
34

Dually Nondeterministic Functions

JOSEPH M. MORRIS and MALCOLM TYRRELL

Dublin City University, Ireland and Lero - the Irish Software Engineering
Research Centre

Nondeterminacy is a fundamental notion in computing. We show that it can be described by a
general theory that accounts for it in the form in which it occurs in many programming contexts,
among them specifications, competing agents, data refinement, abstract interpretation, imperative
programming, process algebras, and recursion theory. Underpinning these applications is a the-
ory of nondeterministic functions; we construct such a theory. The theory consists of an algebra
with which practitioners can reason about nondeterministic functions, and a denotational model
to establish the soundness of the theory. The model is based on the idea of free completely distribu-
tive lattices over partially ordered sets. We deduce the important properties of nondeterministic
functions.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Correctness proofs, formal methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and verifying and reasoning about programs—Logics of programs; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Lambda calculus and related systems

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: Angelic nondeterminacy, demonic nondeterminacy, free
completely distributive lattice, modeling nondeterminacy, nondeterminism, nondeterministic
functions

ACM Reference Format:
Morris, J. M. and Tyrrell, M. 2008. Dually nondeterministic functions. ACM Trans. Program.
Lang. Syst. 30, 6, Article 34 (October 2008), 34 pages. DOI = 10.1145/1391956.1391961
http://doi.acm.org/10.1145/1391956.1391961

1. INTRODUCTION

Here is a simple nondeterministic mechanism (written in the notation of
guarded commands [Dijkstra 1976]):

if x ≥ 0 → output ◦
� x ≤ 0 → output �

fi

This work was supported by Science Foundation Ireland, under Grant No. 03/IN 3I408C.
Authors’ address: School of Computing, Dublin City University, Dublin 9, Ireland; email:
joseph.morris@computing.duc.ie.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0164-0925/2008/10-ART34 $5.00 DOI 10.1145/1391956.1391961 http://doi.acm.org/
10.1145/1391956.1391961

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1391956.1391961&domain=pdf&date_stamp=2008-10-30

34:2 • J. M. Morris and M. Tyrrell

It exhibits nondeterministic behavior when x has the value 0, because in that
case either ◦ or � can be output. Nondeterminacy can also be used to capture
underspecification, as in

“Given a name n and a phone book b output a phone number for n”

This is underspecified in that it leaves open the phone number to be output when
the person named has several phones. In concurrent systems, nondeterminacy
may arise from the freedom given to the scheduler. For example, the system

output ◦ ‖ output �

outputs one of ◦ � or � ◦ depending on the relative speeds of the constituent
processes.

These examples, and others to follow, illustrate that nondeterminacy occurs
commonly in computing. Indeed, we see it as a fundamental notion, deserving
a place alongside other fundamental notions such as recursive functions, data
types, concurrency, objects, etc. As we shall show later, essentially the same no-
tion of nondeterminacy manifests itself in a range of different contexts, among
them imperative, functional, and concurrent programming, competing agents,
data refinement, and fixpoint theory. We present a “plug-and-play” theory of
nondeterminacy that fits all these contexts, and outline how it does so. Most
significantly, we plug the theory into the notion of function to arrive at a theory
of nondeterministic functions.

To motivate the work, we offer an analogy with recursion as it occurs in
programming. Consider recursion: At the language level, programmers reason
about recursion using two logical rules. The rules are typically called the un-
folding rule, and the induction rule, but the details need not concern us here.
Nondeterminacy: Analogously, our theory provides programmers with a set of
reasoning rules. Programmers may use the rules informally to understand non-
determinacy and gain confidence in their use of it, or they may use them to verify
their code formally.

Recursion: The rules of recursion are justified “under the hood” by a math-
ematical theory that guarantees that the rules are sound. The theory is that
of least fixpoints on complete partial orderings, but again the details of this do
not matter here. Nondeterminacy: Similarly, we will justify the rules of nonde-
terminacy by a theory, in this case that of free completely distributed lattices
over a poset. This theory is under the hood in the sense that the practicing
programmer need know nothing about it.

Recursion: The basic theory of recursion is applicable across most program-
ming paradigms, such as imperative, functional, object-oriented, concurrent,
etc. In this sense, the theory is fundamental. In each case, however, it has to be
“wired in” to the host language, where wiring in entails some additional work
such as fixing the ordering by which least in least fixpoint is given meaning.
Nondeterminacy: Similarly, our theory accounts for nondeterminacy in many
paradigms, with some local wiring in to the host language.

Recursion: Formally speaking, recursion is defined in terms of two operators,
μ and ν corresponding to least and greatest fixpoints, respectively. Nonde-
terminacy: Analogously, we employ � and

⊔
, each being a nondeterministic

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:3

choice operator. For example, the phone number look-up problem described
above might be expressed as

λn: Name, b : PhoneBook ·�{x: PhoneNumber | (n, x) ∈ b · x}

{x:PhoneNumber | (n, x) ∈ b · x} denotes the set of x ’s (the final · x) satisfying
(n, x) ∈ b where x is a new variable of type PhoneNumber (introduced by the
initial x:PhoneNumber). �S, where S stands for any set whose elements are
drawn from some type T , say, is itself a term of type T . It denotes some element
of S nondeterministically chosen. The element of S resulting from an evaluation
of �S is not necessarily constant. For example, if an evaluation of �{2, 3, 4}
yields 3, say, it may nevertheless be the case that it will yield 4, say, the next
time it is encountered.⊔

S also represents a nondeterministic choice over set S. Our theory sup-
ports two choice operators because, in some contexts, we may need to capture
the fact that choices are exercised by different agents. For example, when a
client interacts with a server, the choices made by the client may need to be
distinguished from those made by the server.

Note that our choice operators operate on sets of terms, and that �S and⊔
S have themselves the status of terms. We have elected to root our work in

the theory of terms because that is where the greater challenge and greater
applicability lies. By term here, we mean simply an expression without side-
effects as typically found in most imperative and functional programming and
specification languages. We expect that nondeterminacy in terms will translate
relatively straightforwardly to nondeterminacy in other domains. For example,
for nondeterminacy in commands, a choice such as x := 0 	 x := 1 can be
written using term-level choice as x := 0 	 1 (we write 	 and
 for the binary
infix versions of� and

⊔
, respectively). We will elaborate on this later.

The first part of our program is to explain the choice operators and show that
they account for a wide range of uses of nondeterminacy in different contexts.
We range over, among others, functions, program specifications, imperative pro-
gramming, competing agents, data refinement, and process algebras. Next, we
present the fundamental laws of nondeterminacy. This has been previously pre-
sented in Morris [2004], but we reprise it here for the sake of completeness. Our
primary contribution is to plug the fundamental theory into the theory of func-
tions to arrive at a theory of nondeterministic functions, and to describe the
important properties of functions in the theory. The final part of the enterprise
is to establish that our theory is sound.

The proof that our theory is sound is technically challenging. Our approach
is to build a denotational model using the theory of free completely distribu-
tive lattices over a poset, and to show that all our laws are true in the
model.� represents choices made by an agent that is classically referred to as
the demon, while

⊔
represents the choices made by an agent that is classi-

cally referred to as the angel. Correspondingly, we refer to the nondeterminacy
represented by � as demonic, and the nondeterminacy represented by

⊔
as

angelic.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:4 • J. M. Morris and M. Tyrrell

We add a word of explanation for readers who have some experience of non-
determinacy. In some languages, angelic nondeterminacy is benign in some
way, such as being failure-avoiding, whereas demonic nondeterminacy is not.
We caution that, in the basic theory we present, the two choices are neutral in
this regard, neither being either good or bad. Demonic and angelic nondetermi-
nacy are simply mathematical duals of one another representing choices made
by two different agents. It may be the case that when the theory is wired into
some particular host language, the designer chooses to wire in some badness
or goodness, but the names angelic and demonic should not mislead the reader
into ascribing goodness or badness to them per se. In particular, angelic nonde-
terminacy in some programming languages is associated with a backtracking
implementation, but backtracking is not inherent in angelic nondeterminacy.
We will return to this point later (Section 2.2.2).

1.1 Outline of the Article

MOTIVATION AND CONTEXT

Section 1. Introduction and reader’s guide.
Section 2. We explain our notion of dual nondeterminacy and show that it

has applicability in many areas of programming.

THE ALGEBRA OF NONDETERMINACY

Section 3. We formally explain our notation and terminology, and present the
basic axioms of nondeterminacy.

Section 4. We show how to plug the basic theory into functions, arriving at a
theory of nondeterministic functions.

MODELING NONDETERMINACY

Section 5. We describe a denotational model for nondeterminacy based on
the idea of a free completely distributive lattice over a poset.

Section 6. We show that our theory of nondeterminacy and nondeterministic
functions is sound.

REVIEW

Section 7. The final section summarises the work and surveys the literature.
The primary contributions of the work are as follows

—A case for treating nondeterminacy as a fundamental notion, capable of being
studied in isolation.

—A theory of nondeterministic functions, and a set of properties enjoyed by
nondeterministic functions.

—A denotational model based on free completely distributed lattices by which
we can show that our theory of nondeterministic functions is sound.

