
Automated Design of Self-Adjusting Pipelines
Jieyi Long, and Seda Ogrenci Memik

Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL 60208

{jlo198, seda} @ eecs.northwestern.edu

ABSTRACT
We propose a self-adjusting pipeline structure to enhance chip
performance and robustness considering the effects of process
variations. We achieve this by introducing delay sensors to
monitor internal timing violations within a pipeline stage and
variable clock skew buffers to adjust the timing of the pipeline
stage based on the feedback from the delay sensors. Furthermore,
we formulate the delay sensor insertion and variable clock skew
configuration problem as a stochastic mixed-integer programming
problem and propose a simulated-annealing based algorithm to
solve it. A comparison between the designs with and without the
self-adjusting enhancement reveals that, we are able to improve
the average performance of a batch of chips by 9.5%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault Tolerance

General Terms
Design, Performance, Reliability.

Keywords
Self-Adjusting, Delay Monitoring, Variable Clock Skews.

1. INTRODUCTION
New technologies and the complexity growth of the designs place
a large burden on synthesis, simulation, and verification tools. It
is becoming increasingly complicated to verify the correctness of
execution of a design. As a result, circuits are designed
conservatively, i.e., the designers assume the worst-case scenario
and optimize the circuits for them. In addition to the complexity
of guaranteeing correctness, this approach results in designs with
sub-optimal performance. Besides the sheer complexity, another
important problem faced by the designers is the intricacies of
using smaller manufacturing technologies. As manufacturing
technologies are scaled down, it becomes exponentially harder to
verify and guarantee the correctness. Each component in the
system can possibly affect the timing and operation of another
component. Therefore, complete correctness cannot be verified by
local simulations only. In addition, simulating components at
newer technologies is becoming further challenging due to the
emergence of various physical phenomena. Therefore, there is a
need for novel methods to satisfy the performance requirements
of next-generation high performance circuits.

In this paper, we present the self-adjusting pipeline architecture
and the supporting design automation framework as a mean to
overcome this important hurdle. Our approach is to shift the
complexity of the simulation and verification to the higher levels
by designing self-adjusting hardware, i.e. hardware that adapts to
unexpected events and hence, to variation in performance
parameters during execution. In this work, we achieve this by
introducing a variable clock skew scheme to adjust the timing of
pipeline stages dynamically. We show that the design process of
these self-adjusting hardware structures can be automated.
Particularly, we target the Delay Monitoring and Skew Buffer
Insertion problem in order to determine the sensor locations and
nominal delay of the skew buffer to maximize the average
performance of a batch of chips. We formulate this problem as a
stochastic mixed-integer programming problem and propose a
simulated-annealing based algorithm for solving the problem.

The novelty of our work lies in the following aspects. Majority of
existing statistical yield optimization techniques are static [1-4].
However, we propose a dynamic technique that enables
robustness towards process variations during run-time. Through
the use of our proposed self-adjusting design it is possible to
intervene before the timing variation actually manifests itself as a
violation. This is a fundamentally different paradigm than existing
dynamic techniques, which operate on the detect, stall, and re-
execute principle [5].

We have evaluated the effectiveness of our approach on the
pipeline of a high performance DEC Alpha-like microprocessor.
Each block has been characterized in terms of the impact of
process variations (die-to-die, within die…) on the timing of the
critical paths within the blocks. Using these parametric models we
have performed the automated delay monitor and variable skew
buffer insertion in these blocks. A comparison between the
designs with and without the self-adjusting enhancement reveals
that, we are able to improve the batch performance by 9.5%.
Batch performance is the metric corresponding to the average
performance of a large set of chips, which is commonly used to
assess the yield of a batch after applying speed binning.

The remainder of this paper is organized as follows Section 2
provides an overview of related work. In Section 3, the model of
process variations and a brief review of the hardware design of
the built-in delay sensor are presented, followed by the detailed
discussion of the self-adjusting pipeline architecture. We
introduce our systematic framework for designing a self-adjusting
pipeline in Section 4. Our experimental evaluation is presented in
Section 5. We conclude with a summary of our contributions and
findings in Section 6.

