type systems. While it may be more expedient to

ignore generics and focus on the core of the type system, or to formalize a variant of Java

generics, those strategies run the risk of irrelevancy in practice. Further experimentation

may lead us to promote more features of specific type systems, such as Javari’s extension of

Java wildcards, into the framework.

7.3.6 Framework design

Our framework differs from some other designs in that type system designers code some or

all of their type rules in Java. The rules tend to be short and readable without sacrificing

expressiveness. Our design is vindicated by the ability to create type checkers, such as that

of Javari, that the authors of other frameworks tried but failed to write. Several of our

93

checkers required sophisticated processing that no framework known to us directly supports.

It is impractical to build support for every future type system into a framework. Even for

relatively simple type systems, special cases, complex library methods, and heuristics make

the power of procedural abstraction welcome. We conclude that the checker and the compiler

should be integrated but decoupled.

Use of an expressive framework has other advantages besides type checking. For example,

we wrote a specialized “checker” for testing purposes. It compares an expression’s annotated

type to an expected type that is written in an adjacent stylized comment in the same Java

source file.

One important design decision was the interface to AST trees and symbol types. An

earlier version of our framework essentially used a pair consisting of the unannotated type

(as provided by the compiler) and the set of annotation locations within the type. Changing

the representation eliminated much complexity and many bugs, especially for our support

of generic types.

7.3.7 Inference

Inference of type annotations has the potential to greatly reduce the programmer’s annota-

tion burden. However, inference is not always necessary, particularly when a programmer

adds annotations to replace existing comments, or when the programmer focuses attention

on only part of a program. Inference is much more important for libraries when the default

qualifier is not the root of the type hierarchy (e.g., Javari and IGJ). Existing inference tools

tend to scale poorly. After iterating for many months offering bug reports on a JastAdd

static non-null inference tool (which was always more practical than other non-null inference

systems, has since become solid, and now supports the JSR 308 annotation syntax), we

wrote our own sound, dynamic nullable inference tool in a weekend. Just as the Checker

Framework filled a need for type checking, there is a need for robust, scalable, expressive

type frameworks that specifically support static inference.

94

7.3.8 Complexity of simple type systems

Simple qualified type systems, whose type rules enforce a subtype or supertype relationship

between a qualified and unqualified type, suffice for some uses. Even these type systems can

benefit from more sophisticated type rules, and more sophisticated and useful type systems

require additional flexibility and expressiveness. Furthermore, an implementation of only

part of a type system is impractical.

95

96

Appendix A

The Interning checker

This appendix lists for the source code of the Interning checker described in Section 5.4. The

Interning checker’s implementation makes use of many of the framework’s features, including

both declarative and procedural specification of type qualifiers, type introduction, and type

rules described in Sections 4.3, 4.4, and 4.5, and the flow-sensitive type inference described

in Section 4.8.

A.1 Qualifier declaration: @Interned

package checkers.quals;

import static java.lang.annotation.ElementType .*;

import java.lang.annotation .*;

import checkers.interned.InternedChecker;

import checkers.metaquals .*;

import checkers.types.AnnotatedTypeMirror.AnnotatedPrimitiveType;

import com.sun.source.tree.LiteralTree;

/**

* Indicates that a variable has been interned , i.e., that the variable refers

* to the canonical representation of an object.

*

97

* <p>

*

* This annotation is associated with the {@link InternedChecker }.

*

* @see InternedChecker

* @manual #interned Interned Checker

*/

@Documented

@TypeQualifier

@Retention(RetentionPolicy.RUNTIME)

@Target ({FIELD , LOCAL_VARIABLE , METHOD , PARAMETER , TYPE})

@ImplicitFor(

treeClasses ={ LiteralTree.class},

typeClasses ={ AnnotatedPrimitiveType.class })

public @interface Interned {

}

A.2 Compiler interface

package checkers.interned;

import checkers.basetype .*;

import checkers.metaquals.TypeQualifiers;

import checkers.quals.Interned;

import checkers.source .*;

import javax.annotation.processing .*;

import javax.lang.model .*;

/**

* A typechecker plug -in for the {@link checkers.quals.Interned} qualifier that

* finds (and verifies the absence of) equality -testing and interning errors.

