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December 22, 2007

Abstract

The set of controllers stabilizing a linear system is generally non-convex in the
parameter space. In the case of two-parameter controller design (e.g. PI control or
static output feedback with one input and two outputs), we observe however that
quite often for benchmark problem instances, the set of stabilizing controllers seems
to be convex. In this note we use elementary techniques from real algebraic geometry
(resultants and Bézoutian matrices) to explain this phenomenon. As a byproduct,
we derive a convex linear matrix inequality (LMI) formulation of two-parameter
fixed-order controller design problem, when possible.
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1 Introduction

Despite its elementary formulation, the problem of fixed-order controller design for linear
time-invariant systems remains mostly open. Especially scarce are numerically efficient
computer-aided control system design algorithms in the fixed-order case, sharply con-
trasting with the large number of tools available to solve static state feedback design or
dynamical output feedback design with controllers of the same order as the plant. Math-
ematically, fixed-order controller design can be formulated as a non-convex non-smooth
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optimization problem in the parameter space. To the best of our knowledge, randomized
algorithms are amongst the most efficient numerical methods to cope with this class of
difficult problems. See [4, 13] for computer experiments supporting this claim, thanks to
public-domain Matlab packages (HIFOO and the Randomized Control System Toolbox).

This note was motivated by the observation, made by the first author during a workshop
at AIM in August 2005 [8], that 6 out of the 7 two-dimensional instances of static output
feedback (SOF) design problems found in the database COMPleib [10] seem to be convex.
Further motivation was provided by the excellent historical survey [7] on D-decomposition
techniques, previously studied in deep detail in [12] and [1]. In [7] the authors describe
the intricate geometry of two-dimensional stability regions with the help of illustrative
examples. Quite often, the stability regions represented in these references seem to be
convex.

In this note, we use basic results from real algebraic geometry to detect convexity of the
stability region in the two-parameter case (including PI controllers, PID with constant
gain, SOF design with one input two outputs or two inputs one output). We also derive,
when possible, a linear matrix inequality (LMI) formulation of the stability region.

2 Problem statement

We consider a parametrized polynomial

p(s, k) = p0(s) + k1p1(s) + k2p2(s) (1)

where the pi(s) ∈ R[s] are given polynomials of s ∈ C and the ki ∈ R are parameters. We
assume, without loss of generality, that the ratio p1(s)/p2(s) is not a constant.

Define the stability region

S = {k ∈ R
2 : p(s, k) stable}

where stability is meant in the continuous-time sense, i.e. all the roots of p(s, k) must lie
in the open left half-plane1.

We are interested in the following problems:

• Is stability region S convex ?

• If it is convex, give an LMI representation

S = {k ∈ R
2 : F0 + F1k1 + F2k2 ≻ 0}

when possible, where the Fi are real symmetric matrices to be found, and ≻ 0 means
positive definite.

1Similar results can be derived for discrete-time unit disk stability or other semialgebraic stability
domains of the complex plane, but this is not covered here.
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2.1 Example: PI controller design

Let b(s)/a(s) with a(s), b(s) ∈ R[s] denote the transfer function of an open loop plant,
and consider a proportional integral (PI) controller k1/s + k2 in a standard negative
feedback configuration. The closed-loop characteristic polynomial (1) is then p(s, k) =
sa(s) + (k1 + k2s)b(s) hence p0(s) = sa(s), p1(s) = b(s) and p2(s) = sb(s).

2.2 Example: static output feedback

Given matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, we want to find a matrix K ∈ Rm×p

such that the closed-loop matrix A + BKC is stable. When mp = 2, the characteristic
polynomial (1) writes p(s, k) = det(sIn −A−BKC) hence p0(s) = det(sIn −A), p1(s) =
det(sIn − B[k1, 0]C) and p2(s) = det(sIn − B[0, k2]C).

3 Hermite matrix

The Routh-Hurwitz criterion for stability of polynomials has a symmetric version called
the Hermite criterion. A polynomial is stable if and only if its Hermite matrix, quadratic
in the polynomial coefficients, is positive definite. In control systems terminology, the
Hermite matrix is a particular choice of a Lyapunov matrix certifying stability [11]. Al-
gebraically, the Hermite matrix can be defined via the Bézoutian, a symmetric form of
the resultant [6, Section 5.1.2].

Let a(u), b(u) be two polynomials of degree n of the indeterminate u. Define the Bézoutian
matrix Bu(a, b) as the symmetric matrix of size n with entries bij satisfying the linear
equations

a(u)b(v) − a(v)b(u)

v − u
=

n
∑

i=1

n
∑

j=1

biju
i−1vj−1.

