
HAL Id: hal-01305625
https://hal.science/hal-01305625

Submitted on 23 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-modular Algorithm for Computing the Splitting
Field of a Polynomial

Guénaël Renault, Kazuhiro Yokoyama

To cite this version:
Guénaël Renault, Kazuhiro Yokoyama. Multi-modular Algorithm for Computing the Splitting Field of
a Polynomial. ISSAC 2008 - 21st International Symposium on Symbolic and Algebraic Computation,
Jul 2008, Linz/Hagenberg, Austria. pp.247-254, �10.1145/1390768.1390803�. �hal-01305625�

https://hal.science/hal-01305625
https://hal.archives-ouvertes.fr

Multi-modular Algorithm for Computing the Splitting Field

of a Polynomial

Gu´ena¨el Renault

INRIA, Paris-Rocquencourt, SALSA Project

UPMC, Univ. Paris 06, LIP6

CNRS, UMR 7606, LIP6

UFR Ing´eni ´erie 919, LIP6 Passy-Kennedy,

Case 169, 4, Place Jussieu, F-75252 Paris

guenael.renault@lip6.fr

Kazuhiro Yokoyama

Rikkyo University

3-34-1 Nishi Ikebukuro, Toshima-ku

Tokyo 171-8501, Japan

yokoyama@rkmath.rikkyo.ac.jp

ABSTRACT
Let f be a univariate monic integral polynomial of degree n
and let (↵1, . . . , ↵n) be an n-tuple of its roots in an algebraic
closure Q̄ of Q. Obtaining an algebraic representation of
the splitting field Q(↵1, . . . , ↵n) of f is a question of first
importance in e↵ective Galois theory. For instance, it allows
us to manipulate symbolically the roots of f . In this paper,
we propose a new method based on multi-modular strategy.
Actually, we provide algorithms for this task which return a
triangular set encoding the splitting ideal of f . We examine
the ability/practicality of the method by experiments on a
real computer and study its complexity.

Categories and Subject Descriptors
I.1 [Computing Methodologies]: Symbolic and algebraic
manipulations

General Terms
Algorithms, Theory

Keywords
Galois theory, splitting field

1. INTRODUCTION
In [18] the authors proposed an approach for computing

the splitting field of a monic integral polynomial f . This ap-
proach is based on indeterminate coe�cients strategy and
Hensel lifting. It takes as input the action of the Galois
group of f over approximation of roots of f in a p-adic num-
ber field Qp (or one of its extensions). To compute the Galois
group Gf of f over Q, the approach of p-adic approximation
is very practical and e�cient (see [21, 10, 9]).

In the approach of [18], the authors did not use all the
data obtained during Galois group computation. Also, on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’08, July 20–23, 2008, Hagenberg, Austria.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

some particular examples, the method was not so e�cient.
By experimentations, we discovered that using these data is
a very low time consuming. Thus, in order to use a large
part of these data and obtain a compromise for this ap-
proach we propose here a multi-modular approach for com-
puting the splitting field of f . Moreover, the recent version
2.13 of the computer algebra system Magma [5] provides a
new implementation (by Fieker and Klüners) of the Galois
group computation based on p-adic approximations where
it becomes easy to access the data computed during this
procedure. Also, since the new computer architectures are
now based on multi-core processors it is important to study
new algorithms which can benefit from these new features.
For all these reasons, a multi-modular strategy has to be
studied.

The key of the multi-modular strategy proposed here comes
from the following assertion: From data obtained during the
computation of the permutation action of Gf over approx-
imate roots of f modulo a prime p1, we can easily obtain
the action of the same permutation representation over ap-
proximate roots of f modulo another prime p2 (see Section
3).

From this action over approximate roots of f modulo dif-
ferent primes we compute approximations, modulo the same
primes, of the Gröbner basis G of the splitting ideal M,
that is the ideal of all the algebraic relations of the roots
of f . Then we reconstruct it by Chinese Remainder Theo-
rem (See Section 4). Thus, the splitting field of f is given
by Q[x1, ..., xn]/M; let us remark that it is easy to perform
arithmetic operations in this algebra. Moreover, in general,
expressions by primitive elements tend to su↵er ”expression
swell”, that is, huge coe�cients appear and those harm the
e�ciency. So, for our purpose, simple extension does not
seem suited.

In order to compute the approximate projections of M in
di↵erent p-adic fields, we use the knowledge of certain alge-
braic structures, the action of Gf over the p-adic approxi-
mation of roots of f and a theoretical form of G given by
the corresponding computation scheme, a very useful object
introduced in [18] (see also [17]). The computation scheme
gives sparse forms with indeterminate coe�cients for the
polynomials in G and techniques to avoid some computa-
tions (see Section 3.3). In Section 3 we show how to in-
terpolate these sparse form by adaptation of the formulae
given in [6] and modular computations. From these theoret-
ical forms we deduce, in the same section, the best bounds

in our knowledge for the coe�cients of a basis of M.
In Section 4 we give basic discussion on e�ciency of multi-

modular strategy in a general form, and present concrete al-
gorithms for our subject corresponding to this multi-modular
strategy with e↵ective tests for correctness. Then, based
on the algorithms, we give certain results about the multi-
modular strategy’s theoretical e�ciency. Section 5 is de-
voted to the experiments, by which the practicality of the
multi-modular strategy is examined.

2. PRELIMINARIES
We provide necessary notions and summarize some results

of [21] and [18].

2.1 Splitting Field and Galois Group over Q
Let f(x) be a monic square-free integral polynomial of

degree n and ↵ the set of all its roots in an algebraic clo-
sure Q̄ of Q. The splitting field Kf of f is the extension
field Q(↵) obtained by adjoining ↵ to Q. The group Gf of
Q-automorphisms of Kf acts faithfully on ↵, thus one can
consider the permutation representation Gf of this group.
Fixing a numbering of the roots ↵ = {↵1, . . . , ↵n} of f , Gf

is viewed as a subgroup of Sn. The group Gf is called the
Galois group of f .

