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Abstract

We present an algorithm to perform fast modular polynomial multi-

plication. The idea is to convert the X-adic representation of modular

polynomials, with X an indeterminate, to a q-adic representation where q

is a prime power larger than the field characteristic. With some control on

the different involved sizes it is then possible to perform some of the q-adic

arithmetic directly with machine integers or floating points. Depending

also on the number of performed numerical operations one can then con-

vert back to the q-adic or X-adic representation and eventually mod out

high residues. In this note we present a new version of both conversions:

more tabulations and a way to reduce the number of divisions involved in

the process are presented. The polynomial multiplication is then applied

to arithmetic in small finnite field extensions.

1 Introduction

The FFLAS/FFPACK project has demonstrated the need of a wrapping of
cache-aware routines for efficient small finite field linear algebra [2, 3].

A conversion between a modular representation of prime fields and e.g. float-
ing points used exactly is natural. It uses the homomorphism to the integers.
Now for extension fields (isomorphic to polynomials over a prime field) such a
conversion is not direct. In [2] we propose to transform the polynomials into a
q-adic representation where q is a prime power larger than the field character-
istic. We call this transformation DQT for Discrete Q-adic Transform. With
some care, in particular on the size of q, it is possible to map the operations in
the extension field into the floating point arithmetic realization of this q-adic
representation and convert back using an inverse DQT.

In this note we propose some implantation improvements: we propose to
use a tabulated Zech logarithm for the DQT and give a trick to reduce the
number of machine divisions involved in the inverse. This thus gives rise to an
improved DQT which we thus call FQT (Fast Q-adic Transform). Therefore we
recall in section 2 the previous conversion algorithm. We then present our new
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reduction in section 3. We then show in section 4 how a time-memory trade-
off can make this reduction very fast. This can then be applied on modular
polynomial multiplication with small prime fields in section 5 as well as for
small extension field arithmetic and fast matrix multiplication in section 6.

2 Q-adic representation of polynomials

We follow here the presentation of [2] of the idea of [5]: polynomial arithmetic
is performed a q−adic way, with q a sufficiently big prime or power of a single
prime.

Suppose that a =
∑k−1

i=0 αiX
i and b =

∑k−1
i=0 βiX

i are two polynomials
in Z/pZ[X ]. One can perform the polynomial multiplication ab via q−adic

numbers. Indeed, by setting ã =
∑k−1

i=0 αiq
i and b̃ =

∑k−1
i=0 βiq

i, the product is
computed in the following manner (we suppose that αi = βi = 0 for i > k − 1):

ãb =

2k−2∑

j=0

(
j∑

i=0

αiβj−i

)
qj (1)

Now if q is large enough, the coefficient of qi will not exceed q. In this case,
it is possible to evaluate a and b as machine numbers (e.g. floating point or
machine integers), compute the product of these evaluations, and convert back
to polynomials by radix computations (see e.g. [4, Algorithm 9.14]). There
just remains then to perform modulo p reductions on every coefficient. We call
DQT the evaluation of polynomials modulo p at q and DQT inverse the radix
conversion of a q-adic development followed by a modular reduction. Depending
on the size of q, the results can still remain exact:

Algorithm 1 Polynomial multiplication by DQT

Require: Two polynomials v1 and v2 in Z/pZ[X ] of degree less than k.
Require: a prime power q.
Ensure: R ∈ Z/pZ[X ], with R = v1.v2.

Polynomial to q−adic conversion

1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the
elements of v1 and v2. {Using e.g. Horner’s formula}

One computation

2: Compute r̃ = ṽ1ṽ2

Building the solution

3: r̃ =
∑2k−2

i=0 µ̃iq
i. {Using radix conversion, see e.g. [4, Algorithm 9.14]}

4: For each i, set µi = µ̃i mod p
5: set R =

∑2k−2
i=0 µiX

i
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Theorem 1. [2] Let m be the number of available mantissa bits within the
machine numbers and n be the number of machine products v1.v2 accumulated,
e.g. in a dot product, before the re-conversion. If

q > nqk(p− 1)2 and (2k − 1) log[2](q) < m, (2)

then Algorithm 1 is correct.