*

* <p>

*

* The {@link checkers.quals.Interned} annotation indicates that a variable

* refers to the canonical instance of an object , meaning that it is safe to

* compare that object using the "==" operator. This plugin suggests using "=="

* instead of ". equals" where possible , and warns whenever "==" is used in cases

* where one or both operands are not {@link checkers.quals.Interned }.

*

98

* @manual #interned Interned checker

*/

@SupportedAnnotationTypes ({"*"})

@SupportedSourceVersion(SourceVersion.RELEASE_7)

@SupportedLintOptions ({"dotequals", "flow"})

@SuppressWarningsKey("interned")

@TypeQualifiers ({ Interned.class })

public final class InternedChecker extends BaseTypeChecker { }

A.3 Visitor for type rules

package checkers.interned;

import java.util .*;

import checkers.source .*;

import checkers.basetype .*;

import checkers.types .*;

import checkers.util .*;

import com.sun.source.tree .*;

import com.sun.source.util .*;

import javax.lang.model.element .*;

import javax.lang.model.type .*;

import static javax.lang.model.util.ElementFilter .*;

/**

* A type -checking visitor for the {@link checkers.quals.Interned} type

* qualifier that uses the {@link BaseTypeVisitor } implementation . This visitor

* reports errors or warnings for violations for the following cases:

*

*

* if both sides of a "==" or "!=" comparison are not Interned (error

* "not.interned ")

* if the receiver and argument for a call to an equals method are both

* Interned (optional warning " unnecessary .equals ")

*

*

*

* @see BaseTypeVisitor

*/

public class InternedVisitor extends BaseTypeVisitor <Void , Void > {

99

/** The interned annotation . */

private final AnnotationMirror INTERNED;

private final AnnotatedTypeMirror INTERNED_OBJECT;

/**

* Creates a new visitor for type -checking {@link checkers.quals.Interned }.

*

* @param checker the checker to use

* @param root the root of the input program ’s AST to check

*/

public InternedVisitor(InternedChecker checker , CompilationUnitTree root) {

super(checker , root);

this.INTERNED = annoFactory.fromName("checkers.quals.Interned");

INTERNED_OBJECT = AnnotatedTypeMirror.createType(types.getDeclaredType(

elements.getTypeElement("java.lang.Object")),

checker.getProcessingEnvironment (), factory);

INTERNED_OBJECT.addAnnotation(INTERNED);

}

@Override

public Void visitBinary(BinaryTree node , Void p) {

// No checking unless the operator is "==" or "!=".

if (!(node.getKind () == Tree.Kind.EQUAL_TO

node.getKind () == Tree.Kind.NOT_EQUAL_TO))

return super.visitBinary(node , p);

Tree leftOp = node.getLeftOperand (), rightOp = node.getRightOperand ();

// Check passes if one arg is null.

if (leftOp.getKind () == Tree.Kind.NULL_LITERAL

rightOp.getKind () == Tree.Kind.NULL_LITERAL)

return super.visitBinary(node , p);

// Heuristically check that the comparison is the member of a class of

// comparisons that should be skipped.

if (suppressByHeuristic(node))

return super.visitBinary(node , p);

AnnotatedTypeMirror left = factory.getAnnotatedType(leftOp);

AnnotatedTypeMirror right = factory.getAnnotatedType(rightOp);

100

// Check passes due to auto -unboxing.

if (left.getKind ().isPrimitive () right.getKind ().isPrimitive ())

return super.visitBinary(node , p);

if (! checker.isSubtype(INTERNED_OBJECT , left))

checker.report(Result.failure("not.interned", left), leftOp);

if (! checker.isSubtype(INTERNED_OBJECT , right))

checker.report(Result.failure("not.interned", right), rightOp);

return super.visitBinary(node , p);

}

@Override

public Void visitMethodInvocation(MethodInvocationTree node , Void p) {

if (isInvocationOfEquals(node)) {

AnnotatedTypeMirror recv = factory.getReceiver(node);

AnnotatedTypeMirror comp = factory.getAnnotatedType(node.getArguments ().get (0));

if (this.checker.getLintOption("dotequals", true)

&& checker.isSubtype(INTERNED_OBJECT , recv)

&& checker.isSubtype(INTERNED_OBJECT , comp))

checker.report(Result.warning("unnecessary.equals"), node);

}

return super.visitMethodInvocation(node , p);

}

/**

* Tests whether a method invocation is an invocation of

* {@link Object#equals }.