The polynomial ru(a, b) = det Bu(a, b) is the resultant of a(u) and b(u) with respect to u.
It is obtained by eliminating u from the system of equations a(u) = b(u) = 0.

The Hermite matrix of p(s) is defined as the Bézoutian matrix of the real part and the
imaginary part of p(jω):

pR(ω2) = Re p(jω)
ωpI(ω

2) = Im p(jω)

that is, H(p) = Bω(pR(ω2), ωpI(ω
2)). Let us assume that p(s) is monic, with unit leading

coefficient. The Hermite stability criterion can be formulated as follows.

Lemma 1 Polynomial p(s) is stable if and only if H(p) ≻ 0.
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Proof: The proof of this result can be found in [11] for example. It can also be proved
via Cauchy indices and Hermite quadratic forms for counting real roots of polynomials,
see [3, Section 9.3] �.

By construction, the Hermite matrix of parametrized polynomial (1)

H(p(s, k)) = H(k) =
2

∑

i1,i2=0

Hi1i2k
i1
1 ki2

2

is quadratic in k. Therefore, the Hermite criterion yields a quadratic matrix inequality
formulation of the stability region:

S = {k ∈ R
2 : H(k) ≻ 0}.

Quadratic matrix inequalities, a generalization of bilinear matrix inequalities, typically
generate non-convex regions. For example, the scalar quadratic inequality k2

1 − 1 > 0
models a disconnected, hence non-convex set.

Surprisingly, it turns out that S, even though modeled by a quadratic matrix inequality,
is often a convex set for practical problem instances. Here are some examples.

3.1 Examples: static output feedback

Consider the 7 two-parameter SOF problems found in the database COMPleib [10], la-
belled AC4, AC7, AC17, NN1, NN5, NN17 and HE1. Stability regions are represented as shaded
gray areas on Figures 1 to 7. Visual inspection reveals that 6 out of 7 stability regions
seem to be convex. The only apparently nonconvex example is HE1.
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Figure 1: AC4.
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Figure 2: AC7.
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Figure 3: AC17.

In the remainder of the paper we will explain why such planar stability regions are likely
to be convex, and how we can constructively derive their LMI formulations when possible.

4



x
1

x 2

0 1 2 3 4 5 6 7 8 9
40

45

50

55

60

65

70

75

80

85

90

Figure 4: NN1.
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Figure 6: NN17.
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Figure 7: HE1.

4 Rational boundary of the stability region

Define the curve
C = {k ∈ R

2 : p(jω, k) = 0, w ∈ R}

which is the set of parameters k for which polynomial p(s, k) has a root along the boundary
of the stability region, namely the imaginary axis. Studying this curve is the key idea
behind the D-decomposition approach [7]. The curve partitions the plane (k1, k2) into
regions in which the number of stable roots of p(s, k) remains constant. The union of
regions for which this number is equal to the degree of p(s, k) is the stability region S.
Hence the boundary of S is included in curve C.

Note that p(jω, k) = 0 for some w ∈ R if and only if

pR(ω2, k) = p0R(ω2) + k1p1R(ω2) + k2p2R(ω2) = 0
ωpI(ω

2, k) = ωp0I(ω) + k1ωp1I(ω) + k2ωp2I(ω) = 0

Recall that we denote by rω(q1, q2) the resultant of polynomials q1(ω),q2(ω) obtained by
eliminating the scalar indeterminate ω. From the definition of the Hermite matrix, it
holds

h(k) = rω(pR(ω2, k), ωpI(ω
2, k)) = det H(k) (2)
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from which the implicit algebraic description

C = {k : h(k) = 0}

follows.

Lemma 2 The determinant of the Hermite matrix can be factored as

h(k) = l(k)g(k)2

where l(k) is affine, and g(k) is a generically irreducible polynomial.

Proof: The result follows from basic properties of resultants: h(k) = rω(pR(ω2, k), ωpI(ω
2, k)) =

rω(pR(ω2, k), ω2)rω(pR(ω2, k), pI(ω
2, k)) = rω(pR(ω, k), ω)rω(pR(ω, k), pI(ω, k))2. Take g(k) =

rω(pR(ω, k), pI(ω, k)). Since pR(ω, k) is affine in k it follows that l(k) = rω(pR(ω, k), ω) is
affine in k.�

The curve can therefore be decomposed as the union of a line and a simpler algebraic
curve

C = L ∪ G = {k : l(k) = 0} ∪ {k : g(k) = 0}.

The equation of line L was already given in the proof of Lemma 2, namely

l(k) = rω(pR(ω), ω) = pR(0, k) = p0R(0) + k1p1R(0) + k2p2R(0).