Note that the prime power q can be chosen to be a power of 2. Then the
Horner like evaluation of the polynomials at q (line 1 of algorithm 1) is just
a left shift. One can then compute this shift with exponent manipulations in
floating point arithmetic and use then e.g. native C++ << operator as soon as
values are within the 32 bits range, or use the native C++ << on 64 bits when
available.

In the following we will thus always consider that q is a power of two.
It is shown on [2, Figures 5 & 6] that this wrapping is already a pretty good

way to obtain high speed linear algebra over some small extension fields. Indeed
we were able to reach high peak performance, quite close to those obtained with
prime fields, namely 420 Mop/s on a PIII, 735 MHz, and more than 500 Mop/s
on a 64-bit DEC alpha 500 MHz. This is roughly 20 percent below the pure
floating point performance and 15 percent below the prime field implementation.

3 REDQ: modular reduction in the DQT do-

main

The first improvement we propose to the DQT is to replace the costly modular
reduction of the polynomial coefficients by a single division by p (or, better, by
a multiplication by its inverse) followed by several shifts. The idea is as follows
(note that when q is a power of 2 division by qi and flooring is just a right shift):

Algorithm 2 REDQ

Require: a prime p and a prime power q satisfying the conditions (2).

Require: r̃ =
∑d

i=0 µ̃iq
i ∈ Z.

Ensure: ρ ∈ Z, with ρ =
∑d

i=0 µiq
i where µi = µ̃i mod p.

1: rop =
⌊
r̃
p

⌋
;

2: for i = 0 to d do

3: ui =
⌊

r̃
qi

⌋
− p

⌊
rop
qi

⌋
;

4: end for

5: µd = ud

6: for i = 0 to d− 1 do

7: µi = ui − qui+1 mod p;
8: end for

9: Return ρ =
∑d

i=0 µiq
i;
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Theorem 2. Algorithm REDQ is correct.

We first need the following lemma:

Lemma 1. For r ∈ IN and a, b ∈ IN∗,
⌊⌊

r
b

⌋

a

⌋
=

⌊⌊
r
a

⌋

b

⌋

Proof. We proceed by splitting the possible values of r into intervals kab ≤ r <
(k + 1)ab. Then kb ≤ r

a < (k + 1)b and since kb is an integer we also have that

kb ≤
⌊
r
a

⌋
< (k + 1)b. Thus k ≤

⌊ r
a⌋
b < k + 1 and

⌊
⌊ r

a⌋
b

⌋
= k. Obviously the

same is true for the left hand side which proves the lemma.

Proof of theorem 2. First we need to prove that 0 ≤ ui < p. By definition of

the truncation, we have r̃
qi − 1 <

⌊
r̃
qi

⌋
≤ r̃

qi and r̃
pqi − 1 − 1

qi <
⌊
rop
qi

⌋
≤ r̃

pqi .

Thus −1 < ui < p + p
qi , which is 0 ≤ ui ≤ p since ui is an integer. We now

consider the possible case ui = p and show that it does not happen. ui = p

means that
⌊

r̃
qi

⌋
= p(1 +

⌊
rop
qi

⌋
) = pg. This means that pgqi ≤ r < pgqi + qi.

So that in turns gqi ≤ rop ≤ r̃
p < gqi + qi

p . Thus g ≤ rop
qi < g + 1

p so that⌊
rop
qi

⌋
= g. But then from the definition of g we have that g = g − 1 which is

absurd. Therefore 0 ≤ ui ≤ p− 1.