Reader’s Guide. Readers with little prior exposure to nondeterminacy may get
additional motivation by an early reading of Section 7.2, which summarizes
previous approaches to nondeterminacy in programming. Additionally, some
readers with a background in formal semantics may opt to make an early pass
through Sections 5 and 6 on the underlying model, perhaps in parallel with the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:5

introductory material of Section 2. On the other hand, readers whose primary
interest is in applications of nondeterminacy may choose to pass lightly over
Sections 5 and 6 when they come to them (at least the proofs can be omitted).
Not all readers will have the same degree of interest in every application area
or example; in that case, it is possible to omit some of the examples in Section 2
without losing the thread of the argument.

2. UNIVERSALITY OF NONDETERMINACY

Our aim is to make a theory of nondeterminacy that has wide applicability. In
this section, we range over a broad selection of programming contexts, showing
that the same notion of nondeterminacy plays a role in many disparate contexts.
We concentrate primarily on the role of nondeterministic functions in these
various contexts.

2.1 Functions

2.1.1 Higher-Order Functions in Specifications. There are many generic
higher-order functions that can be used to construct specifications. They may
employ nondeterminacy to capture “don’t care” behavior. Consider, for example,
the function

leastWRTT : (T→Z)→IPT→T,

which takes as arguments a function f and a set s, and selects some element x
of s such that f x is minimal in f s (IP is the powerset operator). We omit the
type subscript in what follows. Formally, for any type T ,

leastWRT � λ f :T→Z · λs:IPT ·�{x ∈ s | (∀ y ∈ s · f x ≤ f y) · x}.
To illustrate its use, we make a function that yields a place to which two people
should travel if they wish to meet as soon as possible. We assume a type Place
whose elements represent all places of interest, and a function time : Place ×
Place→N which yields the traveling time (in minutes, say) between any two
places. The function we want is

λme, you: Place · leastWRT (λc: Place · time(me, c) max time(you, c)) Place.

Here, leastWRT has type (Place→Z)→IPPlace→Place, (λc:Place · · ·) has type
Place→Z, and Place has type IPPlace, so the result is an element of Place.
Observe the presence of nondeterminacy in that the function may yield any
acceptable place when more than one meet the criteria. It is important for
specifications to retain nondeterminacy inherent in the client’s requirements,
leaving its resolution to a later stage in the programming process. This gives
maximum freedom to the implementor.

2.1.2 Pattern Matching in Formal Parameters. Functional programs may
make use of pattern matching in formal parameters. For example, a function f
may be defined on nonempty sequences of integers by f (v : vs) � v + 1 (here, v
stands for an integer, vs for an integer sequence, and : for sequence prefixing).
Invoking f 〈2, 5, 6〉, for example, yields 3 because 〈2, 5, 6〉 is pattern matched as

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:6 • J. M. Morris and M. Tyrrell

2 : 〈5, 6〉 and so v is bound to 2 in the body of f . If nondeterminacy is available
the patterns need not be injective, that is, they need not be constrained to give
rise to unique decompositions. For example, the following function describes
the (coincidentally named) pattern matching problem, that is, the problem of
finding an occurrence of one string in another, or determining that there are no
such occurrences.

patmatch : seq C → (seq C → Z)
patmatch ps (ys ++ps ++zs) � #ys
patmatch � −1

seq C describes the type of sequences of characters, #ys denotes the length
of sequence ys, and ++ is sequence concatenation. If in an invocation of
patmatch ps xs, ps occurs in xs then it is covered by the first defining clause
and some index of ps in xs is returned. Otherwise (and only otherwise), the
second defining clause is appealed to (always successfully) and −1 is returned.
It is easy to express patmatch without patterns by employing demonic choice.
We shall do so in a particularly neat way by making use of the operator

←	.
First, we introduce �T (pronounced top) as an abbreviation for �∅T where

∅T denotes the empty set of type T . We commonly omit the type subscript in
�T . We will show later that � is the unit of 	. For t and u terms of the same
type, t

←	 u is defined to be t except in the case that t is � in which case t
←	 u

is defined to be u. patmatch is equivalent to

λps : seq C · λxs : seq C ·�{ys, zs : seq C | xs = ys ++ps ++zs · #ys} ←	 −1.

A Note on Set Notation. We write {x:T, y :U | P · t} to denote the set of t ’s for
each x of type T and y of type U satisfying predicate P (x and y typically occur
free in P and t, of course, and there may be other than two dummy variables).
For example,�{x:Z | 0 ≤ x < 3 · x
 5} is equivalent to (0
 5) 	 (1
 5) 	 (2
 5).
{x:T | P · t} is more traditionally written as {t | x∈ T ∧ P}, but this is not
adequate for our purposes because it is inherently ambiguous. The ambiguity
arises from the absence of information regarding dummy variables; see Gries
and Schneider [1993] and Boute [2005]. In informal presentations, there is
usually sufficient accompanying text to resolve any ambiguity, but we have to
be more formally precise in the context of specification languages. Our notation
is widely used to avoid ambiguity, for example, in the Z specification language
[Spivey 1988], and in the textbooks [Gries and Schneider 1993; Woodcock and
Loomes 1988; Morgan 1990]. We use the following abbreviations. First, we
write {x:T ·t} in place of {x:T |true·t} (this is the same as the traditional {t |x∈T }
if we discard the information on dummies). Second, instead of {x:T | x∈s∧ P · t},
we may write {x∈s | P · t}, for s some set, and similarly with ⊆ in place
of ∈. These abbreviations may be combined in obvious ways, such as
{x∈s · t} (which ignoring information on dummies is equivalent to the tra-
ditional {t | x∈s}). We suggest that readers more used to the traditional
notation might attune themselves by initially reading set comprehensions
right-to-left.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:7

2.1.3 Function Refinement. Consider the specification fac0 defined as
follows:

fac0 ��{ f :Z→Z | f 0 = 1 ∧ (∀n:N · f (n + 1) = (n + 1) ∗ f n) · f }.
It should be intuitively plausible that the following function is an acceptable
implementation of fac0:

fac � λn:Z· if n < 0 then − 47 else code that computes n! fi.

The assertion that fac0 is implemented by fac is expressed formally as fac0 �
fac, where � is a partial ordering of terms called the refinement ordering. To
assert that fac0 � fac is to assert that the input-output behavior of fac is con-
sistent with that of fac0, where “consistent” means that every behavior of fac
is a possible behavior of fac0. fac need not exhibit all the possible behaviors of
fac0 (and it doesn’t). Another way to express this is that fac0 is like fac, ex-
cept that fac may offer less demonic nondeterminacy than fac0. We expect that
the theory of nondeterminacy should suffice to prove formally that fac0 � fac
holds.

2.2 Competing Agents

2.2.1 Game Playing: Nim. The two kinds of nondeterminacy may be used
to capture the opposing views of an interaction between competing agents. We
illustrate with the game of Nim, which is a game played by two players who
alternately remove from 1 to 4 matches from a pile until none remain. The
player who removes the last match loses. Let us refer to the players as the
home and away player, respectively, where the home player goes first. A single
move made by each player is represented by the functions moveH and moveA,
respectively:

moveH, moveA : N→N.

moveH n yields the number of matches remaining after the home player has
made one move when offered n matches, and analogously for moveA n. We
introduce the two-value type Player with elements Home and Away. The com-
plete game played by each player is represented by functions playH and playA,
respectively:

playH, playA : N→Player.

playH n yields the winner of a game in which the home player is initially offered
n matches, and analogously for playA n. Formally:

playH � λn:N· if n = 0 then Home
else (playA ◦ moveH) n
fi

playA � λn:N· if n = 0 then Away
else (playH ◦ moveA) n
fi

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:8 • J. M. Morris and M. Tyrrell

We will describe moveH and moveA with the home player’s options represented
by angelic choice, and the away player’s represented by demonic choice:

moveH � λn:N · ⊔{m:N | 0 < n − m ≤ 4}
moveA � λn:N ·�{m:N | 0 < n − m ≤ 4}.

In Section 2.1.3, we indicated that term t is refined by term u, written t � u,
if u is like t except that u offers possibly less demonic nondeterminacy than t.
Actually, it is a little more complex than this: t � u holds if u is like t except that
u may offer less demonic nondeterminacy than t, and t may offer less angelic
nondeterminacy than u. For example, all of the following hold: 1	2 � 1, 1 � 1
2,
and (1	2)
3 � 1
3
4 (as (1	2)
3 � 1
3 and 1
3 � 1
3
4). This extends
readily to functions in the obvious pointwise way, e.g. (λx:N · x 	 x2) � (λx:N · x).
We will be formally precise about this later.

There is a winning strategy for the opening player in Nim with n matches
initially (i.e., when n > 0), iff the home player as we have coded it can always
win. This is captured formally by Home � playH n. We write Home � playH n
rather than Home = playH n or playH n � Home because playH yields an
angelic choice of possibilities of which only one need lead to Home. This example
is interesting because it employs both kinds of nondeterminacy to express a
property (“there is a winning strategy for the opening player in Nim”) that
initially would seem to have no connection with nondeterminacy.

It is easily seen that the arguments of playH and playA exhibit nondetermi-
nacy (observe, e.g., that in the body of playH, playA is applied to moveH n). Our
theory accommodates this by defining function application to distribute over
choice.