The defining polynomial of the other curve component G can be obtained via the formula

g(k) = rω(pR(ω, k), pI(ω, k)).

From the relations
[

p1R(ω2) p2R(ω2)
ωp1I(ω

2) ωp2I(ω
2)

] [

k1

k2

]

= −

[

p0R(ω2)
ωp0I(ω

2)

]

we derive a rational parametrization of G:

[

k1(ω
2)

k2(ω
2)

]

=

[

p2I(ω
2) −p2R(ω2)

−p1I(ω
2) p1R(ω2)

]

p1I(ω2)p2R(ω2) − p1R(ω2)p2I(ω2)

[

p0R(ω2)
p0I(ω

2)

]

=

[

q1(ω2)
q0(ω2)
q2(ω2)
q0(ω2)

]

(3)

which is well-defined since by assumption p1(s)/p2(s) is not a constant. From this
parametrization we can derive a symmetric linear determinantal form of the implicit
equation of this curve.

Lemma 3 The symmetric affine pencil

G(k) = Bω(q1, q2) + k1Bω(q2, q0) + k2Bω(q1, q0).

is such that G = {k : det G(k) = 0}.
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Proof: Rewrite the system of equations (3) as

a(ω2, k) = q1(ω
2) − k1q0(ω

2) = 0
b(ω2, k) = q2(ω

2) − k2q0(ω
2) = 0

and use the Bézoutian resultant to eliminate indeterminate ω and obtain conditions for a
point (k1, k2) to belong to the curve. The Bézoutian matrix is Bω(a, b) = Bω(q1−k1q0, q2−
k2q0) = Bω(q1, q2) + k1Bω(q2, q0) + k2B(q1, q0). Linearity in k follows from bilinearity of
the Bézoutian and the common factor q0.�

Finally, let C(k) = diag {l(k), G(k)} so that curve C can be described as a determinantal
locus

C = {k : det C(k) = 0}.

5 LMI formulation

Curve C partitions the plane into several connected components, that we denote by Si for
i = 1, . . . , N .

Lemma 4 If C(k) ≻ 0 for some point k in the interior of Si for some i then Si = {k :
C(k) � 0} is a convex LMI region.

Proof: Follows readily from the affine dependence of C(k) on k and from the fact that
the boundary of Si is included in C. �

Convex sets which admit an LMI representation are called rigidly convex in [9]. Rigid
convexity is stronger than convexity. It may happen that Si is convex for some i, yet
C(k) is not positive definite for points k within Si.

Lemma 5 Stability region S is the union of sets Si containing points k such that H(k) ≻
0.

Proof: Follows readily from Lemma 1.�

Note that it may happen that Si is convex LMI for some i, yet H(k) is not positive definite
for points k within Si.

Corollary 1 If H(k) ≻ 0 and C(k) ≻ 0 for some point k in the interior of Si, then Si is

an LMI region included in the stability region.
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Proof: Combine Lemmas 4 and 5.�

Quite often, on practical instances, we observe that S = Si for some i is a convex LMI
region.

Practically speaking, once curve C is expressed as a determinantal locus, the search of
points k such that C(k) ≻ 0 can be formulated as an eigenvalue problem, but this is out
of the scope of this paper.

6 Examples

6.1 Example 1
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Figure 8: Vishnegradsky’s degree 3 polynomial. Rational curve C with convex LMI sta-
bility region S (in gray)

As mentioned in [7], Vishnegradsky in 1876 considered the polynomial p(s, k) = s3 +
k1s

2 + k2s+ 1 and concluded that its stability region S = {k : k1 > 0, k1k2 > 1} is convex
hyperbolic.

The Hermite matrix of p(s, k) is given by

H(k) =





k2 0 1
0 k1k2 − 1 0
1 0 k1





and hence after a row and column permutation the quadratic matrix inequality formula-
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tion

S = {k :





k2 1 0
1 k1 0
0 0 k1k2 − 1



 ≻ 0}

explains why the region is convex. Indeed, the determinant of the 2-by-2 upper matrix,
affine in k, is equal to the remaining diagonal entry, which is here redundant. The stability
region can therefore be modeled as the LMI

S = {k :

[

k1 1
1 k2

]

≻ 0}

see Figure 8.

6.2 Example 2

k
1

k 2

−5 0 5 10
−50

0

50

100

Figure 9: NN1 SOF example. Rational curve C with convex LMI stability region S (in
gray)

Consider problem NN1 from [10], for which p0(s) = s(s2−13), p1(s) = s(s−5), p2(s) = s+1
in (1). We have pR(ω2) = −k1ω

2 + k2 and pI(ω
2) = −ω2 − 13 − 5k1 + k2 and

H(k) =





k2(−13 − 5k1 + k2) 0 −k2

0 k1(−13 − 5k1 + k2) − k2 0
−k2 0 k1



 .

