Osaka University Knowledg

Title Retrieving Similar Code Fragments based on
Identifier Similarity for Defect Detection

Ishio, Takashi; Matsushita, Makoto; Inoue,
Author (s) Katsuro et al.

Citation

Version Type|AM

URL https://hdl. handle.net/11094/51558

© 2008 ACM. This is the author’s version of the
work. It is posted here for your personal use.
Not for redistribution. The definitive Version
rights of Record was published in DEFECTS ’ 08
Proceedings of the 2008 workshop on Defects in
large software systems, Pages 41-42, 2008-07-20,
http://dx.doi.org/10.1145/1390817. 1390830.

Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University

Retrieving Similar Code Fragments based on Identifier
Similarity for Defect Detection

Norihiro Yoshida, Takashi Ishio, Makoto Matsushita, Katsuro Inoue
Graduate School of Information Science and Technorogy, Osaka University
1-83, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
{n-yosida, ishio, matusita, inoue}@ist.osaka-u.ac.jp

ABSTRACT

Similar source code fragments, known as code clones or du-
plicated code, may involve similar defects caused by the
same mistake. However, code clone detection tools cannot
detect certain code fragments (e.g. modified after copy-and-
pasted). To support developers who would like to detect
such defects, we propose a method to retrieve similar code
fragments in source code based on the similarity of identifiers
between a query and a target code fragment. We present two
case studies of similar defects in open source systems.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids and diagnostics; D.2.4 [Software Engi-
neering]: Software/Program Verification—Statistical meth-
ods

General Terms
Algorithms, Experimentation

1. INTRODUCTION

Similar code is generally considered as one of factors that
make software maintenance more difficult[1, 2, 4]. If devel-
opers modify one of similar code fragments, they have to de-
termine whether or not apply the same modifications to the
others. Similar code is also called code clone or duplicated
code. Developers often introduce similar code by because
of various reasons (e.g. “copy-and-paste”)[2, 5]. Especially,
large-scale software system, such as Linux, JDK(Java Devel-
opment Kit), often involves large amount of similar code[4].

Similar code fragments sometimes involve similar defects
caused by the same mistake[6, 7]. Therefore, if one of sim-
ilar code fragments has a defect, it is necessary to inspect
the others. Figure 1 is an example of such code fragments
in Linux 2.6.6. Those code fragments involve similar defects

caused by accessing incorrect pointer (i.e. &prom_phys_total).

Because type cast operations (e.g. (char *)) are inserted into

(linux-2.6.6/arch/sparc64/prom/memory.c)
111 for(iter=0; iter<num_regs; iter++) {
112 prom_prom_taken[iter].start_adr =
113 prom_reg_memlist[iter].phys_addr;
114 prom_prom_taken[iter].num_bytes =
115 prom_reg_memlist[iter].reg_size;
116 prom_prom_taken[iter].theres_more =
117 &prom_phys_total [iter+1];

// should be:&prom_prom_taken[iter+1];
118 }

(linux-2.6.6/arch/sparc/prom/memory.c)
163 for(iter=0; iter<num_regs; iter++) {
154 prom_prom_taken[iter].start_adr =

155 (char *) prom_reg_memlist[iter].phys_addr;
1566 prom_prom_taken[iter].num_bytes =
157 (unsigned long) prom_reg_memlist[iter].reg_size;
158 prom_prom_taken[iter].theres_more =
159 &prom_phys_total[iter+1];
// should be:&prom_prom_taken[iter+1];
160 }

Figure 1: Similar defects

the lower fragment, code clone detection tools[1, 2, 4] do not
treat those code fragments as a pair of code clones. Hence,
even if developers find out that one of those code fragments
has a defect and perform code clone detection, they can not
detect the other code fragment that has similar defect. We
propose a new approach that compares only identifiers to
detect such code fragments.

In this paper, we focus on similar defects that are involved
in code fragments sharing identifiers with the same name,
and we propose a method to retrieve similar code fragments
based on identifier similarity.

2. PROPOSED METHOD

As shown in Figure 2, our method accepts a code fragment as
a query and retrieves similar code fragments in target source
files. The process comprises the three steps as follows.