2.2.2 Protocols: Cake Cutting. In this example, we will associate goodness
with angelic nondeterminacy, and badness with demonic nondeterminacy. Each
party in the competitive engagement to be described sees their opponent’s ac-
tions as demonic, and their own as angelic.

Consider the classic protocol for dividing a cake fairly between two people:
one person cuts and the other picks. Let us represent the cake by the set of
reals from 0 to 1, upper bound excluded, that is, [0..1) using interval notation.
The cutter cuts by selecting an r in [0..1], and the picker then selects either the
left slice [0..r) or the right slice [r..1).

Each party places a value on slices of the cake, values being drawn from the
type V. We will take V to be [0..1]. For 0 ≤ r ≤ s ≤ 1, the cutter values the slice
represented by [r..s) as vc[r..s), and the picker values it at vp[r..s). We assume
vc is additive in the sense that vc[0..r) + vc[r..1) = 1, and continuous in the
sense that for all x in [0..1] we have vc[0..r) = x for some r in [0..1]. We make
the same assumptions about vp. The two parties regard the protocol as fair if
each of vc slicec ≥ 0.5 and vp slice p ≥ 0.5 hold, where slicec and slice p denote the
respective slices of the cutter and picker.

Now let us analyze the protocol, initially from the cutter’s point of view. The
cutter sees his/her slice of the cake as

slicec �
⊔{r ∈ [0..1] · [0..r) 	 [r..1)}.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:9

Observe that the cutter sees himself/herself as the angel, and the picker as the
demon. We want to formally make the association between angelic choice and
goodness on the one hand, and demonic choice and badness on the other. To that
end, we extend vc and vp in a certain way so that they apply to nondeterministic
slices.

It is usually the case that refinement coincides with equality for the elemen-
tary values in base types (e.g., 1 � 1 holds but not 1 � 2). This order is called
the discrete order. For the present example, however, it is appropriate to adopt
≤ as the refinement order �V on V. We offer the following intuitive guide as
to why this imparts goodness and badness to angelic and demonic choice, re-
spectively. For simplicity, we confine the intuitive guide to finite choice. We will
show later that refinement and finite choice satisfy the classic lattice-theoretic
relationship t � u ⇔ t 	 u = t ⇔ t
 u = u (Theorems 13 and 14 in Sec-
tion 3.3). From this, it follows that � in V represents the minimum operator
on reals, and

⊔
represents the maximum operator. Now consider, for exam-

ple, how the cutter values the slice [0..0.2) 	 [0..0.7): vc([0..0.2) 	 [0..0.7)), by
distribution equals vc[0..0.2) 	 vc[0..0.7), which by the argument above equals
vc[0..0.2) min vc[0..0.7) — and indeed this is precisely the worst outcome, just as
we should expect when the decision is left to the demon.

Returning to the example, let us show that the protocol is fair from the
cutter’s point of view (the proof anticipates some laws that are not presented
until Section 3.3, and the reader is asked to accept them on trust till then).

vc slicec ≥ 0.5
⇔ “property of ≤, ≥; definition of �V (subscript omitted below)”

0.5 � vc slicec
⇔ “function application distributes over choice”

0.5 � ⊔{r ∈ [0..1] · vc[0..r) 	 vc[r..1)}
⇔ “nondeterminacy (Axiom A4 and Theorem 3 in Section 3.3)”

(∃r ∈ [0..1] · 0.5 � (vc[0..r) 	 vc[r..1))
⇔ “nondeterminacy (Theorem 9 in Section 3.3)”

(∃r ∈ [0..1] · (0.5 � vc[0..r)) ∧ (0.5 � vc[r..1)))
⇔ “definition of �V”

(∃r ∈ [0..1] · (0.5 ≤ vc[0..r)) ∧ (0.5 ≤ vc[r..1)))
⇔ “vc additive”

(∃r ∈ [0..1] · (0.5 ≤ vc[0..r)) ∧ (vc[0..r) ≤ 0.5))
⇔ “≤ antisymmetric”

(∃r ∈ [0..1] · vc[0..r) = 0.5)
⇔ “continuity property of vc”

true

Now we turn to the picker, who, of course, sees his/her slice of the cake as

slice p ��{r ∈ [0..1] · [0..r)
 [r..1)}.
The proof that vp slice p ≥ 0.5 is similar to the preceding proof, except that we
do not need to appeal to the continuity property of vp. We omit it for brevity. In
summary, the cake-cutting protocol is fair.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:10 • J. M. Morris and M. Tyrrell

The example illustrates an important point. The basic theory associates
no goodness or badness with angelic and demonic nondeterminacy, respec-
tively. Neither does goodness or badness necessarily emerge when the theory is
plugged into a host language. However, we are free to introduce goodness or bad-
ness when plugging in the theory, and we do so by imposing certain nondiscrete
refinement orders on one or more base types, as we have done above.

2.3 Data Refinement and Abstract Interpretation

Angelic and demonic choice can be used to make function adjoints: demonic
choice for a left adjoint and angelic choice for a right adjoint. For example, let
function sqr be the squaring function on the integers, that is, λx:Z·x2. We define

sqrt	 � λz:Z ·�{x:Z | sqr x = z · x}
sqrt
 � λz:Z · ⊔{x:Z | sqr x = z · x}.

sqrt	 is the left adjoint of sqr with respect to �, and sqrt
 is the right adjoint,
that is, they satisfy

sqrt	 ◦ sqr � IdZ � sqr ◦ sqrt	

sqr ◦ sqrt
 � IdZ � sqrt
 ◦ sqr,

where Id stands for the identity function on the type identified in its subscript. It
is exceptional for functions to have a left or right adjoint. With the introduction
of nondeterminacy, however, large classes of λ-abstractions have both a left and
a right adjoint. This has useful applications, not least in programming by data
refinement [Hoare et al. 1987; Morgan and Gardiner 1991; von Wright 1994;
DeRoever and Engelhardt 1999].

For example, the following shows an extract from an abstract program (on
the left) and its concrete equivalent (on the right):

. . . s : set Z; s := ∅ . . .

. . . s := s ∪ {x}; . . .

. . . b : Z[0..99]; n : Z := 0; . . .

. . . b[n] := x ; n := n + 1; . . .

The integer set s is implemented as an array b of 100 elements (assume we
know this is sufficiently big) using an integer variable n to record the number
of significant elements in b. The abstraction function F relates concrete values
to abstract values, that is, it is of type (Z[0..99] × Z) → set Z. F is defined by
F (b, n) = {k ∈ {0..n−1}·b[k]}. Now an important question is how a function f in
the abstract program translates to the concrete domain (think of λt:set Z · t \N,
for example). It turns out that the concrete version of f is F L ◦ f ◦ F where F L

denotes the left adjoint of F . Nondeterminacy is crucial here, for without it, F L

is not, in general, well defined. Occasionally, the abstract and concrete spaces
are related by a function G from the abstract to the concrete; in that case, the
concrete version of function f on the abstract space is G ◦ f ◦ GR where GR

denotes the right adjoint of G.
Abstract interpretation [Cousot 1996] is a theory that underlies several tech-

niques used in analyzing and implementing programs, among them code op-
timization in compilers, program transformation as in partial evaluation, and
proofs of termination. It is the dual of data refinement: it abstracts from the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:11

concrete program to yield a more abstract version more amenable to automatic
analysis (at a price of some information loss). Our theory has applications in
abstract interpretation not only because it provides support for abstraction
functions, but because the abstract programs that arise may in general be non-
deterministic.

2.4 Imperative Specifications and Programs

We may introduce nondeterminacy into an imperative language via its term
language. To introduce it at the command level, we introduce a mapping from
nondeterministic commands to standard commands that have nondeterministic
terms. For example, we define x := 0 	 x := 1 to be equivalent to x := 0 	 1.
For this to be fully formal, it must be the case that the formal semantics of
commands accommodates nondeterministic terms.

Commands are formally defined using weakest precondition semantics
[Dijkstra 1976]. For example, the weakest precondition semantics of the assign-
ment statement x := t is wp(x:=t, R) � (t �= ⊥) ∧ R[x\t] where t stands for a
term, R stands for an assertion (a Boolean term possibly using a richer language
than that of the programming language), u[x\t] denotes term u with each free
occurrence of x replaced with t (the usual caveat about avoiding variable capture
applies), and ⊥ stands for the undefined term of appropriate type. If nondeter-
minacy may occur in t, then (t �= ⊥)∧ R[x\t] doesn’t make sense and we have to
formulate weakest precondition semantics more generally. In the case of assign-
ment, it turns out that a suitable definition is wp(x:=t, R) � true � (λx:T · R) t
where T stands for the type of x. (It might seem at first sight that (λx:T · R) t
might suffice as the righthand side of the foregoing, but that is not so because it
may be nondeterministic. The role of “true �” is to convert any demonic and an-
gelic nondeterminacy into conjunction and disjunction, respectively.) Weakest
precondition semantics is thus reduced to a theory of nondeterministic func-
tions, described more fully in Morris et al. [2008].