Hence h(k) = det H(k) = k2(−13k1 − k2 − 5k2
1 + k1k2)

2 and then l(k) = k2, g(k) =
−13k1 − k2 − 5k2

1 + k1k2. A rational parametrization of the curve G = {k : g(k) = 0} is
given by

k1(ω
2) = (ω2 + 13)/(ω2 − 5)

k2(ω
2) = ω2(ω2 + 13)/(ω2 − 5)
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from which we derive the symmetric affine determinantal representation G = {k : det G(k) =
0} with

G(k) =

[

169 + 65k1 − 18k2 13 + 5k1

13 + 5k1 1 − k1

]

.

The pencil representing C is therefore

C(k) =





k2 0 0
0 169 + 65k1 − 18k2 13 + 5k1

0 13 + 5k1 1 − k1



 .

We can check that S = {k : C(k) ≻ 0} is a convex LMI formulation of the stability
region represented on Figure 4. Compare with Figure 9 where we represent also the curve
C = {k : det C(k) = 0}.

6.3 Example 3
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Figure 10: Francis’ example. Rational curve C with convex LMI stability region S (in
gray)

This example, originally from Francis (1987), is also described in [7]. A SISO plant
(s − 1)(s − 2)/(s + 1)(s2 + s + 1) must be stabilized with a PI controller k1 + k2/s.
Equivalently, p0(s) = s(s+1)(s2 +s+1), p1(s) = s(s−1)(s−2) and p2(s) = (s−1)(s−2)
in (1).

For these values we obtain

C(k) =









2k2 0 0 0
0 14 + 28k1 − 54k2 −20 − 40k1 + 18k2 2 + 4k1

0 −20 − 40k1 + 18k2 77 − 53k1 + 36k2 −11 + 5k1

0 2 + 4k1 −11 + 5k1 5 + k1








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and the LMI stability region S = {k : C(k) ≻ 0} represented on Figure 10 together with
the quartic curve C = {k : det C(k) = 0}.

6.4 Example 4

Consider [1, Example 14.4] for which p0(s) = s4 + 2s3 + 10s2 + 10s + 14 + 2a, p1(s) =
2s3 + 2s − 3/10, p2(s) = 2s + 1, with a ∈ R a parameter.
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Figure 11: Ackermann’s example with a = 1. Rational curve C and stability region S
consisting of two disconnected regions (in gray), the one including the origin being LMI.

We obtain C(k) = diag {l(k), G(k)} with

l(k) = 140 + 20a − 3k1 + 10k2

G(k) =









7920 + 4860a + 400a2

+(−1609 − 60a)k1 + (−270 + 200a)k2
⋆ ⋆

−8350 − 2000a + 1430k1 + 130k2 8370 − 1230k1 − 100k2 ⋆
900 + 200a − 130k1 −900 + 100k1 100









where symmetric entries are denoted by stars.

When a = 1, the stability region consists of two disconnected components. The one
containing the origin k1 = k2 = 0 is the LMI region {k : C(k) ≻ 0}, see Figure 11.

When a = 0, the stability region S is the non-convex region represented on Figure 12.
The LMI region {k : C(k) ≻ 0} is not included in S in this case.
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Figure 12: Ackermann’s example with a = 0. Rational curve C and non-convex stability
region S (in gray).

7 Conclusion

In this paper we have explained why the planar stability region of a polynomial may be
convex with an explicit LMI representation. This is an instance of hidden convexity of a set
which is otherwise described by intersecting (generally non-convex) Routh-Hurwitz minors
sublevel sets or by enforcing positive definiteness of a (generally non-convex) quadratic
Hermite matrix.

Practically speaking, optimizing a closed-loop performance criterion over an LMI formula-
tion of the stability region is much simpler than optimizing over the non-linear formulation
stemming from the Routh-Hurwitz minors or the Hermite quadratic matrix inequality.

Convexity in the parameter space was already exploited in [5, 2] in the context of PID
controller design. It was shown that when the proportional gain is fixed, the set of integral
and derivative gains is a union of a finite number of polytopes.

Extension of these ideas to the case of more than 2 parameters seems to be difficult.
The problem of finding a symmetric affine determinantal representation of rationally
parametrized surfaces or hypersurfaces is not yet well understood, to the best of our
knowledge. For example, in the simplest third degree case p(s, k) = s3 + k1s

2 + k2s + k3,
how could we find four symmetric real matrices A0, A1, A2, A3 satisfying det(A0 +A1k1 +
A2k2 + A3k3) = k1k3 − k2 ?
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