To express Kf symbolically, we consider the epimorphism
� : Q[x1, . . . , xn] 3 xi 7�! ↵i 2 Kf of Q-algebras. For sim-
plicity, we write X = {x1, . . . , xn}. Then Kf is represented
by the residue class ring A of the polynomial ring Q[X] fac-
tored by the kernel M of �. We call M the splitting ideal
of f associated with the assignment of the roots ↵1, . . . , ↵n.
In this setting, computing Kf means to compute a Gröbner
basis G of M (see [4]). Now we fix the lexicographic order
� on terms with x1 � · · · � xn, then the reduced Gröbner
basis of M coincides with the generating set {g1, g2, . . . , gn}
obtained by successive extensions, that is, for each i,

1. gi is a polynomial in x1, . . . , xi and monic with respect
to xi, and

2. Q(↵1, . . . , ↵i) ⇠= Q[x1, . . . , xi]/hg1, . . . , gii,
where hF i denotes the ideal generated by an element or a set
F . This implies that gi is an irreducible factor of f(xi) over
Q[x1, . . . , xi�1]/hg1, . . . , gi�1i such that gi(↵1, . . . , ↵i) = 0.
Thus this reduced Gröbner basis can be obtained by “alge-
braic factoring methods” (see [3]) and is said to be a trian-
gular basis (see [12, 6]). For a Gröbner basis G ⇢ Q[X] and
a polynomial P , let NF(P,G) denote the normal form of P
in Q[X] with respect to G (see [4]).

The group Sn acts naturally on Q[X] with x�
i = xi� for

1 6 i 6 n and � 2 Sn. Thus Gf is the Q-automorphisms
group of A denoted by AutQ(A) (see [3, 1]). We use the
following notation for groups: For a group G acting on a set
S, the stabilizer in G of an element or a subset A of S is
denoted by StabG(A), i.e. StabG(A) = {� 2 G : A� =
A}. If G is the full symmetric group on S, we simply write
Stab(A) for StabG(A). We denote by StabG([a1, . . . , ak]) the
point-wise stabilizer of a subset A = {a1, . . . , ak} of S, i.e.
StabG([a1, . . . , ak]) = {� 2 G | a�

i = ai, 8i 2 {1, . . . , k}}.
The set of right cosets of H in G is denoted by H\G and
the set of all representatives of H\G by H\\G.

Definition 1. We call the ideal generated by the polyno-
mials t1 +a1,. . .,tn +(�1)n�1an, where ti is the i-th elemen-
tary symmetric function on X and f(x) = xn + a1x

n�1 +

· · · + an, the universal splitting ideal of f and denote it by
M0. We call the residue class ring Q[X]/M0 the universal
splitting ring of f over Q and denote it by A0.

With respect to the fixed order �, the reduced Gröbner
basis of M0 is composed of the n Cauchy’s modules of f
(see [19]) and it is called the standard generating set. Since
Sn stabilizes M0, Sn also acts faithfully on A0, i.e. Sn ⇢
AutQ(A0). We have the following theorem (see [16, 2, 21]
for details and other references).

Theorem 2.1. There is a one-to-one correspondence be-
tween the set of all primitive idempotents of A0 and the set
of all prime divisors of M0. Let m be the primitive idem-
potent corresponding to the fixed prime divisor M. Then,
Gf = Stab(M) = Stab(m) and M� = {g 2 Q[X] | gm� =
0 in A0}. Moreover, we have M0 = \�2Gf\\SnM� and

A0 = ��2Gf\\Snm�A0 = ��2Gf\\SnQ[X]/M�.

2.2 Splitting Field and Modular Computation
Now we consider the relation between the splitting ring

over Q and that over a p-adic field Qp. The n-tuple ↵ =
{↵1, . . . , ↵n} and the splitting ideal M associated with the
assignment xi to ↵i are fixed. The primitive idempotent
of A0 corresponding to M is denoted by m. For a prime
integer p, we denote by Z0

p (resp. Zp) the localization of
Z at p (resp. the completion of Z0

p). We denote by ⇡p the
projection from Zp[X] to Fp[X] (the natural extension of
the projection from Z to Fp). From now on, we will consider
prime numbers p satisfying the following property:

P : ⇡p(f) is square-free.

Let M̄p
0 denote the ideal ⇡p(M0 \ Z0

p[X]) in Fp[X] and G0

denote the standard generating set of M0. By construc-
tion, the Cauchy’s modules of f are polynomials with inte-
gral coe�cients and monic in their greatest variable. Thus,
the set ⇡p(G0) is a Gröbner basis of M̄p

0. Moreover, G0 is
a Gröbner basis of the universal splitting ideal Qp ⌦Q M0

of f as a polynomial with coe�cients in Qp and that of
Zp[X] ⌦Z0

p
(M0 \ Z0

p[X]) over Zp. The ideal Qp ⌦Q M0

is denoted by M(p,1)
0 . We denote Fp[X]/M̄p

0 by Āp
0 and

Qp[X]/M(p,1)
0 by A(p,1)

0 . We have the following result (see
[21, 18]).

Theorem 2.2. We have the following assertions:
1. The projection ⇡p gives a one-to-one correspondence be-

tween the set of all primitive idempotents of A(p,1)
0 and that

of Āp
0. Moreover, for each pair (m̄(p), m(p,1)) of correspond-

ing primitive idempotents, Stab(m̄(p)) = Stab(m(p,1)).

2. The idempotent m of A0 is also an idempotent of A(p,1)
0 .

Let m̄(p) be a component of ⇡p(m) and m(p,1) the primitive

idempotent of A(p,1)
0 corresponding to m̄(p). Then Stab(m)

contains Stab(m̄(p)) (= Stab(m(p,1))) and Stab(⇡p(m)) =
Stab(m). Moreover, if we denote Stab(m̄(p))\\Stab(m) by S
then ⇡p(m) =

P
�2S m̄� and m =

P
�2S m(p,1)�

.

Now we fix a component m̄(p) of ⇡p(m) and its correspond-

ing idempotent m(p,1) of A(p,1)
0 . Let M̄p be the maximal

ideal of Fp[X] corresponding to m̄p and M(p,1) the maxi-
mal ideal of Qp[X] corresponding to m(p,1). Moreover, let
G(p,1) and Ḡ(p) be the reduced Gröbner basis of M(p,1)

and that of M̄p respectively.

Definition 2. Let G(p,1) = {g(p,1)
1 , . . . , g(p,1)

n }. For a

positive integer k, we call the polynomials set {g(p,1)
1 mod

pk+1, . . . , g(p,1)
n modpk+1} the k-th approximation to the

basis G(p,1) and denote it by G(p,k). Note that G(p,0) = Ḡ(p).

Approximations of the roots of f
The Gröbner basis Ḡ(p) can be lifted to G(p,1) by Hensel

construction based on quadratic iteration.