Constructing a theory of imperative programs in this way offers something
more than the traditional approach. Traditionally, it has been troublesome to
accommodate functions in a nondeterministic imperative language because it
is extremely difficult to prevent nondeterminacy leaking from the level of com-
mands to the level of terms. That worry now disappears because nondetermi-
nacy in terms is welcome.

2.5 Process Algebras

Process algebras are formally defined languages for the study of fundamental
concepts in concurrency, including communication, synchronization, abstrac-
tion, divergence, and deadlock. Nondeterminacy is central in describing pro-
cesses, and we would therefore hope that a general theory of nondeterminacy
would be useful in designing and formally describing process algebras.

Let a, b, c, . . . stand for events (such as “open valve” or “release steam” or
“close valve” etc.). Some events are executed locally by a single process, while
others require the participation of several processes. skip is the event of termi-
nating normally and fail is the event of terminating abnormally (we are here

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:12 • J. M. Morris and M. Tyrrell

conflating divergence and deadlock). A process is a sequence of events ending
in skip or fail, for example, �a · b · a · skip� (we add corner brackets to help the
reader pick out process terms in the running text).

Process terms may participate in various operations, typified by sequential
composition (; which binds looser than ·). For example, �a · b · skip ; b · fail� is
equal to �a · b · b · fail�, and �b · fail ; a · b · skip� is equal to �b · fail�. Processes
may behave nondeterministically, as in �a · b · skip 	 b · fail� – choice exercised
internally in a process is postulated to be demonic.

Processes may be composed in parallel (||| which binds looser than ·), as in,
for example, �a · b · skip ||| c · skip�, which is equivalent to �a · b · c · skip

a · c · b · skip
 c · a · b · skip�. The parallel composition here gives rise to
three possible behaviors in accordance with which event of the participating
processes happens next. The choice arising from parallel composition is defined
to be angelic to distinguish it from internal choice. The distinction is necessary
because, in this case, the choice is exercised by an external agent (which we typ-
ically call the environment). Processes may also employ angelic choice explicitly
when they are offering a menu of options that is intended to be resolved by the
environment.

A more general form of parallel operator is ||A where A stands for a set
of events on which the participating processes must synchronize. For example,
�a ·b·d ·skip ||{b} b·e ·skip� is equivalent to �a ·b·d ·e ·skip
 a ·b·e ·d ·skip�. Here,
a in the first process must happen before b in the second process as b is an event
in which both processes must participate (note that b occurs just once in each of
the two possible resulting processes). On the other hand, �a·b·d ·skip ||{b} c·skip�
is equivalent to �a · c · fail
 c · a · fail� — each fail results from the failure of
the second process to synchronize on b. ||| as introduced earlier is equivalent
to ||∅.

Although demonic and angelic choice are duals of one another in the basic
theory, it does not necessarily follow that they have symmetric properties when
they are plugged in to some language. That may or may not be the case. Here
we break the symmetry by postulating that demonic choice distributes over
parallel composition, while angelic choice distributes only in the absence of
demonic choice in the participating processes. We may be led to different process
algebras by postulating alternative distribution laws.

There are several interesting ways in which to define the refinement relation
on basic processes. An attractive order is one that is very close to the discrete
order, differing only in that any process P which ends in fail is refined by any
process Q which shares the same prefix as P up to the occurrence of fail in P
(e.g., �a ·b · fail� � �a ·b · c ·skip�). As an example, the reader might care to show
that �(a ·skip 	 b·skip)||{a,b}(a ·skip
 b·skip)� is equivalent to �a ·skip 	 b·skip�.

The above brief foray suggests that we might construct a theory of processes
by embedding a theory of dual nondeterminacy in a theory of event sequences.
Proceeding along the lines outlined above leads to a theory of communicating
sequential processes that is similar to CSP [Hoare 1984; Roscoe 1998]. It has
an attractive algebra and a mathematically elegant lattice-theoretic model,
derived in large part from the theory of nondeterminacy. See Tyrrell et al.
[2006] for more details.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:13

2.6 Fixpoints and Recursion

The act of taking an adjoint is facilitated by nondeterminacy, in essence because
nondeterminacy enriches each type with new artificial points (those represent-
ing possible outcomes). It is natural, therefore, to seek other operations whose
domain of applicability is enlarged by the presence of nondeterminacy. An obvi-
ous candidate is taking fixpoints. Surprisingly, it turns out that just about every
function in a “reasonable” programming or specification language has least and
greatest fixpoints, and indeed these may be expressible in the language using
the notation of nondeterminacy. To take an extreme example, the successor
function on the naturals λx:N · x + 1 has fixpoints

⊔{m:N ·�{n:N | n ≥ m}}
and �{m:N · ⊔{n:N | n ≥ m}} (recall that function application distributes over
choice).

The pervasiveness of fixpoints can be exploited to give a semantics for recur-
sive functions in terms of nondeterminacy, instead of the more common theory
of complete partial orders. In essence, every function in a typical programming
language can be viewed as a function in a richer nondeterministic language
(just add angelic and nondeterministic choice as we have been describing), and
in this language the function is guaranteed to have fixpoints. We can iden-
tify some of these fixpoints as being computationally interesting, in that they
correspond to a certain operational interpretation. Indeed, we can show that
wherever a recursively defined function in a typical programming language has
a meaning given by the classical theory of least fixpoints in complete partial
orders [Winskel 1993], it coincides with the fixpoint arrived at by viewing the
function as a nondeterministic function. For more on this approach to recursion;
see Morris and Tyrrell [2007].

3. THE BASIC THEORY OF NONDETERMINACY

3.1 Notation

We place ourselves in a typed specification/programming language. We use T ,
U , . . . to stand for types, and t, u, v · · · to stand for terms. We write t, u : T
to assert that terms t and u are of type T , and similarly for other than two
terms.

For S any set of terms of type T , say, �S and
⊔

S are also terms of type T
and denote the demonic and angelic choice, respectively, over the constituent
terms of S. t 	 u abbreviates�{t, u} and t
 u abbreviates

⊔{t, u}.
We will write set comprehensions as {x:T | P · t}, possibly using abbreviated

forms as explained in Section 2.1.2. We write (∀X ⊆T · · ·) as an abbreviation
for (∀X :IPT · · ·). We will write S :⊆ T to assert that S is a set of terms each of
type T .⊔ ∅ is given the special name ⊥T (pronounced bottom), and�∅ is given the
name �T (pronounced top).

⊔
T is given the special name someT , and �T is

given the name allT . Again, we commonly omit the type subscripts.
Operators have the following relative precedence, higher precedence first

(the list anticipates some operators we have yet to introduce):(i) function appli-
cation and composition; (ii)�,

⊔
,
∧

,
∨

; (iii) 	,
; (iv) ≤, �; (v) ¬; (vi) ∧, ∨; (vii)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:14 • J. M. Morris and M. Tyrrell

=, �=; (viii) ⇒; (ix) ⇔. For example, the brackets in the following are superfluous:
(
(t 	 u) �

⊔
X

) ⇔ ((
t �

⊔
X

) ∨ (
u �

⊔
X

))

We assume each type T comes equipped with a partial ordering �T as ex-
plained in Section 2.1.3 (we omit the type subscript when it can be inferred
from context or is not significant). t � u is expressed in words as “t is refined
by u” or “u refines t”. In the case of base types such as the integers or booleans,
the refinement ordering will usually be the discrete ordering. If the reader has
in mind a type with no obvious partial ordering, then it can be trivially ordered
by the discrete ordering. The theory will respect the refinement ordering on
base types when nondeterminacy is introduced. The theory will also impose an
ordering on constructed types, e.g. the values in function types will be ordered
in the usual pointwise way as we shall see.

3.2 Proper Terms

We distinguish between proper and improper terms. For base types, the proper
terms are those that can be expressed without using nondeterminacy. To use
the integers for illustration, the proper integers are precisely those that are
equivalent to one of 0, 1, -1, 2, -2, For example, 1, 1 	 1, 1
 1, and

⊔{1}
are all proper, while 1 	 2,

⊔{x:Z | 0 ≤ x}, ⊥, �, some, and all are improper.
The properness or improperness of constructed types is defined with respect
to the constructors of the type. In the present case our language is limited to
function types, for which the only constructor is via λ-abstractions. The propers
are precisely those that are equivalent to a λ-abstraction (even if the body
of the λ-abstraction employs nondeterminacy in an essential way). Note that
properness is not a syntactic property: if a term is proper (or improper) then so
are all equivalent terms.

In introducing nondeterminacy, we have to make clear the extent to which
terms employing nondeterminacy may participate in instantiation. It is anal-
ogous to the situation in partial function theory where we accommodate “un-
defined” terms such as 3/0: we expect that from (∀x:Z · x − x = 0) we can
infer 3 − 3 = 0, but probably not 3/0 − 3/0 = 0. We adopt a similar con-
vention here: from (∀x:Z · x − x = 0) we may infer 3 − 3 = 0, but not
⊥Z − ⊥Z = 0 or (2 	 3) − (2 	 3) = 0. More generally, we adopt the conven-
tion that the range of the bound variable does not extend to improper terms.
This convention applies to all bound variables, e.g. in existential quantifica-
tions, set comprehensions, etc. For example, (∃x:T · x = t) holds iff term t : T is
proper.

