
A Report on a Survey and Study of Static Analysis Users

Nathaniel Ayewah
Dept. of Computer Science

Univ. of Maryland
College Park, MD

ayewah@cs.umd.edu

William Pugh
Dept. of Computer Science

Univ. of Maryland
College Park, MD

pugh@cs.umd.edu

ABSTRACT
As static analysis tools mature and attract more users, ven-
dors and researchers have an increased interest in under-
standing how users interact with them, and how they impact
the software development process. The FindBugs project
has conducted a number of studies including online surveys,
interviews and a preliminary controlled user study to better
understand the practices, experiences and needs of its users.
Through these studies we have learned that many users are
interested in even low priority warnings, and some organiza-
tions are building custom solutions to more seamlessly and
automatically integrate FindBugs into their software pro-
cesses. We’ve also observed that developers can make de-
cisions about the accuracy and severity of warnings fairly
quickly and independent reviewers will generally reach the
same conclusions about warnings.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; D.2.4 [Software/Program Verification]:
Reliability

General Terms
Experimentation, Reliability, Security

Keywords
FindBugs, static analysis, bugs, software defects, bug pat-
terns, false positives, Java, software quality

1. INTRODUCTION
When we create static analysis tools, we often focus on the

problems we find, and our efficiency in finding these prob-
lems. Some of our tools are now becoming more popular as
developers and managers recognize their value. FindBugs,
an open source static analysis tool for Java that recognizes
many patterns of faulty code, now has over 500,000 down-
loads [9, 14, 8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’08, July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07 ...$5.00.

There is still more work to be done to find more bugs more
efficiently. But as organizations start to integrate these tools
into their software processes, questions arise about their us-
ability and their impact on developers and processes. How
do organizations maximize their return on investment? How
do tools affect programmer productivity, particularly in light
of some of the false warnings they produce?

Many organizations recognize that tools, though imper-
fect, provide another layer of protection against quality and
security flaws. Their developers may not place the same pri-
ority on tools. Hence organizations need policies to ensure
the tools are being used and need standards to ensure con-
sistency across all users. These could include rules about
how soon warnings must be fixed, processes for classifying
and filing warnings, and tools to suppress warnings that are
not relevant so they do not keep coming back in future runs.
What policies have organizations adopted and how effective
have they been? If organizations do not adopt effective prac-
tices for using static analysis tools they may not retain all
their benefits, and some may discontinue use of these tools
because of an incorrectly perceived lack of value.

The FindBugs project has started a research project which
aims to identify and evaluate tool features, validate or inval-
idate assumptions held by tool vendors, and provide guid-
ance for individuals and teams wanting to use static anal-
ysis tools effectively. To this end, we have conducted some
online surveys and informal interviews through which we
have observed that though FindBugs traditionally empha-
sizes higher priority warnings, many users are interested in
low priority warnings in certain categories. We have also
observed that though many organizations do not have for-
mal policies for using FindBugs, some organizations do want
to encourage more regular and automatic use among their
developers, but have to first jump over an initial hump due
to the quantity of warnings found the first time they run
the tool and the time it takes to build custom solutions to
integrate FindBugs into their software processes. These and
other findings are summarized in Section 2 and described in
more detail in [6].

We have also conducted a preliminary controlled study
(described in Sections 3 and 4) in which we observe users
performing basic auditing tasks as they interact with some
static analysis tools. We have observed that independent
reviewers can make decisions about the accuracy and sever-
ity of warnings fairly quickly and will generally reach the
same conclusions about warnings. This preliminary study
gives us qualitative information that will inform future more
comprehensive studies.

1

2. FINDBUGS SURVEY AND INTERVIEWS
To begin this research we have conducted a major online

survey of FindBugs users. The survey received over 400 re-
sponses between November 2007 and April 2008, and was
prepared and delivered using Survey Monkey [5] and adver-
tised on the FindBugs web site and mailing lists. Most of
the survey’s 29 questions are presented as multiple-choice to
make it easier to quantify and analyze the responses. The
survey includes questions on how and how often users in-
teract with FindBugs, what policies are in place for deal-
ing with bug reports, how false positives are identified and
handled, and some demographic questions. The survey also
probes user opinions on how much value they get out of it
and what warnings are most important.