2. RELATED WORK
The increasing impact of process and environmental variations on
circuit timing has motivated several self-adjusting architectures.
Chakraborty et al. considered the problem of guaranteeing the

timing correctness of sequential circuits under on-chip
temperature variation. The idea is to insert tuneable delay buffers
into the clock tree, which can be adjusted on-the-fly [6, 7]. Long
et al. [8] solved the same problem by introducing SACTA, a self-
adjusting clock tree architecture leveraging the specially designed
skew buffers to achieve adaptability. The skew buffers provide
proper clock skews which lengthen or shorten the effective clock
cycle time for each pipeline stage depending on the local
temperature level.

Ernst et al. [5] proposed a circuit-level timing error
detection/correction scheme. Each pipeline register lying on the
critical path is coupled with a shadow register which is controlled
by a delayed clock. The results stored in the pipeline registers and
their corresponding shadow registers are compared and if they do
not agree it is denoted as a timing error. In such a case, the
pipeline is stalled and the erroneous operation is re-executed. One
specific technique employed by this scheme is called dynamic
retiming. The idea is to create intentional clock skews such that
those pipeline stages that repeatedly experience timing errors are
assigned longer intervals. The skews can be changed dynamically
within a certain range if the execution time of the pipeline stage
changes due to environmental fluctuations.

Our scheme is fundamentally different as we introduce the delay
sensors to detect the timing violations in internal nodes of the
pipeline stages and we can reconfigure the adjustable skew
buffers before the current operation is completed. Hence, we do
not need to stall the pipeline and re-execute a failed operation.

3. SELF-ADJUSTING PIPELINE
ARCHITECTURE
In this section, we will first analyze the impact of process
variations on circuit timing, which motivated our self-
monitoring/adjusting scheme. Then, we will discuss the delay
monitoring elements and the self-adjusting pipeline architecture.

3.1 Impact of Process Variations on Timing
In deep sub-micron technology, circuit parameters such as gate-
oxide thickness, channel length, etc. are statistical parameters
rather than fixed values. This phenomenon is called process
variation and can be categorized into die-to-die (D2D) and with-
in-die (WID) variations. D2D variation refers to the variation in
process parameters across dies and wafers, while WID variation is
the variations on the circuit parameters across different regions in
a single die. WID variation is considered to be the dominant
factor in the deep-submicron regime.
Since the CMOS gate delay is a function of the above mentioned
circuit parameters, process variations have a direct impact on
circuit timing. However, analysis shows that different pipeline
stages can have different levels of susceptibility to process
variations. According to the FMAX model introduced by
Bowman et al. [9] the criticality of a pipeline stage is determined
by the number of independent potential critical paths (Ncp) of the
stage and the critical path logic depth (Lcp). A potential critical
path refers to a path having a nominal delay close to the clock
cycle time of the circuit. The pipeline stages having larger Ncp/Lcp
ratios tend to be more vulnerable to process variations, and
thereby having a higher probability of containing a critical path.
For instance, a recent study on the effects of process variations on
microprocessors has shown that the L1 cache has almost 60%

chances of containing the critical path [10]. Another study also
reports that process variations can have an uneven impact on the
timing of different pipeline stages of a sequential circuit [1].

This disparity motivated us develop a self-adjusting enhancement
customized for the most vulnerable pipeline stage in a given
design to monitor the internal timing violations. This
customization is realized through the use of an automated design
process. In Section 3.2, we first elaborate on how delay
monitoring can be performed. Next, we present our proposed self-
adjusting pipeline architecture in Section 3.3. Finally, we describe
the automated design framework to realize an instance of such a
self-adjusting pipeline in Section 4.

3.2 Delay Monitoring Elements
Ghosh et al. [11]
proposed a low-overhead
built-in delay sensor
(BIDS) which is capable
of detecting failures at
the internal nodes of a
circuit. The schematic of
the delay sensor is
depicted in Figure 1. A
sawtooth waveform with
the duration of the time
period of the reference
clock is generated. This
signal is connected to a track-and-hold (TAH) circuit whose
sampling switch is controlled by the observation node P. Suppose
node P is expected to make a transition from “1” to “0”. When
node P is “1”, the switch is on and the output tracks the sawtooth
waveform. As P makes a falling transition, the TAH switch is
turned off and the voltage of the output capacitor of the TAH
holds its value VTAH. The comparator then compares VTAH with
VREF, which is a measure of the maximum tolerable delay TMAX of
node P. If VTAH is higher than VREF, the output of the comparator
becomes “1”, indicating a timing violation at node P.
The above described BIDS can be calibrated for process
variations [11]. Due to this process-variation-tolerant feature, in
the following discussions, we will omit the impact of process
variations on the delay sensors.