We may occasionally use a type to represent a set, in which case we always
mean it to stand for the set of its propers. For example, we may write X ⊆ Z

to denote that X is a set of (proper) integers, or for t a term of type Z we may
write t ∈ Z to assert that t denotes a proper value.

We alert the reader to distinguish between t : T (here t may or may not be
proper) and t ∈ T (here t is proper), for T some type. A similar distinction holds
between S :⊆ T (the elements of S may or may not be proper), and S ⊆ T (the
elements of S are proper).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:15

3.3 Axioms of Nondeterminacy

Five axioms govern basic nondeterminacy. The first two relate refinement to
demonic and angelic choice, respectively, where t, u : T :

A1: t � u ⇔ (∀X ⊆T ·�X � t ⇒�X � u
)

A2: t � u ⇔ (∀X ⊆T · u � ⊔
X ⇒ t � ⊔

X
)

The preceding axioms give formal standing to our earlier assertion that t � u
holds when t offers at least as much demonic nondeterminacy as u, and u offers
at least as much angelic nondeterminacy as t.

The second two give the axioms for demonic and angelic choice, where X ⊆ T ,
S :⊆ T :

A3: �S � ⊔
X ⇔ (∃t∈S · t � ⊔

X
)

A4: �X � ⊔
S ⇔ (∃t∈S ·�X � t

)

(Note that X is a set of propers in all the preceding axioms, while S is a set of
(possibly improper) terms). Finally, we postulate that refinement is antisym-
metric:

A5: t � u ∧ u � t ⇒ t = u

The axioms are not so much used in practice, once they have been used to es-
tablish a body of simpler and more practically useful laws. The more important
of these are given in Figure 1. When reading Figure 1 remember that X is a
set of propers. It might appear at first sight that Theorems 7 and 8 conflict with
standard results in lattice theory, but this is not so because here X is not an
arbitrary set but a set of propers. We have not formally stated the distribution
laws in Theorem 15. Those for the binary choice operators are easily written,
and the reader will no doubt be able to do so. Readers familiar with infinite
distributions (as in, for example, distribution of arbitrary set union over ar-
bitrary set intersection, or distribution of arbitrary joins over arbitrary meets
in lattices) will know that their formal expression requires the use of a choice
function. As the technique is standard but complicated, there is no additional
information to be imparted by writing it formally here; the interested reader
can see the details in Davey and Priestley [2002]. Theorems 23 and 24 are
technically important; we will return to them later.

It is clerical routine to prove the theorems in the order presented; the proof
of arbitrary distribution uses the axiom of choice, but otherwise there are no
surprises. We prove Theorem 17 as an example; see Figure 2. For an example of
applying the laws, see the proof in Section 2.2.2 which appeals to axiom A4 (us-
ing Theorem 3 to instantiate�X as�{x} for x a certain real), and Theorem 9.

4. THE THEORY OF NONDETERMINISTIC FUNCTIONS

4.1 Introduction and Notation

We now construct a theory of nondeterministic functions. We write function
types in the usual way: T→U stands for the type of functions with domain T

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:16 • J. M. Morris and M. Tyrrell

Fig. 1. Fundamental theorems (t,u,v : T , X ⊆ T , S :⊆ T).

Fig. 2. Proof of all � t ⇔ t �= ⊥.

and codomain U . Terms of the type are written using λ-notation as in λx:T · t.
Bodies of lambda terms may employ nondeterminacy. Function application is
denoted by juxtaposition as in t u which denotes the application of function t to
argument u.

To stave off a potential inconsistency, we impose a technical limitation on the
formation of λ-abstractions: we stipulate that for λx:T ·t to be admissible it must

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:17

satisfy the monotonicity property (∀ y , z:T · y � z ⇒ t[x\ y] � t[x\z]). This is
always the case in programming languages, but requires caution in specification
languages. A well-known source of non-monotonicity is strong equality on non-
discrete types. For example, allowing for the moment strong equality on integer
functions, the λ-abstraction h � (λ f :Z→Z · f = (λx:Z ·3)) is ruled out because it
is not monotonic — with f0 � λx:Z·3	4 and f1 � λx:Z·3 we have f0 � f1, but not
h f0 (= false) � h f1 (= true). We can either syntactically prevent parameters in
a λ-abstraction from being used as the argument of any nonmonotonic operator,
or we impose on the programmer the obligation to prove monotonicity.

Axioms A1 to A5, inclusive, are included unchanged. Using them we may
infer, for example, that f 	 g � f for functions f and g of the same type,
without any special information about function types.

4.2 Axioms of Nondeterministic Functions

The first axiom asserts that λ-abstractions are proper:

A6: (∃ f :T→U · f = (λx:T · t)),

where t stands for a term of type U . Observe that the theory treats every λ-
term as proper, even if the body of the function employs nondeterminacy. For
example, (λx:Z · x 	 3) is proper, but (λx:Z · x) 	 (λx:Z · 3) is not.

Next we define the refinement order on proper functions:

A7: (∀ f , g :T→U · f � g ⇔ (∀x:T · f x � g x)).

The third axiom states that β-reduction holds for proper arguments:

A8: (∀ y :T · (λx:T · t) y = t[x\ y])

For example, (λh:Z→Z · h 3 	 h 4)(λx : Z · x
 x2) reduces to (3
 32) 	 (4
 42).
The fourth and fifth axioms state that proper functions distribute over choice

in their argument, that is, for S :⊆ T :

A9: (∀ f :T→U · f (�S) =�{t ∈ S · f t})
A10: (∀ f :T→U · f (

⊔
S) = ⊔{t ∈ S · f t})

For example, (λx:Z · x2
 x)(3 	 4) reduces to (32
 3) 	 (42
 4).
The sixth axiom caters for nondeterminacy on the function side of a function

application: for t : T→U and u : T ,

A11: t u = (λ f :T→U · f u) t,

where f is a fresh name. The only new information here is that function appli-
cation distributes over choice on the left. For example, ((λx:Z·x2)
(λx:Z·x))(2	3)
is by the axiom equal to (λ f :Z→Z· f (2	3))((λx:Z·x2)
(λx:Z·x)); this reduces by
A10 to (λx:Z·x2)(2	3)
(λx:Z·x)(2	3), and then by A9 (twice) to (22	32)
(2	3).
Note that only applications of λ-abstractions, not arbitrary functions, distribute
on the right. The import of this is that we must distribute fully on the left first
and only then distribute on the right; the axioms enforce this.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:18 • J. M. Morris and M. Tyrrell

Fig. 3. Functions (t, t1, t2 : T→U , u, u1, u2 : T , f , g ∈ T→U , v, v1, v2 : V →T , w : V , S :⊆ T→U).

Finally, we define function composition. For t : U→V and u : T→U :

A12: t ◦ u = (λ f :U→V · λg :T→U · λx:T · f (g x)) t u.

The axiom is expressed as it is, with the participating functions on the lefthand
side emerging as arguments on the righthand side, to capture the fact that
composition distributes over choice (as Axioms A9 to A11 are now applicable).

The most important theorems that follow from the axioms are listed in
Figure 3; when reading it note that f and g stand for proper functions (f , g ∈
T→U), such as λ-abstractions as guaranteed by Axiom A6. The proofs are cleri-
cal routine in each case; as an example a proof of Theorem 33 is given in Figure 4.

Perhaps the most significant conclusion to be drawn from the axioms and
theorems is how much of the standard theory of functions is retained following
the introduction of nondeterminacy. In particular, β-reduction survives almost
intact, as does function composition. Extensional equality (Theorem 37) and
η-equivalence (Theorem 38) continue to hold for proper functions. They do not
hold in general as the following argument shows. Clearly, (λx:Z · x 	 3) and
(λx:Z · x) 	 (λx:Z · 3) are extensionally equal. Nevertheless they can be distin-
guished by the higher order function F � λh:Z→Z · h 1 + h 2. We leave it to the
reader to verify that F (λx:Z·x	3) yields 3	4	5	6 while F ((λx:Z·x)	(λx:Z·3))

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:19

Fig. 4. Proof of (t1 	 t2) u = t1 u 	 t2 u.

yields 3 	 6 (remember that the application of F in the latter case distributes
over the choice in the argument). It follows that function equivalence via ex-
tensionality does not hold in general. Without appealing to extensionality, we
could infer the equivalence of (λx:Z · x 	 3) and (λx:Z · x) 	 (λx:Z · 3) if we were
to appeal to η-equivalence (by applying it to the latter term). It follows that
η-equivalence does not hold in general.

As a final comment, we point out that there is no one unique way in which
to plug nondeterminacy into function theory. The above treatment seems to us
to be the simplest, generally useful approach.

4.3 Operators

It will usually be the case that the operators of a type will be defined to dis-
tribute over choice. In the case of binary operators, we may choose to distribute
left argument first, or right argument first. For example, if for some reason we
wanted integer subtraction to distribute right argument first we would postu-
late t − u = (λx:Z · λy :Z · y − x) u t.