*

* @param node a method invocation node

* @return true iff {@code node} is a invocation of {@code equals ()}

*/

private boolean isInvocationOfEquals(MethodInvocationTree node) {

ExecutableElement method = TreeUtils.elementFromUse(node);

return (method.getParameters ().size() == 1

&& method.getReturnType ().getKind () == TypeKind.BOOLEAN

&& method.getSimpleName ().contentEquals("equals"));

}

/**

* Heuristically determines whether checking for a particular comparison

101

* should be suppressed . Specifically , this method tests the following :

*

*

* the comparison is a == comparison , and

*

* it is the test of an if statement that ’s the first statement in the method ,

* and

*

* one of the following is true:

*

*

* the method overrides {@link Comparator #compare}, the "then" branch

* of the if statement returns zero , and the comparison tests equality of

* the method ’s two parameters

*

* the method overrides {@link Object#equals(Object)} and the

* comparison tests "this" against the method ’s parameter

*

*

*

*

*

* @param node the comparison to check

* @return true if one of the supported heuristics is matched , false

* otherwise

*/

private boolean suppressByHeuristic(final BinaryTree node) {

// Only valid if called on an == comparison .

if (node.getKind () != Tree.Kind.EQUAL_TO)

return false;

Tree left = node.getLeftOperand ();

Tree right = node.getRightOperand ();

// Only valid if we’re comparing identifiers .

if (!(left.getKind () == Tree.Kind.IDENTIFIER

&& right.getKind () == Tree.Kind.IDENTIFIER))

return false;

// If we’re not directly in an if statement in a method (ignoring

// parens and blocks), terminate .

if (! Heuristics.matchParents(getCurrentPath (), Tree.Kind.IF , Tree.Kind.METHOD))

102

return false;

// Determine whether or not the "then" statement of the if has a single

// "return 0" statement (for the Comparator .compare heuristic).

final boolean returnsZero =

Heuristics.applyAt(getCurrentPath (), Tree.Kind.IF , new Heuristics.Matcher () {

@Override

public Boolean visitIf(IfTree tree , Void p) {

return visit(tree.getThenStatement (), p);

}

@Override

public Boolean visitBlock(BlockTree tree , Void p) {

if (tree.getStatements ().size() > 0)

return visit(tree.getStatements ().get (0), p);

return false;

}

@Override

public Boolean visitReturn(ReturnTree tree , Void p) {

ExpressionTree expr = tree.getExpression ();

return (expr != null &&

expr.getKind () == Tree.Kind.INT_LITERAL &&

((LiteralTree)expr).getValue ().equals (0));

}

});

ExecutableElement enclosing =

TreeUtils.elementFromDeclaration(visitorState.getMethodTree ());

assert enclosing != null;

Element lhs = TreeUtils.elementFromUse ((IdentifierTree)left);

Element rhs = TreeUtils.elementFromUse ((IdentifierTree)right);

if (returnsZero && overrides(enclosing , "java.util.Comparator", "compare")) {

assert enclosing.getParameters ().size() == 2;

Element p1 = enclosing.getParameters ().get (0);

Element p2 = enclosing.getParameters ().get (1);

return (p1.equals(lhs) && p2.equals(rhs))

(p2.equals(lhs) && p1.equals(rhs));

103

} else if (overrides(enclosing , "java.lang.Object", "equals")) {

assert enclosing.getParameters ().size() == 1;

Element param = enclosing.getParameters ().get (0);

Element thisElt = getThis(this.getCurrentPath ());

assert thisElt != null;

return (thisElt.equals(lhs) && param.equals(rhs))

(param.equals(lhs) && thisElt.equals(rhs));

}

return false;

}

/**

* Determines the element corresponding to "this" inside a scope.

*

* @param path the path to a tree inside the desired scope

* @return the element corresponding to "this" in the scope of the tree

* given by {@code path}

*/

private final Element getThis(TreePath path) {

for (Element e : trees.getScope(path).getLocalElements ())

if (e.getSimpleName ().contentEquals("this"))

return e;

return null;

}

/**

* Determines whether or not the given element overrides the named method in

* the named class.