3.3 Self-Adjusting Pipeline Architecture
Figure 2 shows a portion of a sequential circuit. It consists of two
pipeline stages. Assume that the first stage is significantly more
likely to contain the critical path of the overall system compared
with the subsequent pipeline stage. We refer to the first stage as
the vulnerable stage. The bold lines denote the potential critical
paths. The Ncp/Lcp ratio of the first stage (which is equal to 3/2) is
much larger than that of the second stage (which is equal to 1/4).
Figure 3 depicts the enhanced pipeline. First, we insert a set of
BIDS to cover all potential critical paths in the first stage. The
delay sensors are represented by ⊕ in Figure 3. Second, we add
one adjustable skew buffer at the CLK pin of register R2. This
buffer can provide one of two possible skew values at any given
time. The structure of the adjustable skew buffer is shown in
Figure 4. It consists of a δ-buffer (with nominal delay of μδ, and
variance σδ2), a MUX and an OR gate. All the outputs of the delay
sensors are OR-ed and then used to control the MUX. If an
internal timing violation is detected by any sensor the output of

P

+

-

Logic

R1 R2

TAH

Sawtooth Generator VREF
CE

Comparator
clk

P

+

-

Logic

R1 R2

TAH

Sawtooth Generator VREF
CE

Comparator

P

+

-

Logic

R1 R2

TAH

Sawtooth Generator VREF
CE

Comparator
clk

Figure 1. Schematic of the built-in
delay sensor

the OR gate becomes “1”. In that case, the delay of the adjustable
skew buffer is equal to the sum of the MUX delay and the delay of
the δ-buffer. Otherwise, when the output of the OR gate is “0”,
indicating that no local timing violation is detected, the delay of
the adjustable skew buffer becomes equal to the delay of the MUX
only. We also add delay elements whose delay is equal to that of
the MUX before the CLK ports of R1 and R3 so that in case no
internal timing violation is detected, the circuit will operate the
same as the original circuit. If an internal timing violation is
detected within the vulnerable stage, the effective cycle time of
this stage will be increased by the delay of the δ-buffer.
Our scheme is essentially speculating on timing violations based
upon monitoring of a set of internal nodes within the vulnerable
stage. The detection of a timing violation at an internal node does
not necessarily mean that the pipeline stage will fail without
reconfiguration of the skew buffer. Hence, our definition of
timing violation is probabilistic. Unlike our scheme existing self-
adjusting architectures that apply dynamic retiming check timing
violation at the end of each pipeline stage. Clearly, they can
determine a timing violation with certainty. However, they will
not have the opportunity to intervene on time to avoid it. They
detect a violation after the fact. On the other hand, the internal
delay monitoring elements signal the possibility of timing
violation with a certain probability. Similarly, the adjustable skew
buffer will have a certain probability of success in avoiding the
timing violation, since its own behavior is also subject to
parametric variation. Our choice of the locations of the delay
monitors and the specifications of the adjustable buffer (nominal
delay value of the δ-delay buffer) will determine the effectiveness
of the self-adjusting architecture. A given configuration will result
in a certain probability of “yield”. This is what we are trying to
maximize. This necessitates a systematic treatment of the
associated optimization problem. We propose an automated
design framework to derive the configuration of the self-adjusting
architecture for a given pipeline topology and a set of parametric
variations for timing. The benefit of our approach is that we are
able to intervene for a statistically significant fraction of the
internal timing violations and prevent them from turning into
actual timing/computation errors at the pipeline stage boundary.
Thereby, performance overhead of error detect/stall/re-execute
based techniques is avoided.