We have also conducted 12 informal phone interviews with
consenting survey participants in the US and Europe to bet-
ter understand their context and to get more detailed infor-
mation about their experiences, challenges and suggestions.
We do not use the surveys and interviews to draw scientific
conclusions but to provide qualitative insights and anecdotes
about user practices and identify areas of future research.
Our findings are summarized here but described in more
detail in [6].

First, some background information on FindBugs. Find-
Bugs is composed of numerous detectors, each of which re-
port specific patterns of bugs. The detectors are written in
Java and use heuristics to search for bug patterns, group
them into categories (e.g. correctness, bad practice, per-
formance and internationalization) and assign a priority of
high, medium or low to each. The priority levels are not
comparable across bug patterns, but FindBugs’ developers
have put in considerable effort to ensure that the warnings
reported at higher priority levels are ones users will want to
fix.

Our survey results indicate that most users are interested
in high priority warnings in all categories but a surprising
number of users also review lower priority warnings, though
the review categories vary from user to user. This indicates
that while high priority warnings are relevant to most users,
lower priority warnings may also be relevant depending on
the user’s context. FindBugs does not show low priority
warnings by default but it may be beneficial to some users
to include low priority warnings in some categories. One sug-
gestion is that FindBugs provide preset configurations that
apply different detectors to users in predefined contexts. A
user working on a web application, for example, has different
needs from a user working on a desktop application.

Another observation from our surveys and interviews is
that many users do not yet have formal policies for using
FindBugs. As a result they may not run it for several weeks,
or they may place more emphasis on warnings close to the
release date, when there is more pressure to ignore minor
warnings. During our interviews, we talked to many users
who recognize that they need to integrate static analysis
tools into their formal processes to make them more effec-
tive. But many of these users have to overcome barriers to
this level of adoption, and in doing so, each organization is
often reinventing the wheel. Some barriers mentioned by
users include:

• A significant initial effort is needed to eliminate warn-
ings found the first time the tool is run. During this
initial effort developers may discover that certain bug

patterns are not relevant, and may want to filter them
out for future runs.

• Users often need to aggregate warnings from different
tools, from unit tests, and from other quality assurance
methods into one report or database and institute poli-
cies over these resources.

• Tools may need to be customized to fit the needs of the
project. Customizations include turning on/off certain
detectors in certain parts of the code, and creating new
project-specific or organization-specific bug detectors.

3. CONTROLLED STUDY
To fully understand how users interact with tools, we need

to observe real users as they work. Like driving a car, work-
ing with software tools involves activities that a user is not
conscious of. These activities may not come out in surveys
and open ended interviews. Eventually we plan to observe
developers in their natural context and model their practices
in hopes of better understanding the impact of static analy-
sis tools. In the mean time, we have conducted a controlled
study to measure some basic aspects of user interaction with
static analysis tools and gain insights that will inform future
on-site studies.

In this study, users were recruited and asked to review
a small set of warnings from FindBugs and Fortify Source
Code Analyzer [2]. Fortify SCA is a commercial static anal-
ysis tool that specializes on finding potentially exploitable
security vulnerabilities in source code. Fortify SCA is part of
a suite of tools (that includes dynamic and real time analyz-
ers) for vulnerability detection. We hope to conduct future
studies that include other tools.

During the review users were expected to choose a desig-
nation indicating the severity of the warning. We measured
the amount of time users spent reviewing each warning and
compared the conclusions of different users. But the primary
goal of this study is to get qualitative information about how
users interact with the tools when making these decisions.