The theory does not exclude the possibility that operators might deal with
choice in other ways — there is no obligation to employ the distribution laws
of function application. For example, if it is important for a symmetric binary
argument to continue to be symmetric in the presence of nondeterminacy then
we might define it to distribute demonically first and then angelically (or vice
versa). By “demonically first” we mean that all demonic choices in either ar-
gument are distributed, after which all angelic choices are distributed. This is
possible because of the Theorems 23 and 24 in Figure 1. These technically im-
portant theorems assert that every term can be expressed in demonic or angelic
normal form, respectively. A term is in demonic normal form if it is a demonic
choice over angelically proper terms, where an angelically proper term is an an-
gelic choice of propers. Angelic normal form is defined dually. Roughly speaking,
the theorems state that all demonic choices can be moved “to the outside”, and
similarly for angelic choices.

5. DOMAINS FOR NONDETERMINACY

5.1 Overview

Our final task is to build a model by which we can show that the theory is
sound. The key to this is a technique to embed a poset C in a certain complete

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:20 • J. M. Morris and M. Tyrrell

and completely distributive lattice denoted by FCD(C). FCD(C) is what is called
the free completely distributive lattice over C. The mathematics of these lattices
is the subject of this section.

5.2 Lattice Fundamentals

Everything in this subsection is standard and is available in more detail in any
standard text (such as Davey and Priestley [2002] and Birkhoff [1967]).

A complete lattice L is a partially ordered set (we’ll use ≤ to represent the
partial ordering) such that every subset of L has a greatest lower bound in L
with respect to ≤, and similarly has a least upper bound in L with respect to
≤. For S ⊆ L, the greatest lower bound of S is denoted by

∧
S, and the least

upper bound is denoted by
∨

S. Greatest lower bounds are also called meets,
and least upper bounds are also called joins. A complete lattice is completely
distributive iff meets distribute over joins, and vice-versa. When we say that a
lattice is completely distributive, we mean to imply that it is also complete.

A function f from poset C to poset D is monotonic iff x ≤C y ⇒ f x ≤D f y
for all x, y ∈ C, and an order embedding iff x ≤C y ⇔ f x ≤D f y for all
x, y ∈ C. An order embedding from poset C to a complete lattice is said to be
a completion of C. We denote the space of monotonic functions from C to D by
C

m−→ D, which is ordered pointwise.
Let f be a function from complete lattice L to complete lattice M . f is∧
-distributive iff f (

∧
S) = ∧

(f S) for all S ⊆ L;
∨

-distributive is defined
dually. By f S above and in what follows, we mean the image of S through f ,
that is, {x∈S · f x}. f is a complete homomorphism if f is

∧
- and

∨
-distributive.

5.3 Free Completely Distributive Lattices

There are various ways in which a partially ordered set can be embedded in a
complete lattice, the one of interest to us being the free completely distribu-
tive completion. A completely distributive lattice L is called the free com-
pletely distributive lattice over a poset C iff there is a completion φ : C

m−→ L
such that for every completely distributive lattice M and monotonic function
f : C

m−→ M there is a unique complete homomorphism φ∗
M f : L

m−→ M sat-
isfying f = (φ∗

M f) ◦ φ. We call this a free completely distributive completion
of C.

We offer some pictorial insight into free completely distributive lattices.
Figure 5 depicts a small poset and its free completely distributive lattice. Each
of the small circles can be labeled in several ways because of distributivity, for
example, the upper circle represents both (c ∧ d) ∨ (a ∨ b) and (c ∨ b) ∧ d . We
make some general observations. ⊥ is always connected to all and no other,
and � is always connected to some and no other. Observe a ≤ c in the poset
and hence c is the least upper bound of a and c; c continues to be the least upper
bound in the lattice. Contrast that with a and b for which a third element d
is the least upper bound in the poset. In this case, a new least upper bound is
created in the lattice below d . Unbounded chains behave similarly (although
not illustrated here): if {i ∈ N · xi} is a chain in the poset (i.e., xi ≤ xi+1 for all
natural i) with a least upper bound z not in the chain, then the least upper

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:21

Fig. 5. A poset and its free completely distributive lattice.

bound of the chain in the lattice is not z but a new element below z. Similar
remarks hold for greatest lower bounds.

THEOREM 5.1. For every poset C, the free completely distributive lattice over
C exists and is unique up to isomorphism.

PROOF. Tunnicliffe [1985] gives the following construction. Let D be the set
of downclosed subsets of C (a set is downclosed when it contains all the ele-
ments below x whenever it contains x) ordered by set inclusion, and let E be
the set of downclosed subsets of D. Then, E is a construction of the free com-
pletely distributive lattice over C under the completion which takes each x in
C to the family of sets in D which do not contain x. There is a similar construc-
tion with detailed proof in Morris [2004], and an alternative construction in
Bartenschlager [1995]. If φ : C

m−→ L0 and θ : C
m−→ L1 are two completions,

then L0 and L1 are isomorphic as φ∗
L1

θ : L0
m−→ L1 and θ∗

L0
φ : L1

m−→ L0 are
complete homomorphisms and inverses of one another.

Theorem 5.1 means that we can talk about the free completely distributive
lattice over C, which we denote FCD(C). We typically drop the lattice subscript
in φ∗

M when it can be determined by context. We need the properties of free
completely distributive lattices as encapsulated in the following four theorems.
The first theorem states that every element in FCD(C) for C a poset can be
constructed from C-elements, that is, from φC where φ denotes the completion,
either by taking meets followed by joins or vice-versa.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:22 • J. M. Morris and M. Tyrrell

THEOREM 5.2. Let φ : C
m−→ FCD(C) be an FCD completion of C. For all

t ∈ FCD(C), (i) t = ∨{X ⊆φC | ∧
X ≤ t · ∧

X }, and (ii) t = ∧{X ⊆φC | t ≤∨
X · ∨

X)}.
PROOF. Let L be the complete sublattice of FCD(C) obtained by taking any

elements of FCD(C) that can be expressed as arbitrarily nested meets and
joins over φ C. As a complete sublattice of a completely distributive lattice,
L is completely distributive. The image of φ is in L, and for any completely
distributive lattice M and function f : C

m−→ M , (φ∗ f) � L defines a complete
homomorphism from L to M with the property that ((φ∗ f) � L) ◦ φ = f . The
behavior of (φ∗ f) � L is completely determined by its behavior on φC, so (φ∗ f) �
L is unique on L. Thus, φ is a free completely distributive completion of C in
L, and hence FCD(C) ∼= L.

By complete distributivity, any element t ∈ L can be expressed in the form∨
i∈I

∧
j∈Ji

xi, j where xi, j ∈ φC. Thus, (i) will follow if we prove
∨

i∈I
∧

j∈Ji
xi, j =∨{X ⊆φC | ∧

X ≤ (
∨

i∈I
∧

j∈Ji
xi, j) · ∧

X }. The ≥ case follows directly from the
property of joins, so we give only the ≤ case:

∨
i∈I

∧
j∈Ji

xi, j ≤ ∨ {
X ⊆φC | ∧

X ≤ (∨
i∈I

∧
j∈Ji

xi, j
) · ∧

X
}

⇐ “properties of joins”
∀i ∈ I · ∃X ⊆ φC · (∧

X ≤ ∨
i∈I

∧
j∈Ji

xi, j
) ∧ (∧

j∈Ji
xi, j ≤ ∧

X
)

⇐ “for each i ∈ I , let X = { j ∈ Ji · xi, j }”
∀i ∈ I · (∧

j∈Ji
xi, j ≤ ∨

i∈I
∧

j∈Ji
xi, j

) ∧ (∧
j∈Ji

xi, j ≤ ∧
j∈Ji

xi, j
)

⇔ “reflexivity of ≤, property of joins”
∨

i∈I
∧

j∈Ji
xi, j ≤ ∨

i∈I
∧

j∈Ji
xi, j

The result follows from the reflexivity of ≤. (ii) is similarly proved by expressing
t in the form

∧
i∈I

∨
j∈Ji

yi, j where yi, j ∈ φC.

THEOREM 5.3. Let φ : C
m−→ FCD(C) be an FCD completion of C. For all

t, u ∈ FCD(C), (i) t ≤ u ⇔ (∀X ⊆φC · ∧
X ≤ t ⇒ ∧

X ≤ u), and (ii) t ≤ u ⇔
(∀X ⊆φC · u ≤ ∨

X ⇒ t ≤ ∨
X)

PROOF. For (i), the implication from left to right is trivial, depending only on
the transitivity of ≤. For the right-to-left implication, use the preceding theorem
to express each of t and u as a join of meets, and appeal to an elementary
property of joins, viz. S0 ⊆ S1 ⇒ ∨

S0 ≤ ∨
S1 for arbitrary sets S0 and S1. The

proof of (ii) is similar.

THEOREM 5.4. Let φ : C
m−→ FCD(C) be an FCD completion of C. For all

X ⊆ φC and S ⊆ FCD(C), (i)
∧

X ≤ ∨
S ⇔ (∃s ∈ S · ∧

X ≤ s), and
(ii)

∧
S ≤ ∨

X ⇔ (∃s ∈ S · s ≤ ∨
X).