*

* @param e an element for a method

* @param clazz the name of a class

* @param method the name of a method

* @return true if the method given by {@code e} overrides the named method

* in the named class; false otherwise

*/

private final boolean overrides(

ExecutableElement e, String clazz , String method) {

// Get the element named by "clazz ".

TypeElement comp = elements.getTypeElement(clazz);

if (comp == null) return false;

104

// Check all of the methods in the class for name matches and overriding .

for (ExecutableElement elt : methodsIn(comp.getEnclosedElements ()))

if (elt.getSimpleName ().contentEquals(method)

&& elements.overrides(e, elt , comp))

return true;

return false;

}

}

A.4 Qualifier introduction

package checkers.interned;

import static java.util.Collections.singleton;

import javax.lang.model.element .*;

import checkers.basetype.BaseTypeChecker;

import checkers.flow.Flow;

import checkers.quals.Interned;

import checkers.types .*;

import static checkers.types.AnnotatedTypeMirror .*;

import com.sun.source.tree .*;

/**

* An {@link AnnotatedTypeFactory } that accounts for the properties of the

* Interned type system. This type factory will add the {@link Interned}

* annotation to a type if the input:

*

*

* is a String literal

* is a class literal

* is an enum constant

* has a primitive type

* has the type java.lang.Class

* is a call to the method {@link String#intern ()}

*

*/

public class InternedAnnotatedTypeFactory extends AnnotatedTypeFactory {

105

/** Adds annotations from tree context before type resolution . */

private final TreeAnnotator treeAnnotator;

/** Adds annotations from the resulting type after type resolution . */

private final TypeAnnotator typeAnnotator;

/** The {@link Interned} annotation . */

final AnnotationMirror INTERNED;

/** Flow - sensitive qualifier inference. */

private final Flow flow;

/** An element of the class {@code java.lang.Class} */

private final TypeElement elementOfClass;

/** An element of class {@code java.lang.String} */

private final TypeElement elementOfString;

/**

* Creates a new {@link InternedAnnotatedTypeFactory } that operates on a

* particular AST.

*

* @param checker the checker to use

* @param root the AST on which this type factory operates

*/

public InternedAnnotatedTypeFactory(InternedChecker checker ,

CompilationUnitTree root) {

super(checker , root);

this.INTERNED = annotations.fromName("checkers.quals.Interned");

this.elementOfClass = elements.getTypeElement("java.lang.Class");

this.elementOfString = elements.getTypeElement("java.lang.String");

this.treeAnnotator = new TreeAnnotator(checker);

this.typeAnnotator = new InternedTypeAnnotator(checker);

this.flow = new Flow(checker , root , singleton(INTERNED), this);

if (checker.getLintOption("flow", true)) flow.scan(root , null);

}

@Override

protected void annotateImplicit(Element elt , AnnotatedTypeMirror type) {

typeAnnotator.visit(type);

}

106

@Override

protected void annotateImplicit(Tree tree , AnnotatedTypeMirror type) {

treeAnnotator.visit(tree , type);

final AnnotationMirror result = flow.test(tree);

if (result != null)

type.addAnnotation(result);

typeAnnotator.visit(type);

}

/**

* A class for adding annotations to a type after initial type resolution .

*/

private class InternedTypeAnnotator extends TypeAnnotator {

/** Creates an {@link InternedTypeAnnotator } for the given checker. */

InternedTypeAnnotator(BaseTypeChecker checker) {

super(checker);

}

@Override

public Void visitDeclared(AnnotatedDeclaredType t, Void p) {

// Enum types and constants: add an @Interned annotation .

Element elt = t.getUnderlyingType ().asElement ();

assert elt != null;

if ((elt.getKind () == ElementKind.ENUM)

(elementOfClass.equals(elt)))

t.addAnnotation(INTERNED);

return super.visitDeclared(t, p);

}

@Override

public Void visitExecutable(AnnotatedExecutableType t, Void p) {

// Annotate the java.lang.String.intern () method.

ExecutableElement method = t.getElement ();

if (method.getSimpleName ().contentEquals("intern")

&& elementOfString.equals(method.getEnclosingElement ()))

t.getReturnType ().addAnnotation(INTERNED);

return super.visitExecutable(t, p);

}

107

}

@Override

public AnnotatedPrimitiveType getUnboxedType(AnnotatedDeclaredType type) {

AnnotatedPrimitiveType primitive = super.getUnboxedType(type);

primitive.addAnnotation(INTERNED);

return primitive;

}

}

108

Bibliography

[1] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking and

inferring local non-aliasing. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation, pages 129–140, San Diego, CA,

USA, June 9–11, 2003.