3.1 Participants
We recruited 12 students (10 graduate and 2 undergrad-

uate) from the University of Maryland’s Computer Science
Department using email, fliers and word of mouth. Users
had between 1 and 10 years of experience programming with
Java (the average was 6 years) and between 0 and 5 years of
experience using the Eclipse IDE (the average was 3 years).
Only three of the users had used any static analysis tools and
none had any experience with the tools they used during the
study.

3.2 Experiment Design
Our experiment used a between-subjects design: each par-

ticipant only interacted with one of the two tools. This is
in part because of the time needed to train users to use the
tools and the desire to keep each experiment at around 1
hour. In particular, we trained the participants interacting
with Fortify SCA on some important security vulnerabili-
ties (see Section 3.3). We did not require our users to have
any prior experience using static analysis tools. The first six
users were assigned to the FindBugs experiment while the
next six did the Fortify Study.

Both tools were run on DSpace (version 1.4.2), an open
source web based application for accessing and managing

2

text, audio, video and other resources generated during re-
search and teaching [1]. DSpace was one of the benchmarks
in a recent Static Analysis Tool Exposition organized by the
National Institute of Standards and Technology (NIST) [4].
Both FindBugs and Fortify SCA participated in the exposi-
tion.

Participants were asked to review 23 FindBugs warnings
or 21 Fortify SCA warnings. The FindBugs issues included
8 High priority warnings and 15 Medium priority warnings.
Most warnings were Correctness warnings but there were
also 6 Bad practice and 2 Multithreaded correctness warn-
ings. The Fortify SCA issues included 13 High priority warn-
ings and 8 Medium priority warnings. The high priority
warnings included 6 HTTP Response Splittings, 3 SQL In-
jections and 4 Race conditions involving servlets with mem-
ber fields.

One consideration in selecting warnings is how many simi-
lar warnings are included. Often when a user reviews a par-
ticular type of warning, similar warnings can be reviewed
quicker. We decided in most cases to retain only one or
two warnings from each cluster of similar warnings, but the
review times may be different if we designed a study with
many similar issues.

With these considerations accounted for, warnings were
randomly selected from both high and medium priority cat-
egories, with more emphasis on high priority issues. Partic-
ipants were also given four different and unrelated warnings
to practice on so that they would be familiar with the user
interface before the start of the study. Users were asked to
rate warnings on a 3 level scale using labels native to the
tools. For FindBugs the levels were “Must Fix”, “Low Im-
pact”, and “Not a Bug”. For Fortify SCA the levels were
“Exploitable”, “Suspicious”, and “Not an Issue”. We left it
up to the users judgment to decide what criteria to use to
designate warnings into each level, and queried users after-
wards about their choices.

The experiments were conducted using the Eclipse IDE
and corresponding plugins for both tools. To facilitate post-
experiment analysis we logged some user actions (such as
selecting a view or rating a warning) using a customized
version of the HackyStat Eclipse plugin [3, 11], which trans-
parently collects data about user activities and sends it to a
central repository.

3.3 Experiment Procedure
The experiment was divided into four parts: a tutorial, a

practice session, the main session and a background survey.
During the tutorial, participants viewed a web page which

described the tools with illustrations and outlined the tasks
the user was expected to perform. In particular, the tutorial
showed users how to navigate through warnings, designate
a rating to each one, and add comments. The Fortify SCA
tutorial also included a checklist of steps for users to follow.
This was intended to reduce the complexity of some of the
tasks and to ensure participants consider all relevant factors
before choosing a designation. An example of a checklist for
SQL Injections is shown in Figure 1. Participants were en-
couraged to ask any questions they had to the experimenter.

During the practice session, participants are asked to re-
view four warnings (different from and unrelated to the
warnings in the main session). Participants “thought out
loud”as they performed the review to provide qualitative in-
formation about what decisions they were making and why.