Theorem 2.3. [21, 18] The reduced Gröbner basis G(p,1)

of the ideal M(p,1) with respect to � is contained in Zp[X],
and Ḡ(p) is lifted uniquely to G(p,1) by Hensel construction.

Remark 3. From Ḡ(p), we can construct the approximate
Gröbner basis G(p,k) for any integer k. As soon as we have
G(p,k), we can compute with the roots of f in Z/pk+1Z by
computing normal forms modulo this basis. Thus, in the se-
quel, the expression approximations of the roots of f modulo
pp+1 will mean that we have such a Gröbner basis G(p,k)

Remark 4. As to the Gröbner basis G, the denominators
of its elements are related to the discriminant d(f) of f . (See
Section 3.4.) For each prime p satisfying the property P, the
square-freeness of ⇡p(f) implies ⇡p(d(f)) 6= 0, and thus, it
follows that ⇡p(G) is well-defined, that is, p does not divide
any of the denominators.

Now we will study the construction of G by Chinese Re-
mainder Theorem.

3. MODULAR CONSTRUCTION OF G
In this section, we fix a splitting ideal M of f , the corre-

sponding idempotent m and its stabilizer, the Galois group
Gf represented as a sub-group of Sn. We denote by ZK(I)
the algebraic variety over a field K associated to an ideal I
in a polynomial ring. Let E = {e1 < · · · < es} be a subset
of {1, . . . , n} and � = (�1, . . . , �n) an element of ZQ̄(M).
We denote by �(E) the projection of � on the indexes given
by E (i.e. (�e1 , . . . , �es)) and ZQ̄(M)(E) = {�(E) : � 2
ZQ̄(M)}.

3.1 Approximation of G
Let G = {g1, . . . , gn} be the Gröbner basis of M, we will

describe here how to compute the coe�cients of polynomials
gi’s by indeterminate coe�cient strategy and multi-modular
computation.

More precisely, by the knowledge of a special subset Ei

of {1, . . . , n}, we can deduce an equation which defines the
polynomial gi (see Section 3.3):

gi(�) = 0 for every � 2 ZQ̄(M)(Ei). (3.1)

We can replace the variety ZQ̄(M)(Ei) by ZQ̄p
(Qp⌦QM)(Ei),

where p is a prime satisfying P. Then, by using approxi-
mations of roots, we obtain the same equation but for the
approximation of gi. To do that, we need to recall some
results (see [21]).

Let p be a prime integer satisfying P, m̄(p) a component
of ⇡p(m), M̄p its corresponding maximal ideal of Fp[X] and
M(p,1) its corresponding maximal ideal of Qp[X] which is
a divisor of Qp[X]⌦Q M.

Proposition 3.1. Let S = Stab(m̄(p))\\Stab(m). Then

Qp⌦QM = \�2S(M(p,1))�, and ⇡p(M\Z0
p) = \�2S(M̄)�.

By Proposition 3.1, we can reduce the equation (3.1) to
the following.

NF(gi, (G(p,1))�) = 0 for every � 2 GEi\\Gf , (3.2)

where Gf = Stab(m) and GEi denotes Stab([↵ei,1 , . . . , ↵ei,t])

for Ei = {ei,1, . . . , ei,t}. Because {(G(p,1))� : � 2 GEi\\Gf}
provides all elements of ZQ̄p

(Qp ⌦Q M)(Ei). Moreover, re-

placing G(p,1) with G(p,k) (see Remark 3), we have the fol-
lowing equation that approximation gi mod pk+1 must sat-
isfy.

NF(gi, (G(p,k))�) ⌘ 0 (mod pk+1) 8� 2 GEi\\Gf . (3.3)

Remark 5. The components of ⇡p(m) are conjugate to
each other by the action of Gf = Stab(m). From this fact,

it follows that any choice of m̄(p) from the components of
⇡p(m) still give the same Gröbner basis G = {g1, . . . , gn}.

In [18] the authors presented a linear system resolution
to compute gi mod pk+1. Here, we will present in a further
section how to do this by interpolation. Before that, we
present how to compute an approximation of gi modulo an
integer M by Chinese Remainder Theorem.

3.2 Chinese Remainder Construction
Recall that m is the idempotent of A0 corresponding to

the fixed splitting ideal M corresponding to the specific
roots ordering. We now consider primes p1, . . . , pi satisfying
the property P and a component m̄(pi) of ⇡pi(m) for each
pi. Let G(p1,k1), . . . ,G(pi,ki) the approximate Gröbner bases
corresponding to these components.

As seen in Section 3.1, we can approximate the polynomi-
als gi modulo each pki

i . Thus, by Chinese Remainder The-

orem we lift them in the ring Z/MZ where M =
Qi

j=1 p
kj
j .

From this computation we obtain the projection of G mod-
ulo M , that is the set of polynomials {g1 mod M, . . . , gn

mod M}. But, in all this computation we assume that the
idempotent m is fixed. In practice, we can not assume this
hypothesis. Thus we need a general method to assure that
each component m̄(pj) will correspond to the same idempo-
tent m. (See Remark 5.)

To do that, we will use data produced during the compu-
tation of the Galois group Gf done modulo pk1

1 . Then we
reorder the roots modulo primes p2, . . . , pi by following cri-
teria obtained from the data. From the computation of Gf

[21, 10], we obtain a finite sequence {(Ii, Ai) : i = 1, . . . , t} of
invariants and their integer evaluation modulo pk1

1 such that
NF (Ii�Ai,G(p1,k1)) ⌘ 0 (mod pk1+1

1) for every i. Since pk1
1

exceeds the computed theoretical bound so that the corre-
sponding relative Lagrange resolvent has Ai as its simple
integral root. This implies (Ii � Ai)m = 0 for every i and
NF (gi,G(p1,k1)) ⌘ 0 (mod pk1+1

1) for every gi. Conversely,
tracing the determination process of Gf with di↵erent mod-
ulus qk, if qk exceeds the bound, we have the same result.
As pk1

1 already exceeds the bound, we have

Theorem 3.2. Let q be a prime satisfying the property
P, G(q,k) be the k-th approximation of a Gröbner basis of
a maximal divisor of Qq ⌦Q M0 and m̄(q) its correspond-

ing primitive idempotent of M̄q
0. If qk > pk1

1 and NF (Ii �
Ai,G(q,k)) ⌘ 0 (mod qk+1) for every i, then NF (gi,G(q,k)) ⌘
0 (mod qk+1) for every gi, that is, m̄(q) is a component of
⇡q(m).