[2] John R. Allen. Anatomy of LISP. McGraw-Hill, New York, 1978.

[3] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework

for implementing pluggable type systems. In Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA 2006), pages 57–74, Portland, OR, USA, Oc-

tober 24–26, 2006.

[4] Shay Artzi, Jaime Quinonez, Adam Kieżun, and Michael D. Ernst. A formal definition

and evaluation of parameter immutability., December 2007. Under review.

[5] Adrian Birka. Compiler-enforced immutability for the Java language. Technical Report

MIT-LCS-TR-908, MIT Laboratory for Computer Science, Cambridge, MA, June 2003.

Revision of Master’s thesis.

[6] Adrian Birka and Michael D. Ernst. A practical type system and language for reference

immutability. In Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA 2004), pages 35–49, Vancouver, BC, Canada, October 26–28, 2004.

[7] Joshua Bloch. JSR 175: A metadata facility for the Java programming language. http:

//jcp.org/en/jsr/detail?id=175, September 30, 2004.

109

http://jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=175

[8] Daniel Bonniot, Bryn Keller, and Francis Barber. The Nice user’s manual, 2003. http:

//nice.sourceforge.net/.

[9] Gilad Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic

Languages, Vancouver, BC, Canada, October 2004.

[10] Brendon Cahoon and Kathryn S. McKinley. Data flow analysis for software prefetching

linked data structures in Java. In 10th International Conference on Parallel Architec-

tures and Compilation Techniques, pages 280–291, Barcelona, Spain, September 10–12,

2001.

[11] Patrice Chalin and Perry R. James. Non-null references by default in Java: Alleviating

the nullity annotation burden. In ECOOP 2007 — Object-Oriented Programming, 21st

European Conference, pages 227–247, Berlin, Germany, August 1–3, 2007.

[12] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In Pro-

ceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and

Implementation, pages 85–95, Chicago, IL, USA, June 13–15, 2005.

[13] Telmo Luis Correa Jr., Jaime Quinonez, and Michael D. Ernst. Tools for enforcing and

inferring reference immutability in Java. In Companion to Object-Oriented Program-

ming Systems, Languages, and Applications (OOPSLA 2007), pages 866–867, Montréal,

Canada, October 23–25, 2007.

[14] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/

detail?id=269, May 17, 2006. Public review version.

[15] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level soft-

ware. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language

Design and Implementation, pages 59–69, Snowbird, UT, USA, June 20–22, 2001.

[16] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program

checking. Technical Report HPL-2003-148, HP Labs, Palo Alto, CA, July 23, 2003.

110

http://nice.sourceforge.net/
http://nice.sourceforge.net/
http://jcp.org/en/jsr/detail?id=269
http://jcp.org/en/jsr/detail?id=269

[17] Eiffel: Analysis, design and programming language. Standard ECMA-367, June 2006.

2nd edition.

[18] Torbjörn Ekman and Görel Hedin. The JastAdd extensible Java compiler. In Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA 2007), pages

1–18, Montréal, Canada, October 23–25, 2007.

[19] Torbjörn Ekman and Görel Hedin. Pluggable checking and inferencing of non-null types

for Java. Journal of Object Technology, 6(9):455–475, October 2007.

[20] Martin Elsman, Jeffrey S. Foster, and Alexander Aiken. Carillon — A System to Find

Y2K Problems in C Programs, July 30, 1999.

[21] Arnout F. M. Engelen. Nullness analysis of Java source code. Master’s thesis, University

of Nijmegen Dept. of Computer Science, August 10 2006.

[22] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically

discovering likely program invariants to support program evolution. IEEE Transactions

on Software Engineering, 27(2):99–123, February 2001. A previous version appeared in

ICSE ’99, Proceedings of the 21st International Conference on Software Engineering,

pages 213–224, Los Angeles, CA, USA, May 19–21, 1999.

[23] Michael D. Ernst and Danny Coward. JSR 308: Annotations on Java types. http:

//pag.csail.mit.edu/jsr308/, November 9, 2007.

[24] A. P. Ershov. On programming of arithmetic operations. Communications of the ACM,

1(8):3–6, August 1958.