Use the following Checklist to determine if a segment of code is
an SQL injection

1. Does data enter the program from an untrusted source? If NO,
then not an SQL injection

2. Is the data used to construct an SQL query? If NO, then not
an SQL injection

3. Is the data validated between its entry and where the con-
structed SQL statement is executed? If YES, then GOTO 3.a.,
otherwise GOTO 4

(a) Is the data validated using blacklisting (removing or es-
caping potentially malicious characters)? If YES, then
code is still vulnerable to SQL injection because black-
listing is not as effective

(b) Is the data validated using white listing (only allow cer-
tain predetermined inputs)? If YES, then not an SQL
injection

4. Do you see any other security mechanism to prevent SQL in-
jection? If YES, then use your best judgment to determine if
the security mechanism is effective

Figure 1: SQL Injection Checklist

Table 1: Review Times for FindBugs and Fortify
SCA

FindBugs Fortify SCA
73 88
76 90
90 103
97 108
98 143
151 189

Average: 98 120

Once participants completed this review and were comfort-
able with the interface the experiment moved to the main
session.

In the main session participants reviewed the assigned is-
sues starting with the highest priority warnings. This mim-
ics the way tools usually present the warnings to users. This
session was timed and the screen and audio were recorded.
The main session was followed by a brief online survey.

4. RESULTS AND DISCUSSION

4.1 Review Times
Table 1 shows the review times for FindBugs and Fortify

SCA. The times for each tool are sorted from shortest to
longest. Users spent an average of 98 seconds reviewing
each FindBugs warning which drops to about 87 seconds
when the last (outlier) is excluded. Users spent about 120
seconds for each Fortify SCA issue.

4.2 Comparing User Designations
Table 2 summarizes user designations for the warnings in

FindBugs and Fortify SCA respectively. Each entry corre-
sponds to a single warning and represents the number of
users that reviewed it at the three different levels. For ex-
ample the entry (6,0,0) means all users considered the warn-
ing to be Exploitable/Must Fix. High and medium priority
warnings are shown in separate columns and entries are or-
dered such that those near the top of the table were consid-

3

Table 2: Summary of User Designations for each
FindBugs Warning (Must Fix, Low Impact, Not A
Bug) and each Fortify SCA Issue (Exploitable, Sus-
picious, Not an Issue)

FindBugs Fortify SCA
High Priority Medium High Medium

6, 0, 0 6, 0, 0 6, 0, 0 3, 3, 0
6, 0, 0 6, 0, 0 6, 0, 0 2, 4, 0
6, 0, 0 5, 0, 1 6, 0, 0 2, 1, 3
5, 0, 1 5, 0, 1 5, 0, 1 1, 5, 0
4, 2, 0 4, 2, 0 4, 2, 0 1, 2, 3
3, 2, 1 4, 2, 0 4, 2, 0 1, 2, 3
3, 1, 2 4, 0, 2 3, 3, 0 0, 5, 1
2, 4, 0 2, 4, 0 3, 3, 0 0, 4, 2

2, 4, 0 3, 3, 0
2, 4, 0 3, 2, 1
1, 5, 0 3, 2, 1
1, 5, 0 3, 0, 3
1, 4, 1 1, 1, 4
0, 6, 0
0, 6, 0

ered more severe by more users and those near the bottom
were more likely to be reviewed as low impact or not an is-
sue. This ordering is based on a simple heuristic in which
we treat each entry as a 3-digit number.

Of the 23 FindBugs warnings, there are 12 where at least
5 users agreed on a designation and 21 where at least 4 users
agreed. One question that arises is whether users disagree
because the code and warning are unclear, or if it is because
users miss important details. The high level of agreement
among FindBugs reviewers may indicate that the cases and
warnings are generally clear.

One interesting exception occurred during the practice
session and is illustrated in Figure 2. Here, a switch state-
ment is missing breaks and each case falls through to the
next one. FindBugs flags this as a bug but 4 users concluded
that the programmer intended the fall through to initialize
all variables. The other 2 users reviewed this as Must Fix,
and may have not noticed the programmers possible intent.
Of course, the programmer in this example should probably
insert comments indicating that breaks were omitted inten-
tionally if in fact this is the case. In another case, FindBugs
flagged a possible null pointer dereference that would only
occur if an earlier exception was thrown (and caught). The
programmer commented in the catch-block that the excep-
tion “should never happen”, but 4 users still concluded that
the warning was a “Must Fix” while the other 2 reviewed
this as Not an Issue.