This method can be seen as a modular Galois group com-
putation guided by the knowledge of the exact branch taken
during the descent from Sn to Gf in the permutations sub-
groups tree of degree n. E�cient implementations of Galois
group computation use some techniques to cut this descend-
ing branch and allow to begin from a subgroup of Sn (see
[10]). To be more e�cient, we plan to adapt our method
with these techniques.

3.3 Computation Scheme and i-relations
In this section, we recall the definition and give some new

results about computation scheme and i-relation (see [18]).
In [18, Section 3] the authors present a framework for the

computation of the Gröbner basis G = {g1, . . . , gn} with
indeterminate coe�cients strategy. In this framework, we
attache to a particular permutation representation Gf a set
of good theoretical form for polynomials of G and techniques
which allow us to avoid computations for some gi. This
is what we call computation scheme since this guides the
algorithm for computing G.

In particular, we associate to each polynomial gi an in-
tegers set Ei = {e1 < · · · < es = i} which describes a trian-
gular set Ti = {g⇤1 , . . . , g⇤s = gi} where g⇤k 2 Q[xe1 , . . . , xek]
and g⇤k(xek , ↵ek�1 , . . . , ↵e1) is a minimal polynomial of the
K-extension K(↵ek) where K = Q(↵ek�1 , . . . , ↵e1); we will
denote by d(Ei)k the degree of this extension. In [18] the
theoretical form g⇤s is used to compute gi by indeterminate
coe�cients strategy. The number of coe�cients to compute
is deduced from Ei (or equivalently by Ti) and is denoted
by d(Ei):

d(Ei) :=
sY

k=1

degxek
g⇤k,

and this quantity is called the degree of Ei.
There may be a lot of di↵erent sets Ei which all corre-

spond to the polynomial gi but, the smaller d(Ei) is, the
more e�cient our algorithm will be. For example, we can
choose the trivial set Ei = {1, 2, . . . , i�1, i} which has maxi-
mal degree but in almost all cases we can find a better set Ei

corresponding to gi. This is why these sets Ei are important
in our algorithm and we call them i-relations.

The computation scheme introduced in [18] provides also
some techniques to avoid the computation of some gi’s. Thus,
to this framework we attach the set I of integers correspond-
ing to the polynomials we have to compute. The total num-
ber of coe�cients to compute in G is the sum of the degrees
of i-relation with i in I and we denote it c(Gf). To compute
the polynomials with index in I modulo a power of a prime,
the strategy used was based on indeterminate coe�cients
followed by a linear algebra step. Here we want to replace
the second step by an interpolation step. This is what we
present in the next section.

3.4 Lagrange Formulae and i-relations
In [6], Lagrange formulae are presented for general tri-

angular sets. These formulae can be used to compute the
Gröbner basis G, this is what is done in [13]. In this case, the
total number of coe�cients to compute will be of the order
of the size of the Galois group Gf which may be very large.
Thus, to overcome this problem we introduce Lagrange for-
mulae for i-relations in order to use the computation scheme.

Let Ei = {e1 < · · · < es = i} be an i-relation and Ti its
associated triangular basis as defined in Section 3.3. The
a�ne variety ZQ̄(Ti) is equiprojectable, thus one can apply

the Lagrange formulae given in [6] but, since here we are
in a very special context, we will restate the construction
by using the permutation representation of the given Galois
group Gf .

Let � be a given permutation in Sn. (Here we write
�(a) for a� for simplifying formulas.) We denote by O(j, �)
the orbit of �(ej) under the action of the point-wise stabi-
lizer StabGf [�(e1), �(e2), . . . , �(ej�1)] defined by {⌧ 2 Gf |
⌧(�(ei)) = �(ei), 8i 2 {1, . . . , j � 1}}. By using the map
i 7! ↵i, the set O(j, �) corresponds to the orbit of the ele-
ment �(↵ej) over the field Q(↵�(e1), ↵�(e2), . . . , ↵�(ej�1)).

From this orbit we can interpret the formula given in [6]
in our specific case.

Theorem 3.3. Let Ei = {e1 < · · · < es = i} be an i-re-
lation. The corresponding polynomial gi verify gi = Li with

Li =
X

�2Trans

0

BB@

0

BB@
s�1Y

j=1

Y

e2O(j,�)
e 6=�(ej)

xej � ↵e

↵�(ej) � ↵e

1

CCA
Y

e2O(s,�)

xi � ↵e

1

CCA

where Trans is the transversal StabGf ([e1, . . . , es])\\Gf

3.5 Bound for the Coefficients of g⇤s
In the formula Li given in Theorem 3.3 the denomina-

tors can be canceled by multiplying with a su�ciently large
power of d(f) the discriminant of the polynomial f . The
multiplication by d(f) can cancel two denominators of the
form

Q
e2O(j,�)
e 6=�(ej)

1
↵�(ej)�↵e

. Thus, all the denominators can

be canceled by multiplying Li with Di = d(f)d
s
2 e.

The polynomial DiLi has integral coe�cients, we will
now investigate a bound over the coe�cient c correspond-
ing to the multi-degree (k1, . . . , ks). We denote by dj the
degree in xj of Li. We note d(Ei) =

Qs
k=1 dk = |Gf :

StabGf ([e1, . . . , es])|. Let � be a bound over the di↵erences
of roots |↵i �↵j | and ⌫ a bound over the absolute values of
the roots |↵i|. Here we will modify the proof given in [13]
to deal with the case of an i-relation:
1. After cancellation of the denominators by multiplying
with Di, it remains, in the numerator, a product of n(n �
1)d s

2e�d1� . . .�ds +s elements of the form (↵j�↵i). This
product will be distributed on all the coe�cients of gi and
is bounded by B = �n(n�1)d s

2 e�d1�...�ds+s.
2. The indeterminate xei of degree ki in Li comes from a
product of di � 1 elements of the form (xei � ↵j). Thus, its
absolute value can be bounded by the well known binomial
quantity

`
di�1

ki

´
⌫di�1�ki .

Hence, by summing all these products over the transversal
(see Theorem 3.3), we obtain the following bound for the
absolute value of c:

d(Ei)

d1 � 1

k1

!
⌫d1�1�k1 · · ·

ds

ks

!
⌫ds�ksB.