4. SYSTEMATIC FRAMEWORK FOR
DESIGN OF SELF-ADJUSTING PIPELINES
In this section, we propose a systematic framework to design a
self-adjusting pipeline. First, for a given pipeline design the
impact of timing variation on the latencies pipeline stages and the
contribution of each stage to the overall critical path are
determined. We make use of the FMAX model [9] described in
Section 3.1 to accomplish this. Next, we identify the most

vulnerable pipeline stage. This is the stage whose potential critical
paths have the highest likelihood to contribute to the overall
critical path. If the immediately adjacent pipeline stage has a
significantly smaller probability of dictating the critical path of
the overall pipeline, then it can be coupled with the vulnerable
stage. In fact, our approach can be easily extended to handle two
pipeline stages, which are not immediately adjacent. Then, we
transform the vulnerable stage into a self-adjusting one. In
practice, immediately adjacent pairs of pipeline stages can be
found in current microprocessors. We will discuss specific
examples in Section 5. This transformation can be applied to
multiple pairs of pipeline stages iteratively.
The design of a self-adjusting pipeline stage essentially involves
determining the locations of the delay sensors within the
vulnerable stage and the nominal delay of the δ-buffer residing
within the adjustable skew buffer. Our goal is to maximize the
average performance of a batch of chips.

4.1 Problem Formulation
To mitigate the impacts of process variation on a batch of chips,
the technique of speed-binning is commonly used. After
manufacturing, each chip is tested over a spectrum of frequencies
until a timing failure is observed. The yield of a bin is defined as
the percentage of chips that fall into this bin.

Das et al. [10] introduced the Batch Performance (BP) metric to
evaluate the average performance of a batch of chips. Assuming n
bins with frequencies f1 < f2 < …< fn, each having yields y1, y2, …,
yn, the Batch Performance is defined as

1

n

i i
i

BP f y
=

= ⋅∑ (1)

We use the BP metric as the optimization objective of our
problem.

Problem 1 (Automated Delay Sensor Insertion and Clock
Skew Buffer Configuration): Given 1) a two-stage balanced
pipeline comprised of one highly process variations susceptible
stage, following by one relatively robust stage, 2) the maximum
tolerable delay for each internal node of the pipeline (derived
trough statistical timing analysis), Determine the delay sensor
locations and the nominal delay (μδ) of the adjustable skew buffer
such that the BP metric of the pipeline is maximized.

We model the two-stage
pipeline as a directed
acyclic graph (DAG) G.
Figure 5 depicts the DAG
for the pipeline shown in
Figure 2. The CMOS
gates are mapped to
vertices and the

Figure 5. Directed acyclic graph model
of the pipeline shown in Figure 2

PI1 PI2PO1 PO2PI1 PI2PO1 PO2

Figure 2. Two consecutive pipeline stages with
the first stage being the most vulnerable stage

to process variation

clk

R1 R2 R3

clk

R1 R2 R3

Figure 3. The pipeline enhanced with built-in
delay sensors and adjustable skew buffers

clk

R1 R2 R3

Adjustable Skew Bufferclk

R1 R2 R3

Adjustable Skew Buffer

Figure 4. Circuit design of the adjustable
skew buffer

MUX

δ ~ N(µδ σ 2)

0 1OR
BIDS1

BIDSk

...

delay buffer

MUX

~ N(µ 2)

0 1OR
BIDS1

BIDSk

...

delay buffer
δ,

δ -

MUX

δ ~ N(µδ σ 2)

0 1OR
BIDS1

BIDSk

...

delay buffer

MUX

~ N(µ 2)

0 1OR
BIDS1

BIDSk

...

delay buffer
δ,

δ -

interconnects between gates are mapped to the directed edges. We
use notation V and E to represent the set of vertices and the set of
edges, respectively. The registers are mapped to a special set of
vertices called the primary input/output vertices (gray vertices in
Figure 5). The sets of primary input/output vertices of the ith stage
will be denoted by PIi/POi. Each register between the two stages
is split into one primary input and one primary output vertex with
no edge between them. We call a path on G a primary path if it
starts from a primary input vertex and ends at a primary output
vertex. Due to process variations, multiple of these primary paths
may be potential critical paths. Obviously, to capture all possible
timing failures in the first stage, each potential critical path in this
stage should be covered by a delay sensor, i.e., there should be a
delay sensor located on one edge on this path. On the other hand,
to keep the number of sensors minimal, each potential critical
path in the first stage should contain no more than one sensor.
Also, we do not need to place any sensor in the second stage, as
we only focus on applying the enhancement to the most
vulnerable stage. These requirements pose some constraints on
the sensor locations. To formulate these constraints, we denote the
sub-graph of G consisting of all the potential critical paths by Gpcp.
We then assign a binary decision variable xi for each vertex vi of
Gpcp. The decision variables specify the locations of the delay
sensors:

a sensor is located on directed edge (vi, vj), iff xi – xj = 1.
To formulate the requirement that each path contains exactly one
sensor, we have the following constraints:

 xi – xj ≥ 0, for all (vi, vj) ∈E
 xp = 1, for all vp∈PI1 and xp = 0, for all vp∈PI2 (2)

 xq = 0, for all vq∈PO1 and vq∈PO2

For a given primary path in the first stage, as the decision
variables for the primary input and output vertices are 1 and 0,
respectively, there should be at least one edge (vi, vj) on this path
with xi – xj = 1, indicating that the primary path contains at least
one sensor. On the other hand, since we require xi – xj ≥ 0 for all
edges along this path, the decision variables of the vertices along
the primary path can “toggle” at most once. This means there is at
most one sensor on the primary path. Since the decision variables
of all the primary input/output vertices in the second stage are 0,
none of the primary paths in the second stage contains any delay
sensor, as xi – xj = 0 for each edge (vi, vj) in the second stage.
Another set of constraints are concerned with the fact that the
reconfiguration of the adjustable skew buffer takes a certain
amount of time. In fact, as shown in Figure 4, the output signals
of the delay sensors need to propagate through an OR gate (may
be an OR tree depending on the implementation) before reaching
the control port of the MUX. If we place the delay sensors too
close to the primary output vertices (although this would have
enabled the most accurate assessment of total delay in the stage),
we cannot guarantee that the skew adjustment takes into effect on
time. To fulfill this requirement, we do not allow a sensor to be
inserted after a vertex if the (μ – 3σ) delay between this vertex
and any primary output is less than μOR + 3σOR. μOR and σOR

2 are
the mean and variance of the delay of the OR gate, respectively.
We perform a preprocessing on Gpcp to identify such vertices. We
call the set formed by these vertices as the forbidden vertex set
and denote it by VF. To ensure that no BIDS will be inserted after

any vertex in VF, we only need to require that xf = 0, for each vf
∈VF .

Now let us analyze the batch performance. Denoting the
probability that a chip operates correctly at a frequency below f
by Pr(f), given a frequency bin [fk, fk+1], its yield is determined by

yk = Pr(fk+1) – Pr(fk).

Therefore, the batch performance of the self-adjustable pipeline
can be calculated as follows

 () ()()1
1

Pr Pr
n

k k k
k

BP f f f+
=

= ⋅ −∑ (3)

Let us first calculate the probability Pr(f). We associate each
vertex vi on Gpcp with a random variable Di which describes the
accumulative delay at the output of the gate that vi corresponds to.
Di can be obtained using a statistical timing analysis technique.
Although it is generally is hard to determine Di if we consider the
spatial correlation and path reconvergence, it can be approximated
by a Gaussian distribution as it is commonly practiced in
statistical timing analysis techniques.
Denoting the maximal tolerable delay at vi by Di

m, the sensor
system will raise an alert if there is a sensor detecting a timing
violation. Defining the following function

 1, 0
()

0, 0
x

x
x

α
 >⎧

= ⎨ ≤⎩
, (4)

A sensor located at edge (vi, vj) detects an error if random variable
α((xi–xj)(Di–Di

m) is equal to 1. Therefore, the sensor system raises
an alert when the random variable R1

 () ()()
()

1
,i j

m
i j i i

v v

R x x D Dα= − ⋅ −∑ (5)

is larger than 0. As we have described in Section 3.3, upon the
detection of a timing violation, the pipeline automatically
generates a clock skew by amount of δ. Due to process variations
δ itself is not a fixed value. We model δ as a Gaussian variable
with mean value μδ and variance σδ2, where the value of σδ2
depends on the technology. Therefore, μδ alone is sufficient to
represent the distribution of δ. After reconfiguration, the pipeline
will operate correctly if the delay of each primary output of the
first stage is smaller than (1/f + δ). Also, the delay of the primary
outputs of the second stage should be smaller than (1/f – δ). Let us
introduce a second random variable R2

() ()
1 2

2
PO PO

1 1
k k

k k
v v

R D f D fα δ α δ
∈ ∈

⎛ ⎞ ⎛ ⎞
= − + + ⋅ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏ (6)

R2 will be equal to 1 if and only if for each primary output vertex
vk, α(– Dk + 1/f – δ) is equal to 1, representing the situation that no
primary path actually violates the timing constraint. Therefore,
the pipeline meets the timing constraint after reconfiguration if
and only if R2 = 1. On the other hand, if the sensor system does
not detect any timing error, i.e., if R1 = 0, the pipeline operates
correctly if the following random variable R3 is equal to 1.