Of the 21 Fortify warnings, there are 6 where at least
5 users agreed on a designation and 11 where at least 4
users agreed. Some of the disagreement may have resulted
from reviewers getting confused as they went through the
trace. In one case half the users rated a HTTP Response
Splitting warning as Exploitable while the other half rated
it as Not an Issue. The comments indicate that some of
those who thought it was not an issue concluded that the of-
fending variable was sanitized using the URLEncoder.encode
method, but in fact a different variable was sanitized.

public DCDate(String fromDC) {
...
switch (fromDC.length()) {
case 20:

// Full date and time
hours = Integer.parseInt(fromDC.substring(11, 13));
minutes = Integer.parseInt(fromDC.substring(14, 16));
seconds = Integer.parseInt(fromDC.substring(17, 19));

case 10:

// Just full date
day = Integer.parseInt(fromDC.substring(8, 10));

case 7:

// Just year and month
month = Integer.parseInt(fromDC.substring(5, 7));

case 4:

// Just the year
year = Integer.parseInt(fromDC.substring(0, 4));

}
...

}

Figure 2: Switch statement with no breaks. Some
users concluded this was not a bug while others de-
clared this a Must Fix.

4.3 Qualitative Results
A brief survey administered after each study captured

more feedback about the user’s experience. In the survey
5 of the 6 FindBugs users indicated that they generally un-
derstood the warnings or that they were familiar with the
problems from previous experience, while 4 of 6 users indi-
cated that it was not difficult to decide if a warning repre-
sented a bug. But users were split over whether it was easy
to distinguish between “Must Fix” and “Low Impact” bugs.
Some of these users complained that they were not familiar
with the code and could not investigate too deeply, so it was
hard to decide the real impact of the warning.

In the Fortify SCA survey, 5 of 6 users indicated that
they understood the warnings, but most still thought it was
difficult to decide if a warnings was a bug. In addition 5 of 6
users found it hard to distinguish between“Exploitable” and
“Suspicious” issues. Some users said they were conservative,
rating as Exploitable any issue for which a reasonable chance
of failure existed.

Both FindBugs and Fortify SCA provide a clickable trace
for each warning that contains links to relevant parts of the
code. FindBugs trace links to affected fields and classes and
the line where the warning occurs. Fortify SCA’s traces
contained a call hierarchy tracing the cause of each issue
from the source (e.g. where a taint enters the program) to
the target where the vulnerability is exposed. Fortify SCA’s
traces were much longer than those in FindBugs and users
relied more on the traces in Fortify SCA to understand the
warnings.

We observed that users often looked beyond the trace,
referring to the type hierarchy or just doing a text search
to find out more about variables and types. Future studies
could identify all the information used by users during an
audit and encourage tools to make this information more
readily available.

Some reviewers may have found the traces confusing—
their comments indicate that they focused on the wrong

4

variable and hence rated the warning as not a bug. Other
users indicated that even after going through the trace to
confirm the warnings, they did not know whether to trust
the tools. Such users would spend some time trying to find a
clue that might suggest that the tool was wrong. One Fortify
SCA user indicated that they were not confident enough to
rate any issues as Not an Issue (there was also one FindBugs
reviewer that did not rate any warnings as Not a Bug).

4.4 Threats to Validity
Our goal in this experiment was to mimic the experience

software developers have as they review warnings. One ob-
vious limitation is that users were not familiar with the code
base and may have drawn some incorrect conclusions. An-
other is that we used the default ordering of warnings pro-
vided by the tools for all users (though users were not con-
strained by this order), and hence the position of a warning
near the beginning or end of the list may affect the way
users reviewed it. But the results of this study give us clues
of some of the issues we should look for in an on-site study,
such as how much users rely on traces, and how often re-
viewers err or disagree.