4. MULTI-MODULAR STRATEGY
In order to attain e�cient computation of splitting fields,

we can make good use of more sophisticated modular com-
putation technique, “multi-modular” one. Here we show
details on our technique and its variants for improvements.

4.1 Basic Discussion on Modular Techniques

There are several strategies on applying modular tech-
niques for splitting field computation. Among those, a multi-
modular strategy described below shall be e↵ective and ef-
ficient under the following assumption which seems natural
phenomena for our problem.

Assumption: The computed theoretical bound, say BT ,
on the coe�cients of the Gröbner basis G is much larger
than the real bound BR, that is, the maximal absolute value
of numerators and denominators of coe�cients of G. Also
BT is much larger than the bound BG used for the Galois
group determination.

Under the assumption, it is quite natural to use some
heuristic bound BH much smaller than BT . Our computa-
tion can be one instance of the following model:

Computational Model with Modular Computation
Here, the target which we want to compute is some mathe-
matical object over the rational number field Q.

Step 1. Candidate Computation: Proc CAND

Step 1-1. Modular Image Computation
We set the modulus q, and then compute the
modular image of the target modulo q.

Step 1-2. Conversion
By rational reconstruction, we have a candidate
of the target.

Step 2. Correctness Check: Proc CHECK
We check whether a candidate is correct or not by some
e�ciently computable test. If the test is OK, we have
the correct result.

In our case, Proc CHECK can be executed by ideal inclusion
test, which shall correspond to trial division for polynomial
factorization, as pointed out in [18]. Also, we may use an-
other modular technique for Proc CHECK. Further discussion
will be given later.

When we use 2B2
T for the modulus, the computed candi-

date is always correct and Proc CHECK is not necessary. (We
note that for rational reconstruction, the modulus should be
twice of square of the bound.) On the other hand, when we
use some heuristic modulus q, we have to execute recursive
computation to reach the correct answer. When Proc CHECK
fails, we can apply several strategies in Step 1:

S1: Replace a larger modulus q0 and execute Step 1-1.

S2: Take another modulus q0 prime to q, execute Step 1-1
with q0 and combine the result with the old one by Chi-
nese remainder theorem. Then the modulus in Proc CHECK
becomes q ⇥ q0.

S3: Lift up the candidate to a larger modulus q0 by Hensel
construction.

Here, we call the strategy S2 multi-modular strategy, and
the strategy S3 p-adic strategy. Apparently, the strategy S1
is not e�cient compared with other two.

To find the most practical one among strategies in the
above, we examine those total times of computation. Let
TP (q) be the time of Step 1-1 of Proc CAND, where q is the
modulus used, TR(q) the time of Step 1-2 and TC the time
of Proc CHECK. Here, we dare to omit the e↵ect of c(Gf) on
those in order to make our argument clear. In Section 4.3,
we will give further discussion taking c(Gf) into account.

If we use 2B2
T for the modulus, Proc CHECK is not neces-

sary, and thus the total time T0 = TP (2B2
T) + TR(2B2

T)). If

we use some heuristic modulus q, then we should repeat the
computation till the modulus exceeds 2B2

R. Suppose that we
reach to it by s times recursion, where q1, . . . , qs are moduli
used. Then we have the following total times:

S2: T2 =
Ps

i=1(TP (qi)+TCRT (q1 · · · qi�1, qi)+TR(
Qi

j=1 qj)+

TC), where q1 · · · qs�1 < 2B2
R < q1 · · · qs and TCRT (q, q0) de-

notes the time for Chinese remainder theorem for two moduli
q to q0.

S3: T3 = TP (q1)+
Ps

i=2(TH(qi, qi�1)+TR(qi)+TC), where
qs�1 < 2B2

R < qs and TH(q0, q) denotes the time for Hensel
lifting from the modulus q to q0.

Getting precise estimation of TC is very di�cult, when
we apply ideal inclusion test. Thus, we may also apply ad-
ditional modular technique to have e�cient realization of
Proc CHECK. The basic procedure is the following:

Modular Check: Proc MODCHECK
Once we have a candidate C constructed by using modulo q,
we check if it is still valid modulo another q0. If so, we can
show that C is still a candidate modulo q ⇥ q0. Otherwise,
we compute the modular image of a candidate modulo q0 by
Step 1-1 of Proc CAND and apply Chinese remainder theorem
to get the modular image of new candidate C0 modulo q⇥q0.

Now we denote by TMC(q) the time for modular check
modulo q, not including any candidate construction. In our
case, we suppose that TMC(q) is much smaller than TP (q)
and TH(q0, q00) with q = q0/q00. (See Section 4.3 for details.)
Then, we have two types of usage of Modular Check:

U1: We can reduce the number of Proc CHECK by repeat-
ing Proc MODCHECK until we have a stable result. Then,
it is highly supposed that the computed candidate is cor-
rect. With this practical assumption, the size of the to-
tal modulus is supposed the same order as that of 2B2

R,
and so that of BR. Then we have T2 = O(

Ps
i=1(TP (qi) +

TCRT (q1 · · · qi�1, qi)+TR(
Qi

j=1 qj) +TMC(qi)) + TC), whereQs
i=1 qi = O(BR), and T3 = O(TP (q1) +

Ps
i=2(TH(qi, qi�1)

+TR(qi) + TMC(qi)) + TC), where qs = O(BR).

U2: We repeat Proc MODCHECK till the total modulus reaches
the theoretical bound. (So, the p-adic strategy is not suited
for this approach.) This may sound somehow contradic-
tory to our strategy. But, it is still able to give a practical
solution as TMC(q) is much smaller than TP (q). In this
case, we have T2 = O(

Ps
i=1(TP (qi) + TCRT (q1 · · · qi�1, qi)

+TR(
Qi

j=1 qj))+
Pt

i=1 TMC(qi)), where
Qs

i=1 qi = O(BR)

and
Qt

i=1 qi = O(BT).

Omitting the correctness check in U1, the total e�ciency
can be much improved. In this case, the result is not proven
to be correct, but it will be with a high probability.

We will show certain practicality and theoretical e�ciency
of the multi-modular strategy, as it can use the both usages
of modular check. In Section 4.2, we will give details of
algorithms based on multi-modular strategy, and in Section
4.3, based on algorithms given in Section 4.2, we will discuss
those e�ciency, including estimation on TC .