 () ()
1 2

3
PO PO

1 1
k k

k k
v v

R D f D fα α
∈ ∈

⎛ ⎞ ⎛ ⎞
= − + ⋅ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏ (7)

Note that R1 > 0 and R1 = 0 are mutually exclusive events.
Therefore, the probability that the self-adjusting pipeline operates
correctly at a frequency below f is given by

 Pr(f) = Pr(R1 > 0, R2 = 1) + Pr(R1 = 0, R3 = 1). (8)

The batch performance can then be determined by substituting (8)
into (3). Although Expression (3) involves {fi}, these frequency
values are predetermined. The decision variables that can be
adjusted are the sensor locations, given by {xi} subject to the
constraint set (2) and the mean of the skew buffer delay μδ.

According to the above discussion, Problem 1 can be formulated
as a Stochastic Mixed-Integer Programming (SMIP) problem:

 ()1 2max , ,..., ,VBP x x x δμ

 s.t. xi – xj ≥ 0, for each (vi, vj)∈E
 xp = 1, for each vp∈PI1
 xq = 0, for each vq∈PO1
 xp = 0, for each vp∈PI2 (9)
 xq = 0for each vq∈PO2
 xf = 0, for each vf ∈VF

 xi ∈ {0, 1}, for each vi∈V
 μδ ∈ R+

4.2 Simulated-Annealing Based Optimization
Generally speaking, stochastic mixed-integer programming
problems are extremely hard [12]. The objective function stated
above cannot be expressed analytically. Random variables R1 and
R2 are correlated as well as R1 and R3. This makes the
computation of Pr(R1 > 0, R2 > 0) and Pr(R1 = 0, R3 > 0)
extremely complicated. Therefore, we use Monte Carlo
simulation (on 10,000 randomly generated instances of pipelines)
to evaluate the cost function for a given set of {xi} and a given
mean skew buffer delay μδ. We propose to use a simulated-
annealing based technique to solve the stochastic mixed-integer
programming problem described in last section.

Some observations help us accelerate the algorithm. First, once
we fix the values of the decision variables, since random variable
R3 defined by (8) does not involve δ, Pr(R1 = 0, R3 = 1) in (8) will
not vary with μδ. Second, as random variable Dk takes only
positive value, if δ is larger than 1/f, R2 will be 0, which means
that Pr(R1 > 0, R2 = 1) = 0. Therefore, μδ is actually confined
within a relatively small range. Due to the difficulty of obtaining
the analytical expression of BP, we use Monte Carlo simulation to
evaluate BP. Utilizing the fact that the possible range of μδ is
strictly limited, local search techniques for black-box
optimization such as blind random search or adaptive sampling
search can be adopted efficiently to find the μδ value, which
maximizes BP (could be sub-optimal) for a given set of decision
variables [13].

Solution Space: We call a decision variable set X = {x1, x2, …,
x|V|} a legal decision variable set if it satisfies constraint (2).
According to the above discussion, for each legal decision
variable set X we can use local search techniques to obtain the
most suitable μδ for X. Therefore, we only need the simulated-
annealing process to set the values of the decision variables.
Initial Solution: An obvious legal initial solution is

 11,
0, otherwise

i
i

v PI
x

 ∈⎧
= ⎨ ⎩

 (10)

Other legal solutions, which can be obtained easily by solving
inequality set (2), can also be used.

Solution Perturbation: We define two types of moves to perturb
the current solution:

M0(xj, X) (0→1 toggle): i) keep the value of xi for each i ≠j; ii)
change the value of xj from 0 to 1 if 1) xj = 0 and xi = 1 for each
(vi, vj)∈E, and 2) xj∉VF;

M1(xi, X) (1→0 toggle): i) keep the value of xj for each j ≠i; ii)
change the value of xi from 1 to 0 if xj = 1 and xj = 0 for each (vi,
vj)∈E;

Each move transforms a legal decision variable set to another
legal set. To efficiently implement the perturbation, we maintain
two sets X0 and X1. X0 contains candidates for move M0 defined as
X0 = {xj | xj = 0 Λ xi = 1 for each (vi, vj)∈E}. X1 is defined
similarly: X1 = {xi | xi = 1 V xj = 0 for each (vi, vj)∈E}.