Second we show that ui =
∑d

j=i µjq
j−i mod p. Well ui =

⌊
r̃
qi

⌋
− p

⌊
⌊ r̃

p⌋
qi

⌋

and thus lemma 1 gives that ui =
⌊

r̃
qi

⌋
− p

⌊j

r̃

qi

k

p

⌋
. The latter is ui =

⌊
r̃
qi

⌋

mod p. Now, since r̃ =
∑2k−2

j=0 µ̃jq
j , we have that

⌊
r̃
qi

⌋
=
∑2k−2

j=i µ̃jq
j−i. There-

fore, as µj = µ̃j mod p, the equality is proven.

In the algorithm, the computation of rop has to be a division in exact arith-
metic. The following lemma gives bounds for which this division can be per-
formed by a floating point multiplication with the precomputed inverse of p, as
is done e.g. in NTL1.

Lemma 2. For a prime p and r, t ∈ IN∗ with r < tp, then
⌊
r

p

⌋
=

⌊
r

(
1

p
+ ǫ

)⌋
as long as 0 ≤ ǫ <

1

p2(t+ 1− 1/p)
.

Proof. Consider up ≤ r < up + i with u, i positive integers and u < p. Then⌊
r
p

⌋
= u and r( 1p + ǫ) = u+ i

p +(up+ i)ǫ. Then i
p +(up+ i)ǫ < 1 if ǫ < p−i

p(up+i) .

The right hand side is decreasing in i and is therefore minimal at i = p− 1 for
which it is 1

p2(u+1−1/p) .

1www.shoup.net/ntl
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Therefore, it is possible to perform the division by a multiplication by the
precomputed inverse of the prime number. Since entries are already in floating
point format this is a potential significant speed-up. Remark that for ǫ to be
positive, the precomputed inverse has just to be rounded towards +∞. Then
since the division is correctly rounded, ǫ < 2−m, wherem is the available floating
point mantissa, and the non reduced r can be as large as

r <
2m

p
+ 1

while remaining correct.
For instance, take the polynomial R = 1234X3 + 5678X2 + 9123X + 4567,

the prime p = 23 and use q = 106 to see what is happening. The trick is
that by dividing only once by 23 all the coefficients of R are divided at once:
rop = ⌊1234005678009123004567/23⌋ = 53652420783005348024. Then rop ×
23 = 1234005678009123004552 which gives u0 = 15. Then we shift to get
1234005678009123 and 53652420783005× 23 = 1234005678009115 which gives
u1 = 8. We shift and multiply twice to get u2 = 18 and u3 = µ3 = 15. We have

then to compute µ =




1 0 0 0
−q 1 0 0
0 −q 1 0
0 0 −q 1


u mod p to get the final results. As

is there is no benefit to use this method when compared to direct remaindering
by p. The trick is that this last step from the ui to the µi can be tabulated
since u is of much smaller size than R.

4 Time-Memory trade-off in REDQ

Indeed, there is a bijection between the ui and the µi since

Qd =




1 0 . . . . . . 0

−q
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −q 1




=




1 0 . . . . . . 0

q
. . .

. . .
...

q2
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
qd . . . q2 q 1




−1

If this operation is fully tabulated, it requires a table of size at least pd+1. But,
due to the nature of Qd, we have the following relations:

Therefore, it is very easy to tabulate with a table of size pk only and perform
d−1
k−1 table accesses. The time memory trade-off, after the computation of the
ui, which requires 1 div + (d+ 1) mul + 2d shifts, is thus as shown on table 1.

In practice, indexing by a t-uple of integers mod p is made by evaluating
at p, as

∑
uip

i. If a few more memory space is available, one can also directly

index in the binary format using
∑

ui

(
2⌈log2(p)⌉

)i
. On the one hand all the

multiplications by p are replaced by binary shifts. On the other hand, this
makes the table grow a little bit, from pk to 2⌈log2

(p)⌉k.
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Qd

Qd

2d−1Q 1

0

0

=

Qd+1

Qd

2dQ 1

0

0

=

Figure 1: Recurring relations on the Qd matrices.