PROOF. (i) and (ii) are dual, so we consider only (i). The ⇐ implication follows
directly from transitivity and the properties of joins. For the ⇒ implication, let
X ⊆ φC and S ⊆ FCD(C) be given. The truth-value lattice (B, ⇒, ∃, ∀) is a
completely distributive lattice. Define a function (predicate) P : C → B on

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:23

elements of C by P x � (
∧

X ≤ φx). It is easy to prove that P is a monotonic
function and hence can be lifted to φ∗ P : FCD(C) → B.

Step 1. By the monotonicity and distributivity of φ∗ P we have
∧

X ≤ ∨
S ⇒

((φ∗ P)(
∧

X) ⇒ (φ∗ P)(
∨

S)) ⇔ ((∀x ∈ X · (φ∗ P)x) ⇒ (∃s ∈ S · (φ∗ P)s)). By the
definition of P , it is straightforward to show ∀x ∈ X · (φ∗ P)x is true. Thus,∧

X ≤ ∨
S ⇒ ∃s ∈ S · (φ∗ P)s.

Step 2. Using Theorem 5.2, (φ∗ P)s ⇔ (φ∗ P)(
∨{Y ⊆φC | ∧ Y ≤ s · ∧ Y }). Dis-

tributing (φ∗ P) over the
∨

and
∧

gives (∃Y ⊆φC ·(∧ Y ≤ s)∧(∀ y ∈ Y ·(φ∗ P) y)).
By the definition of P and properties of meets, it follows straightforwardly
that (∀ y ∈ Y · (φ∗ P) y) ⇔ ∧

X ≤ ∧
Y . Using transitivity of ≤, we have

(φ∗ P)s ⇒ ∧
X ≤ s.

Step 3. By transitivity of ⇒, the conclusions of Steps 1 and 2 give
∧

X ≤∨
S ⇒ (∃s ∈ S · ∧

X ≤ s) as required.

THEOREM 5.5. Let φ : C→FCD(C) be an FCD completion of C and let M be a
completely distributive lattice. Then, φ∗

M is a monotonic function from C
m−→ M

to FCD(C)
m−→ M.

PROOF. Let f , g : C
m−→ M be functions such that f ≤ g . By definition of

the ordering on FCD(C)
m−→ M , φ∗

M f ≤ φ∗
M g iff (∀t ∈ FCD(C) · (φ∗

M f)t ≤
(φ∗

M g)t). Pick an arbitrary t. It is straightforward to prove that (φ∗
M f)t ≤

(φ∗
M g)t follows from f ≤ g by expressing t as a join of meets of elements of φ C

using Theorem 5.2.

One of the referees has pointed out to us that the free completely distribu-
tive lattice over a poset is folklore in category theory, and that its properties
follow easily from a category-theoretic presentation. Briefly, the construction
is as follows. Let POS and CDL be the categories of posets and completely dis-
tributive lattices, respectively, and let U : CDL → POS be the forgetful functor
from CDL to POS. The problem of proving the existence of the free completely
distributive lattice over a poset becomes that of proving the existence of a func-
tor F : POS → CDL which is left-adjoint to the functor U . This can be done
by defining F as the composition of two Yoneda embeddings (corresponding, in
order-theoretic terms, to taking down-closed and up-closed sets). The operator
which lifts monotonic functions C

m→ M to FCD(C)
m→ M corresponds to a Kan

extension along F . We retain the order-theoretic presentation given above to
make our results more accessible to a wider audience.

6. SOUNDNESS

6.1 The Model

The hierarchy of types in the language will be modeled by a corresponding
hierarchy of complete lattices. The interpretation of each type T is denoted by
[[T]], where [[T]] is constructed as the free completely distributive lattice over a
certain poset [T], that is, [[T]]=FCD([T]). Each closed term of type T will have
a denotation in [[T]].

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:24 • J. M. Morris and M. Tyrrell

For every base type T , we assume that the poset [T] is given, and that its
ordering ≤[T] agrees with �T when restricted to propers of T (this ordering will
almost always be the discrete ordering). Each constant c in base type T has a
representative [c] in [T], and hence a representative [[c]] in [[T]], where [[c]] is φ

[c] and φ : [T]
m−→ [[T]] is the FCD completion.

For each function type T → U , poset [T → U] is defined to be [T]
m−→ [[U]].

Therefore [[T→U]] is FCD([T]
m−→ [[U]]). We show later how to construct a

representative in [[T→U]] for each λ-term of type T→U .
We reiterate for clarity that [T] contains a representative for every proper

of type T , while [[T]] contains denotations for all (closed) terms of type T . The
denotations of proper terms will lie in the image of the poset [T] under the FCD
completion φ : [T]

m−→ [[T]], that is, for every (closed) proper term t of type T ,
[[t]] = φ[t] where [t] denotes the representation of t in [T]. � and

⊔
in T will

be modeled by meet and join in [[T]], respectively.
That the ordering relation in [[T]], for each type T , respects the given ordering

relation on the original terms of T (i.e., those employing no choice) follows from
a straightforward inductive argument on the grammar of types (i.e., basic types
and function types).

6.2 General Axioms

Let us fix on a type T . The five general axioms A1 to A5 translate to the model
as follows, where t, u ∈ [[T]], S ⊆ [[T]], and X ⊆ φ[T] with φ : [T]

m−→ [[T]] the
FCD completion of [T]:

t ≤ u ⇔ (∀X ⊆φ[T] · ∧
X ≤ t ⇒ ∧

X ≤ u
)

t ≤ u ⇔ (∀X ⊆φ[T] · u ≤ ∨
X ⇒ t ≤ ∨

X
)

∧
S ≤ ∨

X ⇔ (∃s∈S · s ≤ ∨
X

)
∧

X ≤ ∨
S ⇔ (∃s∈S · ∧

X ≤ s
)

t ≤ u ∧ u ≤ t ⇒ t = u.

The translation of each axiom is straightforward. The one point to note is that
in the first two translated formulae X is presented as a subset of φ [T] rather
than [[T]]; this is because all bound variables range over propers only. All of
the formulae above follow immediately from the properties of [[T]] as the free
completely distributive lattice over [T]. See Theorem 5.3 for the first two, and
Theorem 5.4 for the following two; the final one is just antisymmetry of the
lattice order.

6.3 Function Axioms

Under an environment ρ, a term t of type T has a denotation in [[T]] written [[t]]ρ.
To minimize cluttering the presentation, we will usually leave environments
implicit. When we need to make an environment explicit, we will only expose
the assignments relevant in the context. For example, we write [[t]]x

v for the
denotation of u when x is bound to v in [T] (note variables are bound to propers
only and so have a representative in [T]).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:25

Let us now fix the types T and U and turn to finding a representative in
[[T→U]] for (λx:T · t) of type T→U . For the rest of this section, let

φ : [T]
m−→ [[T]]

θ : [T→U]
m−→ [[T→U]]

be the FCD completions of [T] and [T→U], respectively. We define

[[λx:T · t]] = θ (λv:[T] · [[t]]x
v)

(We trust the reader is not put out by our re-use of λ-notation in the semantic
domain.) It must be the case that λv:[T] · [[t]]x

v is monotonic; that follows read-
ily from our requirement that the body of λ-abstractions in the language be
monotonic in the parameter variable.

To model function application, we introduce

appT,U : [[T→U]]
m−→ [[T]]

m−→ [[U]],

such that for t : T→U and u : T

[[t u]] = appT,U [[t]][[u]].

The appropriate definition of app is

appT,U = θ∗
[[T]]

m−→[[U]]
φ∗

[[U]] .

We typically omit the subscript in appT,U when it can be inferred from context.
We explain the definition further. Referring to Theorem 5.5, observe that φ∗

[[U]]

has type ([T]
m−→ [[U]])

m−→ ([[T]]
m−→ [[U]]). Next observe that θ∗

[[T]]
m−→[[U]]

has

type (([T]
m−→ [[U]])

m−→ ([[T]]
m−→ [[U]]))

m−→ ([[T→U]]
m−→ ([[T]]

m−→ [[U]])).
It follows that θ∗

[[T]]
m−→[[U]]

φ∗
[[U]] has type [[T→U]]

m−→ [[T]]
m−→ [[U]] as required.

The definition of appT,U requires that [[T]]
m−→ [[U]] be a completely distributive

lattice (otherwise θ∗
[[T]]

m−→[[U]]
is not well defined), and it is so in the standard way,

that is, for S a set of functions each of type [[T]]
m−→ [[U]], define

∨
S to be

λx:[[T]] · ∨{ f ∈ S · f x}, and similarly for meets. For readers who want to gain
added confidence in the definition of app, we prove in Figure 6 that [[f (x 	 y)]]
simplifies to [f] [x] ∧ [f] [y] for f a proper function of type T→U and x and y
propers of type T ; this property is not required in what follows.