4.2 Algorithms
In the case of the computation of the splitting field of

the polynomial f , the target will be the Gröbner basis G
of the splitting ideal corresponding to the symmetric repre-
sentation G of the Galois group of f . All our first inputs
came from the computation of Gf by modular algorithm

(see [21],[9, 10]) modulo pk1
1 a power of a prime satisfying

property P. From this computation we obtain a finite se-
quence {(Ii, Ai) : i = 1, . . . , t} of invariants and their inte-

ger evaluation modulo pk1
1 as in Theorem 3.2. Because, we

will use multi-modular strategy S2 for computing G we may
need to reorder the roots of f modulo pk2

2 , where p2 is a
prime satisfying P di↵erent from p1. To do this we use the
sequence {(Ii, Ai)} as in Theorem 3.2, this is described in
the following function:

Function: GoodOrdering((p2, k2))

We assume pk2
2 > pk1

1 (else we exit with an error).

Let ↵̂ be the roots of f modulo pk2
2 .

Let t be the length of the sequence {(Ii, Ai)}.
for i = 1 to t do

Let (G, H) be the groups corresponding to Ii.

for � 2 G\\H do

if Ii(↵̂
�
) = Ai then

↵̂ := ↵̂�

break

end if

end for

end for

return ↵̂

As presented in Section 4.1 we now give an algorithm to
compute a candidate Gcand = {g̃1, . . . , g̃n} for the target
G by using a heuristic bound BT . This first step is de-
scribed by the algorithm Proc CAND that takes as input an
approximation of the roots of f mod pk1

1 as a Gröbner ba-
sis G(p1,k1) of the splitting ideal of f mod pk1

1 , the Galois
group Gf corresponding to the order of these roots and a
set P of couples (p, k) where p’s are di↵erent primes (di↵er-
ent from p1) satisfying property P and k’s are integers such
that pk1

1

Q
(p,k)2P pk � BH . To the group Gf is associated

a computation scheme which is represented by the set I of
indexes of the gi to compute in G and the corresponding
i-relation Ei. Before giving this first algorithm, we give a
specific Chinese Remaining Theorem procedure which will
be used in the sequel:

Procedure: SpecCRT({gi mod M, i 2 I},(p, k))
Compute and reorder the roots of f mod pk

.

Interpolate the gi’s mod pk
corresponding to Ei with i 2 I.

Let M be the modulus M ⇥ pk

By CRT compute all the gi mod M (i 2 I).

Now, we can describe the first algorithm corresponding to
the first step Proc CAND:

Algorithm 1: Proc CAND(G(p1,k1),Gf ,P)

Interpolate all the gi mod pk1
1 corresponding to Ei (i 2 I).

Let M be the modulus pk1
1

for (p, k) 2 P do

SpecCRT({gi mod M, i 2 I}, (p, k)).

Let M be the modulus M ⇥ pk

end for

S1:

try to convert all gi’s mod M to rational polynomials hi’s.

if all the conversions above succeed then

The polynomial g̃i is hi.

else

Find a new couple (p, k) not in P.

SpecCRT({gi mod M, i 2 I}, (p, k)).

Let M be the modulus M ⇥ pk
.

Goto step S1 and add (p, k) in P.

end if

For each g̃j with j 62 I, apply a technique over one g̃i with

j < i to obtain g̃j .

Return Gcand, Gf , I, P.

Since we concentrate here on multi-modular strategy for the
computation of G, we give an algorithm corresponding to
Proc CHECK based on the strategy S2. Recall that this algo-
rithm is based on the ideal inclusion test given in [18]:

Algorithm 2: Proc CHECK S2({g̃1, . . . , g̃n},Gf , I, P)
S1:

if The equality NF(g̃i, ci(f)) = 0 is true for all i 2 I then

The Gröbner basis G is {g̃1, . . . , g̃n}.
else

Let M be the product

Q
(p,k)2P pk

.

S2: Find a new couple (p, k) not in P.

SpecCRT({gi mod M, i 2 I}, (p, k)).

Apply techniques to obtain the g̃j ’s with j 62 I.

Let M be the modulus M ⇥ pk
.

Convert all the g̃i’s mod M to rational polynomials.

If conversions above pass then goto S1 else goto S2.

end if

Return G.

As we said in Section 4.1, we can take advantage of the
multi-modular strategy in Proc CHECK too. Here we give the
implementation of Proc MODCHECK with a generic stopping
condition which can be stated in function of the chosen U1
or U2 version.

Algorithm 3: Proc MODCHECK({g̃1, . . . , g̃n},Gf , I, P)
Let M be the product

Q
(p,k)2P pk

.

S1:

if The specified condition COND is not satisfied then

Find a new couple (p, k) not in P.

Compute and reorder the roots ↵̂ of f mod pk
.

if there exists i 2 I such that g̃i(↵̂) 6= 0 mod pk
then

SpecCRT({gi mod M, i 2 I}, (p, k)).

Apply techniques to obtain the g̃j ’s with j 62 I.

end if

Let M be the modulus M ⇥ pk
.

Goto S1.

end if

Convert all the g̃i’s mod M to rational polynomials gi’s.

S2: Return {g1, . . . , gn}.

If condition COND is chosen to be the one corresponding to the
version U1 then the output of Proc MODCHECK is not proven
but we can use it as an input of Proc CHECK. Otherwise, the
condition COND will correspond to version U2 and in this case
the output will be proven.

4.3 Discussion on Efficiency
Here we discuss the e�ciency of the proposed “multi-

modular strategy” along by basic estimation on concrete
procedures given in the previous subsection. We use the
facts given in [18]. By actual experiments on real com-
puters, the authors found that sometimes the correctness
check dominated the total e�ciency, even though the mod-
ulus used there was the same order of the real bound. To
resolve this problem, we introduce the usage U2 and show
that it can give good estimation on the total e�ciency.

To estimate the total e�ciency, we have to give concrete
representation of the functions TP , TR, TCRT , TH , TMC and
TC . To distinguish the time for Step 1-1 of Proc CAND by
linear system solving [18] and that by Lagrange interpola-
tion in Section 3.4, we denote by TPL the time by linear
system solving and by TPI that by interpolation. Also, we
denote by M(q) the unit cost of integer arithmetics of size q.
Then, M(q) = O(q2) for usual multiplication technique, and
M(q) = O(q1+✏) for fast multiplication technique. Also by

[18], we have TC = O(log(n)c(Gf)2M(log(B0)) and B0 is the
largest integer appeared in the normal form computation.
(Finding a good estimation on B0 is a di�cult problem.)