After a move, we need to update X0 and X1. The rules for updating
X0 and X1 are as follows:

After M0: X0 = X0+{xk | for each (vj, vk)∈E} – {xj}, X1 = X1+{xj};

After M1: X0 = X0+{xi}, X1 = X1+{xk | for each (vk, vi)∈E} – {xi};

Figure 6 shows the pseudo code of the simulated-annealing based
BIDS Insertion and Clock Skew Configuration algorithm. To
determine the initial temperature, we perform a sequence of
random moves and calculate ΔBP

avg, the average cost changes for
all downhill moves. Then, the initial temperature is chosen such
that exp(ΔBP

avg / T) = P, where P represents the initial probability
of accepting downhill moves and is very close to 1. At each
temperature, a number of trials are attempted until either we make
N downhill moves, or the total number of moves exceeds 2N,
where N is an increasing function of |V|, the number of vertices.
When we exit from the inner loop, the temperature is reduced by a

Algorithm SA_BIDS_CSC_Insertion {
T = ΔBP

avg
 / ln P; // initial temperature

X = {xi | i = 1, 2, …, |V|}, xi = 1 iff vi∈PI1; // initial solution
Xbest = X;
X0 = Φ; // initial candidates for M0

X1 = {xj | vi ∈PI1 for each (vi, vj)∈E}; // Initial candidates for M1

Do {
 MT = downhill = reject = 0;
 Do {
 Randomly select xi from X0∪X1;
 Xnew = M0(xi, X) if xi∈X0, M1(xi, X) otherwise;
 MT = MT + 1;
 Local search for μδ that maximizes BP(Xnew, μδ);
 ΔBP = BP(Xnew, μδ) – BP(X, μδ);
 If ((ΔBP > 0) or (random < exp(ΔBP / T)) {
 If (ΔBP < 0) downhill = downhill + 1;
 X = Xnew; // accept the new solution
 Update X0 and X1; // accept the new solution
 If (BP(X, μδ) > BP(Xbest, μδ)) Xbest = X;
 } Else {
 reject = reject + 1;
 }
 } While ((downhill < N) and (MT < 2N));
 T = λT;
} While ((reject / MT < 0.95) and (T > ε));

}

Figure 6. Pseudo code of the simulated-annealing based algorithm

fixed ratio λ, which is set to 0.85 in our implementation. The
entire algorithm terminates when the number of accepted moves
becomes too small (≤ 5% of total number of moves made), or
when the temperature becomes too low.

5. EXPERIMENTAL RESULTS
We have tested our scheme on a DEC Alpha-like 6-stage pipeline.
The pipeline is depicted in Figure 7. It is a 4-way processor with
64KB Level 1 instruction and data caches each. The pipeline
latencies have been balanced such that the nominal latency of
each stage is 400ps (corresponding to 2.5GHz clock frequency).
It has been reported that at 45nm technology, L1 data cache has
the highest probability (58.9%) of containing a critical path in a
pipeline similar to our target 6-stage pipeline [10]. Furthermore,
this probability is significantly lower (less than 2%) for the
immediately adjacent Instruction Fetch stage [10]. Therefore, we
evaluated the effectiveness of our proposed solution by applying
it onto these two stages. We generated the DAG model of the L1
data cache and the Instruction Fetch unit. The cache is a special
structure which contains analog circuitry and memory cells.
Obviously, the BIDS is only capable of monitoring digital
waveforms. Therefore, the sensors cannot be located arbitrarily in
the block. We have isolated the digital portion comprised of input
inverters, decoder, and output selection logic. We created a DAG
representation of this portion. Then, we performed one pass of
static timing analysis on this model to identify the potential
critical paths and construct the graph model Gpcp that consists of
these paths. Our simulated-annealing based optimization
algorithm is then applied on Gpcp to determine μδ and the sensor
insertion points, maximizing the batch performance.
We assume six frequency bins: B1 = [2.00, 2.05], B2 = [2.05, 2.10],
B3 = [2.10, 2.15], B4 = [2.15, 2.20], B5 = [2.20, 2.25], B6 = [2.25,
2.30], where the unit is GHz. Figure 8 shows the results for speed-
binning where the x-axis represents the frequency bins and the y-
axis represents the yields for each bin. The light and dark bars
show the yields of the original and enhanced self-adjusting
pipelines across the frequency bins, respectively. It can be seen
that the average frequency shifts right (i.e., towards a higher value)
after we enhance the pipeline with a set of BIDS and the
adjustable skew buffers. We calculate the batch performance
based on the speed-binning results. The batch performance value
for the self-adjusting pipeline is 2.178GHz, while the same value
for the original pipeline is 1.989GHz, indicating a 9.5%
improvement. This result denotes the yield improvement for two
specific stages. However, the overall yield distribution for the
entire microprocessor is expected to be similar. The main reason
for that is the fact that the L1 cache dictates the critical path of the
overall microprocessor pipeline 58.9% of the time. Finally, note
that our systematic framework can be applied to any given
sequential circuit. For different processor architectures and
technology and process parameters other pipeline stages can be
targeted.