Memory 0 p2 pk pd+1

Extra time d (mul,add,mod) d accesses
⌈

d
k−1

⌉
accesses 1 access

Table 1: Time-Memory trade-off in REDQ

5 Comparison with delayed reduction for poly-

nomial multiplication

Another approach to perform modular polynomial multiplication is to use de-
layed reductions e.g. as in [1]: The idea is to accumulate products of the form∑

i aibk−i, without reductions, while the sum does not overflow. Thus, if we use
for instance a centered representation modulo p (integers from 1−p

2 to p−1
2 ) to

accumulate n products as long as

nd(p− 1)2 < 2m+1 (3)

The modular reduction was made by different ways, we just call it REDC here.
It is at most equivalent to 1 division.

Now the idea of the FQT (Fast Q-adic Transform) is to represent modular

polynomials of the form P =
∑N

i=0 aiX
i by P =

∑N/k
i=0 PiX

i where the Pi are
degree k polynomials stored in a single integer in the q-adic way. Therefore, a
product PQ has the form

∑
(
∑

PiQt−i)X
t. There, each multiplication PiQt−i

is made by algorithm 1 on a single machine integer. The reduction is made by
a tabulated REDQ and can also be delayed now as long as conditions (2) is
garanteed.

For the complexity, table 2 gives the respective complexities of both strate-
gies.

Complexity Multiplications Reductions

Delayed N2 N2

nd
REDC

FQT
(
N
k

)2 1
nq

(
N
k

)2
REDQ

Table 2: Modular polynomial multiplication complexities.

For instance, with p = 3, N = 100, choosing a double floating point repre-
sentation and a degree 4 DQT (i.e. k = 4), the DQT boils down to 993 multi-
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plications and 53 divisions. For the same parameters, the classical polynomial
multiplication algorithm requires 104 multiplications and only 1 remaindering,
which is roughly 10 times more operations as shown on figure 2.
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Figure 2: Polynomial multiplications modulo 3 per second on a Xeon 3.6 GHz

Even by switching to a larger mantissa, say e.g. 128 bits, so that the DQT
multiplications are 4 times costlier, this can still be useful: take p = 1009 and
choose k = 3, gives 1445 multiplications over 128 bits and 67 divisions. This
should still be lower than the delayed.

Still this strategy is useful for small degrees and small primes. This can
nonetheless improves drastically the base cases of faster recursive algorithms
such as Karatsuba, Toom-Cook, etc. In particular, it improves the speed of
small finite field extension’s arithmetic as shown next.

6 Application to small finite field extensions

We use here the isomorphism between finite field to see any finite field extension
as the set of polynomials modulo a prime p and an irreducible polynomial P of
degree k. Clearly we can convert any finite field element to its q-adic expansion
; perform the FQT between two elements and then reduce the obtained poly-
nomial modulo P . In this paper we propose to improve all the conversion steps
of [2, algorithm 4.1] in order to approach the performance of the prime field
wrapping also for several extension fields:

1. Replace the Horner evaluation of the polynomials, to form the q-adic ex-
pansion, by a single table lookup recovering directly the floating point
representation.

2. Replace the radix conversion and the costly modular reductions of each
polynomial coefficient, by a single half REDQ operation.
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3. Replace the polynomial division by two table lookups and a single field
operation.

Indeed, suppose the internal representation of the extension field is already by
Zech logarithms and uses conversion tables from polynomial to index represen-
tations. See e.g. [1] for more details. Then we choose a time-memory trade-off
for the REDQ operation of the same order of magnitude, that is to say pk.
The overall memory required by these new tables only doubles and the REDQ
requires only 2 accesses. Moreover, in the small extension, the polynomial mul-
tiplication must also be reduced by an irreducible polynomial, P . We show
next that this reduction can be precomputed in the REDQ table lookup and is
therefore almost free.