[25] David Evans. Static detection of dynamic memory errors. In Proceedings of the SIG-

PLAN ’96 Conference on Programming Language Design and Implementation, pages

44–53, Philadelphia, PA, USA, May 21–24, 1996.

[26] David Evans and David Larochelle. Improving security using extensible lightweight

static analysis. IEEE Software, 19(1):42–51, 2002.

111

http://pag.csail.mit.edu/jsr308/
http://pag.csail.mit.edu/jsr308/

[27] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types

in an object-oriented language. In Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA 2003), pages 302–312, Anaheim, CA, USA, November 6–8,

2003.

[28] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-consing. In

ML ’06: Proceedings of the 2006 workshop on ML, pages 12–19, Portland, OR, USA,

September 16, 2006.

[29] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,

and Raymie Stata. Extended static checking for Java. In Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Implementation,

pages 234–245, Berlin, Germany, June 17–19, 2002.

[30] Philip W. L. Fong. Pluggable verification modules: An extensible protection mechanism

for the JVM. In Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA 2004), pages 404–418, Vancouver, BC, Canada, October 26–28, 2004.

[31] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In

Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design

and Implementation, pages 1–12, Berlin, Germany, June 17–19, 2002.

[32] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.

Addison Wesley, Boston, MA, third edition, 2005.

[33] E. Goto. Monocopy and associative algorithms in an extended Lisp. Technical Report

74-03, Information Science Laboratory, University of Tokyo, Tokyo, Japan, May 1974.

[34] David Greenfieldboyce and Jeffrey S. Foster. Type qualifier inference for Java. In

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2007),

pages 321–336, Montréal, Canada, October 23–25, 2007.

112

[35] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static

analysis to find null pointer bugs. In ACM SIGPLAN/SIGSOFT Workshop on Pro-

gram Analysis for Software Tools and Engineering (PASTE 2005), pages 13–19, Lisbon,

Portugal, September 5–6, 2005.

[36] Rob Johnson and David Wagner. Finding user/kernel pointer bugs with type inference.

In 13th USENIX Security Symposium, pages 119–134, San Diego, CA, USA, August 11–

13, 2004.

[37] Günter Kniesel and Dirk Theisen. JAC — access right based encapsulation for Java.

Software: Practice and Experience, 31(6):555–576, 2001.

[38] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A be-

havioral interface specification language for Java. ACM SIGSOFT Software Engineering

Notes, 31(3), March 2006.

[39] Chris Male and David J. Pearce. Non-null type inference with type aliasing for Java.

http://www.mcs.vuw.ac.nz/∼djp/files/MP07.pdf, August 20, 2007.

[40] Darko Marinov and Robert O’Callahan. Object equality profiling. In Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA 2003), pages 313–325,

Anaheim, CA, USA, November 6–8, 2003.

[41] Shane Markstrum, Daniel Marino, Matthew Esquivel, and Todd Millstein. Practical

enforcement and testing of pluggable type systems. Technical Report CSD-TR-080013,

UCLA, April 2008.

[42] Jens Palsberg and Peter Ørbæk. Trust in the λ-calculus. In Proceedings of the Second

International Symposium on Static Analysis, SAS ’95, pages 314–329, Glasgow, UK,

September 25–27, 1995.

[43] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D.

Ernst. Pluggable type-checking for custom type qualifiers in Java. Technical Report

113

http://www.mcs.vuw.ac.nz/~djp/files/MP07.pdf

MIT-CSAIL-TR-2007-047, MIT Computer Science and Artificial Intelligence Labora-

tory, Cambridge, MA, September 17, 2007.

[44] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D.

Ernst. Practical pluggable types for Java. In ISSTA 2008, Proceedings of the 2008

International Symposium on Software Testing and Analysis, Seattle, WA, USA, July 22–

24, 2008.

[45] Jeff H. Perkins and Michael D. Ernst. Efficient incremental algorithms for dynamic

detection of likely invariants. In Proceedings of the ACM SIGSOFT 12th Symposium

on the Foundations of Software Engineering (FSE 2004), pages 23–32, Newport Beach,

CA, USA, November 2–4, 2004.

[46] Frank Pfenning. Dependent types in logic programming. In Frank Pfenning, editor,

Types in Logic Programming, chapter 10, pages 285–311. MIT Press, Cambridge, MA,

1992.