For the strategy S2, it had better to use Lagrange inter-
polation for Proc CAND and TPI(q) = O(c(Gf)2M(log(q)))+
TGO, where TGO is the time for GoodOrdering. For the two
quantities TCRT (A, B) and TR, we can apply fast extended
GCD computation technique for Chinese remainder Theo-
rem and rational reconstruction (see [15]), and thus

TCRT (A, B) = O(c(Gf)M(log(C)) log log(C)), where C =
max{A, B} and TR(q) = O(c(Gf)M(log(q)) log log(q)).
As to the modular check of correctness, we divide each can-
didate g̃i by q = pk and substitute the p-adic approxima-
tion of roots of f , and so TMC(q) = O(c(Gf)(M(log(q)) +
M(log(D))), where D is the maximal absolute value of nu-
merators and denominators of coe�cients of g̃i’s. As D <
BR, we have TMC(q) = O(c(Gf)(M(log(BR))).

For the strategy S3, by the estimation in [18], we have
TPL(q) = O((c(Gf)!M(log(q))), and

Ps
i=2 TH(qi, qi�1) =

O(n2c(Gf)2M(log(qs))) where ! represents a feasible matrix
multiplication exponent and 2  !  3 (see [8]).

Thus, accumulating all representations, the total cost can
be estimated in slightly rough but simple form, where we are
assuming that log(BT) is much larger than log(BR) and the
size of modulus q used is close to the size of the real bound
BR, that is, the number of correctness checks in U1 and
that of CRT construction in U2 can be bounded (one or very
small).

Proposition 4.1. Assume that log(BT) is much larger
than log(BR) and the size of modulus q used and that of BR

are the same order.
(1) When we use the modular check U1, we have

T2 =O(c(Gf)2M(log(BR)) + c(Gf)M(log(BR)) log log(BR)

+ TGO + TC),

T3 =O(c(Gf)!M(log(q1)) + n2c(Gf)2M(log(BR)) + TC),

where TC = O(log(n)c(Gf)2M(log(B0)) and B0 is the largest
integer appeared in the normal form computation.
(2) When we use the modular check U2, we have

T2 =O(c(Gf)2M(log(BR)) + c(Gf)M(log(BR)) log log(BR)

+ c(Gf)M(log(BT)) + TGO
log(BT)
log(BR)

).

Taking account of the estimation on BT in Section 3.5,
when GoodOrdering can be e�ciently done like as TGO is
O(c(Gf)M(log(BR))), the strategy S2 with the modular check
U2 can give the most e�cient computation.

5. EXPERIMENTS AND REMARKS
We have implemented the algorithms of Section 4.2 with

the computer algebra system Magma (version 2.13) in the
case of an irreducible monic integral polynomial. This ver-
sion of Magma provides a lot of functions for using the
byproduct of the modular computation of the Galois group.
All these functions are very e�cient and easy to use but we
need a little more, thus we have rewritten a large part of
our sub-functions in order to be more e�cient.

Reordering the roots: In the case of the normalizer of Gf

in Sn is reduced to Gf , it is sometimes better to recompute
the Galois group G2 of f using another prime p2 and we

finally reorder the roots by applying the permutation which
conjugates Gf and G2, as we can use the e�cient compu-
tation of the Galois group. This is specially e↵ective when
the descending process in the subgroups tree encounter two
succeeding groups with large index. This method could be
generalized by considering the normalizer of Gf and will
study in a future implementation.

Choice of the primes p: Because of the limit imposed by
the Tchebotarev’s density theorem it may be hard to find
primes which split completely in the stem field defined by
the polynomial f . On the other hand, the costs of the p-
adic arithmetic increase according to the order of the Galois
group of f modulo p. Thus, we choose primes satisfying the
property P such that the Galois group of f modulo theses
primes has an order of at most 2.

Heuristic bound BH : We choose, as an heuristic, to begin
the computation Proc CAND modulo the fifth power of the
product of one, two or three minimal primes satisfying the
condition state before.

Comments on the experiments: We try our implemen-
tation on several polynomials given by [11] from degree 6 to
9 and some polynomials of greater degree (not more than
13) corresponding to interesting computation schemes. By
using this heuristic bound, Proc CAND already computes in
all the cases the final result, thus the remaining computa-
tion is the check procedure without any reconstruction. For
groups G with small order or c(G) (say under 500) our new
implantation will not give a really better e�ciency than the
one presented in [18] which was already very e�cient. The
only gain is given by the use of the interpolation in place of
the linear system resolution. Moreover, if the group is very
small in the symmetric group of same degree, the reorder-
ing procedure may be time consuming. Thus, in this case it
is preferable to use mono-modular algorithm and check the
result by normal forms computations (Proc CHECK S2). In
the case of groups G with high order and small c(G), our ex-
periments show that by using interpolation, the gain of e�-
ciency of this new implementation is comparable to the gain
of theoretical complexity. In these cases, the experimental
cost of the reordering of the roots and the reconstruction
of the polynomials by Chinese remainder theorem are very
small in comparison to the other parts of the computation.
Concerning the check procedure, in these cases, the modular
strategy with version U2 is always better than the procedure
Proc CHECK S2. This experiments allow us to think that this
new method should be use for the computation of splitting
fields with high absolute degree, the remaining bottleneck is
the e�cient calculation of a computation scheme (we have
tabulated them up to degree 10).

Remarks on parallel computations: The computer alge-
bra system Magma do not integrate any possibility for par-
allel computation, thus we have implemented all our algo-
rithms with a sequential style. But, during our experiments
we reported that all the parts of the computation that can
be shared on di↵erent cores have the same time consuming
in general. Thus, implementing these algorithms in a par-
allel system will have a real impact on the e�ciency. For
example, in the case of Proc CAND the computations modulo
two di↵erent primes has almost the same time consuming in
general (this is the case when the word sizes of these primes
are the same and they have the same decomposition prop-
erty modulo f).

We give here some specific examples and comments about
them. We give, for each example, the name of the group G
in Butler and McKay’s nomenclature, the order of G and
the integer c(G) (as the sum of the i-relations degrees). The
column Primes shows the timings of computing primes with
good properties. The column Lin. shows timing Proc CAND
using linear systems solving as in [18], Int. those when
we use interpolation, S2 the timings for check procedure
Proc CHECK S2, U2 the timing of Proc MODCHECK based on
version U2 and Ord. the timing of reordering the roots. The
total timings can be obtained by summing the column cor-
responding to strategies used during the computation. The
measurements were made on a personal computer with a
3.0GHz Intel Xeon 64bits (all the timings are given in sec-
onds).