(1)Lexical Analysis Both the input code fragment and
the target source files are translated into token se-
quences. Then, only identifiers are extracted from each
token sequence. Finally, those identifiers are normal-
ized based on several rules (e.g. dividing at underscore,
number suffix elimination) and are listed as Identifier
Lists.

(2)Comparison We compare the input identifier list with
sublists in the target identifier lists. We compute the

Target source files
Input code fragment (Query) f, f
n

= B3

Lexical Analysis

Target identifier lists

Propose

method {_Lexical Analysis

Ly | 1l 0] 1l 1] fmms| 1[Nyl
Input identifier list Lo| 1o 0] Lol 1] fmms] 1[Nyl
G oror Jray Jese [0ind] |_'m| Tl0] | 101 Jems[T ing |

= > €
Similar sublists <-—

Lo [talo] [vty e[talng |

Lo, [15[0] 1ol 1] F" s2l Nl
! I

?
Similarity Ranking

Rank | Startline # End line # Similarity
1 Lineg, Line,, Sim,
2 Lineg, Line,, Sim,

Figure 2: The overview of proposed method

Input identifier listL; [1i[o] [1ifa) [1i[2]

Target identifier listL, | !t[0] ||l[1] |It[2] 1t[3] | [1t0n] |

Sliding window

The direction of movement
of the sliding window

Figure 3: Sliding window

similarity for each sublist and extract Similar Sublists.
The detail of this setep is described later.

(3)Ranking Similar sublists are ranked according to sim-
ilarity between them to the input identifier list. We
call the ranking Similarity Ranking.

Figure 3 shows the comparison between an input identifier
list and a target identifier list. We call the scope of compar-
ison Sliding Window, and it moves through the target identi-
fier list. To reduce computational cost, we fix the length of
the sliding window to the length of the input identifier list.
Hence, the length of a similar sublist is fixed to the length
of the input identifier list.

The definition of the similarity in our method is shown in
Equation 1. Let S; be a set of elements in input identifier list
Li, S, be a set of elements in the sliding window. Then we
define the similarity in our method as Similarity(S;, Sw):

In the ranking step, since similar sublists are ranked us-
ing the similarity score described above, the code fragments
which share more identifiers with the input code fragment
are ranked higher in the result. Since the ranking involves a
huge number of code fragments, developers may investigate
similar code fragments according to their resource.

3. CASE STUDY

We performed two case studies of software systems, Linux
2.6.6 and Canna 3.6[3].

The arch directory of Linux 2.6.6 has two similar defects (see
Figure 1). We used the two code fragments as queries and
then retrieved similar code fragments to each of them in the
arch directory. As a result, in both of those queries, the
two code fragments in Figure 1 are detected as the top two
code fragments in the similarity ranking. If one of those
code fragments is given, we can detect the other one having
similar defect.

The server directory of Canna 3.6 has 19 buffer overflow er-
rors. Like the case of Linux, we used the 19 code fragments
as queries and then retrieved similar code fragments in the
server directory. As a result, in all of those queries, 18 or 19
queried code fragments are ranked in the top 30. If one of
those code fragments is given, we can detect the almost the
other code fragments having similar defect.

4. CONCLUSION

In this paper, we proposed a method to retrieve similar code
fragments based on identifier similarity. In the case studies,
by providing a code fragment having a defect, we could de-
tect most of similar defects. We need further case studies
on other software systems having similar defects.

Acknowledgments

This reseach was supported by JSPS, Grant-in-Aid for Scien-
tific Research (A) (No0.17200001) and Grant-in-Aid for JSPS
Fellows (No0.20-1964).

5. REFERENCES

[1] B. S. Baker. Finding clones with Dup: Analysis of an
experiment. IEEE Trans. Softw. Eng., 33(9):608-621,
2007.

[2] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and
L. Bier. Clone detection using abstract syntax trees. In
Proc. of ICSM 98, pages 368-377, 1998.

[3] Canna. http://canna.sourceforge. jp.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans. Softw. Eng.,
28(7):654-670, 2002.

[5] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In Proc. of ISESE 2004, pages
83-92, 2004.

[6] B. Lagué, D. Proulx, J. Mayrand, E. M. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Proc. of ICSM ’97, pages 314-321, 1997.

[7] A. Zeller. Why Programs Fail. Morgan Kaufmann Pub.,
2005.