More precisely, we propose the following algorithm 3.

Algorithm 3 Fast Dot product over Galois fields via FQT and FQT inverse

Require: a field GF(pk) with elements represented as exponents of a generator
of the field.

Require: Two elements v1 and v2 of GF(pk).
Require: a prime power q.
Ensure: R ∈ GF(pk), with R = v1.v2.

Tabulated q−adic conversion

{Use conversion tables from exponent to floating point evaluation}
1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the

elements of v1 and v2.

The floating point computation

2: Compute r̃ = ṽ1ṽ2;

Computing a radix decomposition

3: r = ⌊r̃⌋; {r = r̃ but we might need a conversion to an integral type}

4: rop =
⌊
r̃
p

⌋
;

5: for i = 0 to 2k − 2 do

6: ui =
⌊

r
qi

⌋
− p

⌊
rop
qi

⌋
;

7: end for

Tabulated radix conversion to exponents of the generator

{µi is such that µi = µ̃i mod p for r̃ =
∑2k−2

i=0 µ̃iq
i}

8: Set L = representation(
∑k−2

i=0 µiX
i).

9: Set H = representation(Xk−1 ×
∑2k−2

i=k−1 µiX
i−k+1).

Reduction in the field

10: Return R = H + L ∈ GF(pk);

Theorem 2 proves that in algorithm 3, ui satisfies ui =
∑2k−2

j=i µjq
j−i mod p.

Therefore the representations of
∑

µiX
i in the field can be precomputed and
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stored in a table where the indexing will be made by (u0, . . . , uk−1) and (uk−1, . . . , u2k−2)
and not by the µi’s. Note also that the representation of Xk−1 can be just k−1
if the irreducible polynomial used to build GF(pk) is primitive and X has been
chosen as the generator.

Theorem 3. Algorithm 3 is correct.

Proof. Theorem 2 proves that ui =
∑2k−2

j=i µjq
j−i mod p. There remains thus

to prove that it is possible to compute L and H from the ui. From the equality
above, we see that µ2k−2 = u2k−2 and µi = ui − qui+1 mod p, for i = 0..(2k −
3). Therefore a pk elements precomputed table, indexed by (u0, . . . , uk−1), can
provide the representation of

L =
k−2∑

i=0

(ui − qui+1 mod p)X i.

Another table with pk elements, indexed by (uk−1, . . . , u2k−2), can provide the
representation of

H = u2k−2X
2k−2 +

2k−3∑

i=k−1

(ui − qui+1 mod p)X i.

Finally R = Xk−1 ×
∑2k−2

i=k−1 µiX
i−k+1 +

∑k−2
i=0 µiX

i needs to be reduced
modulo the irreducible polynomial used to build the field. But, if we are given
the representations of H and L in the field, R is then equal to their addition
inside the field, directly using the internal representations.

Table 3 recalls the respective complexities of the two presented algorithms

Conversions Memory Shift Add Axpy Div Table Red
Algorithm 1 3pk 4k − 2 4k − 4 0 2k − 1 0 5k
Algorithm 3 6pk 4k − 2 0 4k − 3 0 3 4
Algorithm 3 4pk + 2k⌈log2

p⌉+1 4k − 2 2k − 1 2k − 1 0 3 4

Table 3: Complexity of the back and forth conversion between extension field
and floating point numbers

Figure 3 shows only the speed of the conversion after the floating point
operations. The log scales prove that for q ranging from 21 to 226 (on a 32 bit
Pentium IV) our new implantation is two to three times faster than the previous
one.
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Furthermore, these improvements e.g. allow the extension field routines to
reach the speed of 7500 millions of GF(9) operations per second (on a XEON,
3.6 GHz) as shown on figure 4.
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This represent a reduction from the 15 percent overhead of the previous
implementation to less than 4 percent now, when compared to GF(11).
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