Group |G| c(G) Primes Lin. Int. S2 U2 Ord.

10T39 3840 10 2.13 0.04 0.05 0.01 0.01 1.01
10T36 1920 960 + 10 0.81 141.2 60.5 55.4 2.1 1.3
9T32 1512 1512 + 1512 0.57 540.8 65.1 + 67.3 412.1 4.1 0.5
9T29 648 18 + 648 0.67 40.1 9.3 1.22 1.5 1.0
9T25 324 27 0.08 6.54 7.1 0.2 0.5 2.4
8T48 1344 336 1.25 9.89 4.23 15.34 1.1 0.8
7T6 2520 2520 1.5 785.3 76 + 157.9 8.2 2.1 2.5

The first line shows a very special case where the total
timing is dominated by the research of primes with good
property. Theses cases appear when the group is very large
in comparison with its size c(G) as here. On the last line,
we show the two di↵erent timings for computing modulo two
di↵erent primes. In this case, the first one corresponds to
a prime which splits completely the polynomial f in con-
trary to the second one. This is a general fact, for a fixed
word size, using a splitting prime will give better timings
(in this case the first one is 10037 the second is 53). The
remaining examples show that even the times between the
di↵erent strategies are comparable, using multi-modular and
interpolation approaches are in general better. We did not
compare these timings with the ones given in [13] because
of the di↵erence of architecture, but if we project them on
the same computer our implementation would be more e�-
cient with a factor from 10 to 1000 (this big di↵erence may
come from the fact that computation schemes are not used
in [13]). Also, we did not integrate in the last table the tim-
ings for computing G in Magma (version 2.14) with the new
function GaloisSplittingIdeal (with parameter Roots set
to false) since we can only obtain two of them by waiting
not more than 300 seconds.

6. CONCLUSION
We have presented a new method based on a multi-modular

strategy for the computation of the splitting field of a poly-
nomial f . This new method is a good compromise for the
one presented in [18] since it gives better results in the case
where the later was ine�cient. Also, the experiments show
that this multi-modular method is a good candidate for a
parallel implementation on a multi-core architecture.

The reordering roots function we give here is a general one.
We plan to integrate e�cient techniques of Galois groups
computation (like the ones presented in [10]) in order to
reduce the length of the descending branch in the subgroups
tree.

We hope that such a multi-modular method could be gen-
eralized to the problem of computing algebraic or integral
relations between the roots of a polynomial like in [7].

7. ACKNOWLEDGMENT
The authors would like to thank the referees for their valu-

able remarks.

8. REFERENCES
[1] I. Abdeljaouad, S. Orange, G. Renault, and

A. Valibouze. Computation of the decomposition group of

a triangular ideal. AAECC Journ., 15(3-4):279–294, 2004.

[2] J.-M. Arnaudiès and A. Valibouze. Lagrange resolvents.

J. Pure Appl. Algebra, 117/118:23–40, 1997. Algorithms for

algebra (Eindhoven, 1996).

[3] Anai, H., Noro, M., and Yokoyama, K. Computation of

the splitting fields and the Galois groups of polynomials. In

Algorithms in algebraic geometry and applications, vol. 143

of Progr. Math. Birkhäuser, Basel, 1996, 29–50.

[4] Becker, T., and Weispfenning, V. Gröbner bases,

vol. 141 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1993.

[5] Bosma, W., Cannon, J., and Playoust, C. The Magma

algebra system. I. The user language. J. Symbolic Comput.

24, 3-4 (1997), 235–265.

[6] Dahan, X., and Schost, É. Sharp estimates for triangular

sets. In ISSAC ’04: Proc. of the 2004 International

Symposium on Symbolic and Algebraic Computation (New

York, 2004), ACM Press, pp. 103–110.

[7] Fieker, C. and Graaf, W. Integral linear dependencies of

algebraic numbers and algebraic Lie algebras. LMS J.

Comput. Math., 10 (2007), 271–287

[8] J. von zur Gathen and J. Gerhard. Modern computer

algebra. Cambridge University Press, Cambridge, second

edition, 2003.

[9] Geissler, K. Berechnung von Galoisgruppen über Zhal-

und Funktionenkörpern. PhD thesis, Univ. Berlin, 2003.

[10] Geissler K. and Klüners, J. Galois group computation

for rational polynomials. J. Symbolic Comput.,

30(6):653–674, 2000.

[11] Klüners, J., and Malle, G. A database for field

extensions of the rationals. LMS J. Comput. Math. 4

(2001), 182–196 (electronic).

[12] Lazard, D. Solving zero-dimensional algebraic systems. J.

Symbolic Comput. 13, 2 (1992), 117–131.

[13] Lederer, M., Explicit constructions in splitting fields of

polynomials. Riv. Mat. Univ. Parma (7), 3* (2004),

233–244.

[14] McKay, J., and Stauduhar, R. Finding relations among

the roots of an irreducible polynomial. In Proceedings of the

1997 International Symposium on Symbolic and Algebraic

Computation (New York, 1997), ACM, pp. 75–77.

[15] Pan, V. and Wang, X. Acceleration of Euclidean

Algorithm and Rational Number Reconstruction. SIAM J.

Comput. Vol.32, No.2, pp.548-556, 2003.

[16] M. Pohst and H. Zassenhaus. Algorithmic Algebraic

Number Theory. Cambridge Univ. Press, Cambridge, 1989.

[17] Renault, G. Computation of the splitting field of a

dihedral polynomial. In Proc. of the 2006 International

Symposium on Symbolic and Algebraic Computation (New

York, 2006). ACM Press, pp. 290–297.

[18] Renault, G., and Yokoyama, K. A modular method for

computing the splitting field of a polynomial. In Proc. of

the 7th Algorithmic Number Theory Symposium

ANTS-VII, Berlin, Germany, 2006, LNCS 4076, Springer,

pp. 124–140.

[19] N. Rennert and A. Valibouze. Calcul de résolvantes avec

les modules de Cauchy. Exp. Math., 8(4):351–366, 1999.

[20] Tchebotarev, N. Gründzüge des Galois’shen Theorie. P.

Noordho↵, 1950.

[21] Yokoyama, K. A modular method for computing the

Galois groups of polynomials. J. Pure Appl. Algebra

117/118 (1997), 617–636.