[47] Sara Porat, Marina Biberstein, Larry Koved, and Bilba Mendelson. Automatic detection

of immutable fields in Java. In CASCON, Mississauga, Ontario, Canada, November 13–

16, 2000.

[48] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference

immutability. In ECOOP 2008 — Object-Oriented Programming, 22nd European Con-

ference, Paphos, Cyprus, July 9–11, 2008.

[49] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting for-

mat string vulnerabilities with type qualifiers. In 10th USENIX Security Symposium,

Washington, DC, USA, August 15–17, 2001.

[50] Mats Skoglund and Tobias Wrigstad. A mode system for read-only references in Java.

In FTfJP’2001: 3rd Workshop on Formal Techniques for Java-like Programs, Glasgow,

Scotland, June 18, 2001.

114

[51] Matthew S. Tschantz. Javari: Adding reference immutability to Java. Technical Report

MIT-CSAIL-TR-2006-059, MIT Computer Science and Artificial Intelligence Labora-

tory, Cambridge, MA, September 5, 2006.

[52] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to

Java. In Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA 2005), pages 211–230, San Diego, CA, USA, October 18–20, 2005.

[53] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby. Declarative object identity

using relation types. In ECOOP 2007 — Object-Oriented Programming, 21st European

Conference, Berlin, Germany, August 1–3, 2007.

[54] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. In

TAPSOFT ’97: Theory and Practice of Software Development, 7th International Joint

Conference CAAP/FASE, pages 607–621, Lille, France, April 14–18, 1997.

[55] Peter von der Ahe. JSR 199: Java compiler API. http://jcp.org/en/jsr/detail?

id=199, December 11, 2006.

[56] Olivier Zendra and Dominique Colnet. Towards safer aliasing with the Eiffel language.

In Interontinental Workshop on Aliasing in Object-Oriented Systems, pages 153–154,

Lisbon, Portugal, June 15, 1999.

[57] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D.

Ernst. Object and reference immutability using Java generics. In ESEC/FSE 2007:

Proceedings of the 11th European Software Engineering Conference and the 15th ACM

SIGSOFT Symposium on the Foundations of Software Engineering, Dubrovnik, Croatia,

September 5–7, 2007.

115

http://jcp.org/en/jsr/detail?id=199
http://jcp.org/en/jsr/detail?id=199

	Introduction
	Terminology
	Thesis outline

	Motivation
	Example: preventing security-related bugs

	Syntax: Annotations on types
	Design Rationale
	Writing annotations on types
	Using the JSR 308 compiler
	Invoking the Java compiler
	Backward-compatibility
	Examining class files with JSR 308 annotations

	JSR 308 reference implementation
	Parsing JSR 308 annotations
	Resolving annotation locations
	Writing annotations to the class file
	Reading annotations from the class file

	Semantics: The Checker Framework
	The programmer's view of a checker
	Using a checker to detect software errors

	Architecture of a type system
	Type qualifiers and hierarchy
	Implicit annotations: qualifier introduction
	Defining type rules
	Customizing the compiler interface
	Parametric polymorphism
	Type polymorphism
	Qualifier polymorphism

	Flow-sensitive type qualifier inference

	Pluggable type checkers
	Experimental evaluation
	Methodology
	Ease of use

	The Basic type checker for any simple type system
	Basic checker case study

	The Nullness checker for null pointer errors
	The Nullness type system
	Type system weaknesses
	Errors found
	Default annotation for Nullness checker

	The Interning type checker for equality-testing and interning errors
	The Interning checker
	Interning case study
	Errors found
	False positives

	The Javari checker for mutability errors
	The Javari type system
	The Javari checker
	Errors found

	The IGJ checker for mutability errors
	The IGJ type system
	Errors found

	Related work
	Frameworks
	Inference
	Null pointer dereference checking
	Interning
	Javari
	IGJ
	Type qualifier systems

	Conclusion
	Future work
	Type checkers
	The Checker Framework

	Summary of contributions
	Lessons learned
	Javari
	IGJ
	Nullness
	Expressive annotations
	Polymorphism
	Framework design
	Inference
	Complexity of simple type systems

	The Interning checker
	Qualifier declaration: @Interned
	Compiler interface
	Visitor for type rules
	Qualifier introduction