6. CONCLUSIONS
In this paper, we have proposed a self-adjusting pipeline
architecture to enhance system performance and reliability. We
employ built-in delay sensors to monitor the internal timing
violations and variable skew buffers to adjust circuit timing. We
further propose a systematic framework to automatically
determine the delay sensor placement and the skew buffer
configuration. Experimental results on a microprocessor pipeline
reveal that we can enhance the batch performance by 9.5%.

7. ACKNOWLEDGMENTS
This work was partially supported by NSF under NSF Grant #
CNS-0546305 and 0830-350-J205.

8. REFERENCES
1. Datta, A., et al. Statiscal Modeling of Pipeline Delay and Design of
Pipeline under Process Variation to Enhance Yield in sub-100nm
Technologies. in Design, Automation and Test in Europe. 2005.
2. Davoodi, A. and A. Srivastava. Variability Driven Gate Sizing for
Binning Yield Optimization. in Design Automation Conference. 2006.
3. Orshansky, M., S. Nassif, and D. Boning, Design for Manufacturability
and Statistical Design. 2007: Springer US.
4. Sinha, D., N. Shenoy, and H. Zhou, Statistical Timing Yield
Optimization by Gate Sizing. IEEE Trans. on Very Large Scale Integrated
(VLSI) Systems, 2006. 14(10): p. 1140-1146.
5.Ernst, D., et al. Razor: A Low-Power Pipeline Based on Circuit-Level
Timing Speculation. in Int. Sump. on Microarchitecture. 2003.
6.Chakraborty, A. and K. Duraisami. Dynamic Thermal Clock Skew
Compensation using Tunable Delay Buffers. in Int. Symp. on Low Power
Electronic Design. 2006.
7.Duraisami, K., et al. Design Exploration of a Thermal Management Unit
for Dynamic Control of Temperature-Induced Clock Skew. in Int. Symp.
on Circuits and Systems. 2007.
8.Long, J., et al. A Self-Adjusting Clock Tree Architecture to Cope with
Temperature Variations. in Int. Conf. on Computer-Aided Design. 2007.
9.Bowman, K.A., S.G. Duvall, and J.D. Meindl, Impact of Die-to-Die and
Within-Die Parameter Fluctuations on the Maximum Clock Frequency
Distribution for Gigascale Integration. IEEE Journal of Solid-State
Circuits, 2002. 37(2).
10.Das, A., et al. Mitigating the Effects of Process Variations:
Architectural Approaches for Improving Batch Performances. in
Workshop on Architectural Support for Gigascale Integration. 2007.
11.Ghosh, S., et al., A Novel Delay Fault Testing Methodology using Low-
Overhead Built-In Delay Sensor. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 2007. 25(12).
12.Ntaimo, L. and M.W. Tanner, Computations with Disjunctive Cuts for
Two-Stage Stochastic Mixed 0-1 Integer Programming 2007, Stochastic
Programming E-Print Series.
13.Kargupta, H. and D.E. Goldberg. SEARCH, Blackbox Optimization,
and Sample Complexity. in Foundation of Genetic Algorithm. 1997.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6

Frequency Bin

Yi
el

d

Original

Enhanced

Figure 8. Speed-binning results for the original and enhanced
pipeline with self-adjusting L1 cache stage

IF MAP IQ REG ALU CacheIF MAP IQ REG ALU Cache

Figure 7. A DEC Alpha-like 6-stage pipeline