5. RELATED WORK
Recent research has examined users of static analysis tools

(and the artifacts they create) to better understand how
users work. In an earlier paper, we investigated why real
bugs sometimes go unfixed [7]. We determined that some
of these were deliberate errors (inserted perhaps as a surro-
gate for throwing an exception), masked errors (that have
no impact on the function of the program because they are
masked by some other code), and errors on infeasible paths.
Other research has examined why developers do not always
fix warnings that are reported moments after the code is
written (when they are cheap to fix) and concluded that the
reports need to match the developer’s current goals and fit
into the developer’s workflow [12].

Recent research has also focused on the needs of organi-
zations. Researchers at eBay tried to calculate the return
on investment of FindBugs and other tools by comparing
their cost/benefit with that of manual testing [10]. They
conclude that FindBugs had a compelling value proposition
relative to manual testing. Other researchers have tried to
attach a value to specific warnings before they are human
reviewed. These researchers sampled static analysis warn-
ings from Google’s code base (with notes on which ones were
resolved) and used this to build models to predict whether
a warning is a false positive or not [13].

6. CONCLUSION AND FUTURE WORK
Our current and future research focuses on the under-

standing how users work so we can build tools that better
support them. So far we have observed that general tools like
FindBugs have diverse users that are interested in different
categories of warnings, even at low priorities. We have also
identified some formal policies instituted by organizations
to use static analysis tools more effectively and observed
in controlled studies that independent reviewers generally
make similar judgments about the severity of warnings. In
the future, we plan to observe our users in their natural con-
texts to more effectively model their work practices. This
direct interaction with developers and quality assurance spe-

cialists will help us identify how static analysis tools enhance
or interfere with their work.

7. REFERENCES
[1] Dspace. http://dspace.org/, 2008.

[2] Fortify software. http://fortify.com/, 2008.

[3] Hackystat. http://hackystat.org, 2008.

[4] Static analysis tool exposition, organized by software
assurance metrics and tool evaluation (samate)
project at nist.
http://samate.nist.gov/index.php/SATE, 2008.

[5] Survey monkey. http://surveymonkey.com/, 2008.

[6] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,
J. Penix, and W. Pugh. Experiences using static
analysis to find bugs. Software, IEEE, 25(5), 2008. To
appear.

[7] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix,
and Y. Zhou. Evaluating static analysis defect
warnings on production software. In PASTE ’07:
Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 1–8, New York, USA, 2007. ACM.

[8] D. Hovemeyer and W. Pugh. Finding more null
pointer bugs, but not too many. In PASTE ’07:
Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 9–14, New York, USA, 2007. ACM.

[9] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating
and tuning a static analysis to find null pointer bugs.
In PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 13–19, New York, NY, USA, 2005.
ACM Press.

[10] C. Jaspan, I.-C. Chen, and A. Sharma. Understanding
the value of program analysis tools. In Companion to
the 22nd ACM SIGPLAN conference on Object
oriented programming systems and applications
companion, pages 963–970, Montreal, Quebec,
Canada, 2007. ACM.

[11] P. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore,
J. Miglani, S. Zhen, and W. Doane. Beyond the
personal software process: Metrics collection and
analysis for the differently disciplined. In Software
Engineering, 2003. Proceedings. 25th International
Conference on, pages 641–646, 2003.

[12] L. Layman, L. Williams, and R. S. Amant. Toward
reducing fault fix time: Understanding developer
behavior for the design of automated fault detection
tools. In Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International
Symposium on, pages 176–185, 2007.

[13] J. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,
and G. Rothermel. Predicting accurate and actionable
static analysis warnings: An experimental approach.
In Proceedings of the International Conference on
Software Engineering, 2008.

[14] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking
defect warnings across versions. In MSR ’06:
Proceedings of the 2006 international workshop on
Mining software repositories, pages 133–136, New
York, NY, USA, 2006. ACM Press.

5