The first five function axioms A6 to A10 translate to the model as follows,
where t:U , V ⊆ [[]]T :

(1) (∃ f :θ [T→U] · f = [[λx:T · t]])
(2) (∀ f , g :θ [T→U] · f ≤ g ⇔ (∀x:φ[T] · app f x ≤ app g x))
(3) (∀w:φ[T] · app (θ (λv:[T] · [[t]]x

v)) w = [[t[x\ y]]] y
z) where φz = w

(4) (∀ f :θ [T→U] · app f
(∧

V
) = ∧{t ∈ V · app f t})

(5) (∀ f :θ [T→U] · app f
(∨

V
) = ∨{t ∈ V · app f t})

The proof of each of these is without difficulty. (1) is equivalent to [[λx:T · t]] ∈
θ [T→U], which is the case. (2) can be rewritten by a shift of the bound variable

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:26 • J. M. Morris and M. Tyrrell

Fig. 6. Proof of [[f (x 	 y)]] = [f] [x] ∧ [f] [y] for f , x, y proper.

to

(∀ f , g :[T→U] · θ f ≤ θ g ⇔ (∀x:[T] · app (θ f) (φx) ≤ app (θ g) (φx))),

which, by applying the definitions of app, θ∗, and φ∗, simplifies to

(∀ f , g :[T→U] · f ≤ g ⇔ (∀x:[T] · f x ≤ g x)).

This follows immediately from the definition of the ordering on [T→U]. (3) can
be equivalently written as follows, by a shift of the bound variable:

(∀z:[T] · app (θ (λv:[T] · [[t]]x
v)) (φz) = [[t[x\ y]]] y

z
)
.

The left-hand side readily simplifies to (λv:[T] · [[t]]x
v) z by applying the def-

initions of app, θ∗, and φ∗, and further simplifies to [[t]]x
z . So it remains to

prove

[[t]]x
z = [[t[x\ y]]] y

z .

The proof has therefore reduced to a syntactic requirement on substitutivity in
the terms of the language. In fact, this is a standard substitution rule that is
widely applicable (see Reynolds [1998] for example), and so it is reasonable to
require that our language obey it. (4) can be equivalently written as follows, by
a simple shift of the bound variable:

(∀g :[T→U] · app (θ g)
(∧

V
) = ∧{t ∈ V · app (θ g) t}),

which, by applying the definitions of app and θ∗, simplifies to

(∀g :[T→U] · (φ∗ g)
(∧

V
) = ∧{t ∈ V · (φ∗ g) t}),

which follows from the fact that φ∗ g is a complete homomorphism. The proof
of (5) is dual.

We tackle Axiom A11 indirectly. First, we show that the following theorems
hold in the model:

(�S
)

t = �{ f ∈ S · f t}, (1)

(�S
)

t = �{ f ∈ S · f t}, (2)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:27

where S :⊆ T→U and t:T . The two theorems translate into the semantics as
follows:

app (
∧

S) t = ∧{ f ∈ S · app f t}
app (

∨
S) t = ∨{ f ∈ S · app f t},

where S ⊆ [[T→U]] and t ∈ [[T]]. These hold since app is by definition θ∗φ∗

and therefore distributes over meets and joins. We will be able to conclude that
A11 holds in the model, that is, t u = (λ f :T→U · f u) t, if we can show that it
can be inferred from (1) and (2). This is a routine exercise that we leave to the
reader (hint: express t in normal form using either of the final two theorems in
Figure 1).

For Axiom A12, we can define an operator comp to model function composi-
tion analogous to our introduction of app, but no new insight is gained and so
for brevity we will simply treat A12 as a rewrite rule. We have now shown that
the axioms hold in the model and we conclude that the theory is sound.

6.4 A Note on Strictness and Continuity

Functions are distributive with respect to both kinds of choice and hence they
are ⊥- and �-strict, as well as being continuous (i.e., they are distributive with
respect to

⊔{i∈I · ti} where the ti ’s form an ascending chain, and dually for de-
monic choice). It might appear at first sight that these properties are stronger
than we might wish for in some circumstances, but this is not necessarily
so.

It is convenient to use ⊥ to represent undefined terms such as 3/0 because
⊥ comes with nondeterminacy for free. In most commonly-used programming
languages, functions are indeed strict with respect to “undefined”, correspond-
ing to a call-by-value semantics. A call-by-name semantics requires nonstrict
functions which would entail a somewhat different denotational semantics.

The fact that functions are continuous with respect to nondeterministic
choice does not mean that they coincide with continuous functions as the term
is used in the theory of programming languages. In what follows, we assume fa-
miliarity with the standard denotational semantics of programming functions
in terms of CPO’s (complete partial orders) as described in Winskel [1993], for
example. In the CPO semantics, functions of type U→V are interpreted in the
space 〈U 〉 c→ 〈V 〉ε, where the decoration c indicates continuous functions, 〈U 〉
is a CPO associated with the type U , and 〈U 〉ε is 〈U 〉 “lifted” with ε (to avoid
confusion, we are here using ε instead of the more commonly used ⊥ to repre-
sent the added bottom element in the CPO semantics). This should be compared
with our representation of proper functions in [U]

m−→ [[V]]. The main differ-
ence between 〈U 〉 c→ 〈V 〉ε and [U]

m−→ [[V]] is that the latter accommodates
monotonic (which includes continuous) functions. To construct a distinguish-
ing example, let us assume the language includes a type N

ω consisting of the
natural numbers with an added element ω, and for which the refinement order
coincides with the usual ≤ order with additionally i < ω for all i ∈ N. Define
f : N

ω→N
ω � λn : N

ω · if n < ω then 0 else 1 fi. Function f is obviously mono-
tonic, but is not continuous as f i = 0 for all i < ω but f (limi<ω i) = f ω = 1.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:28 • J. M. Morris and M. Tyrrell

Unbounded nondeterminacy is a source of discontinuity in this sense [Dijkstra
1982]; consider, for example, the function F : (Z→Z)→(Z→Z):

F � λ f : Z→Z ·
λn:Z · if n < 0 then f (�N)

else if n = 0 then 47
else f (n − 1) fi

F is not continuous, as can be verified by considering the sequence fi for i ∈ N

defined by fi � λn:Z · if 0 ≤ n < i then 47 else ⊥ fi. The discontinuity is
attributable to the presence of unbounded nondeterminacy: if �N is replaced
by �NK where K stands for 516749637, say, and NK stands for the set of
naturals less than K , then the discontinuity disappears.

7. CONCLUSION AND RELATED WORK

7.1 Summary

We have presented a theory of nondeterministic functions based on what we
suggest is a general theory of nondeterminacy. The theory supports unbounded
angelic and demonic nondeterminacy. It is presented as a relatively small set of
axioms whose soundness we have shown. The soundness proof relies on a new
model based on free completely distributive lattices over posets. We have argued
that nondeterminacy is a fundamental notion in computing, and that nonde-
terminacy as it occurs in functions is similar to nondeterminacy as manifested
in many other contexts, among them imperative programming, game playing,
recursive function theory, data refinement, and process algebras. There are
other areas of applicability we have yet to explore, such as logic and constraint
programming. We note that the introduction of nondeterminacy into functions
makes the methods of the imperative refinement calculus [Back 1980; Morgan
1988; Morris 1987; Back and von Wright 1998] available to functional program-
ming, and indeed we see no impediment into introducing functional refinement
without difficulty into the refinement calculus.

7.2 Nondeterminacy in Programming

Nondeterminacy occurs in many branches of computing, and so it is not sur-
prising that it has a vast literature. Here, we will confine our attention to
approaches that combine angelic and demonic nondeterminacy, or those that
seek to combine nondeterminacy with functions.

Demonic nondeterminacy has had a big presence in imperative programming
since [Dijkstra 1976], while angelic nondeterminacy became prominent a little
later [Jacobs and Gries 1985; Broy 1986; Morris 1987; Back and von Wright
1990]. Both play a central role in the imperative refinement calculus. Demonic
nondeterminacy is used for underspecification, and angelic nondeterminacy is
used, for example, in data refinement (e.g., Gardiner and Morgan [1991] and
von Wright [1994]) and in modeling competing processes (e.g., Back and von
Wright [1990] and Nelson [1992]).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:29

The incorporation of nondeterminacy into functions has been more difficult.
There are two obvious ways in which to proceed from classic functions to some-
thing richer that will handle choice: one is to move to set-valued functions (e.g.,
Hughes and O’Donnell [1991]) and the other is to generalize functions to binary
relations (e.g., Bird and de Moor [1997]). Set-valued functions are not attractive
in a programming calculus. First, they lead to frequent packing and unpacking
of values into and out of sets even though often the set is just a singleton set.
Second, while the idea is simple for nondeterminacy over discrete types, it is
less simple for more complex types. In any event, it does not solve the problem
of accommodating demonic and angelic nondeterminacy simultaneously.

The pointfree relational calculus of Bird and de Moor [1997] provides an el-
egant basis for a calculus of functional programming, and Bird and de Moor
[1997] illustrate its application over a wide range of examples. However, the
pointfree style is more suited to establishing general laws, and less conve-
nient in constructing individual programs. This has led to some recent effort at
employing pointwise relations [de Moor and Gibbons 2000; Naumann 2001a;
Martin et al. 2004]. Classical relational approaches cannot accommodate both
kinds of nondeterminacy, however. Martin et al. [2004] seek to address this with
a more general type of relation called a multirelation. Multirelations are sig-
nificantly more complex than simple relations, to the extent that Martin et al.
[2004] recommend staying within classical relations when that it sufficient.
The approach put forward in Martin et al. [2004] does not provide operators for
angelic or demonic choice. It would seem to be a challenge to merge relations,
multirelations, and functions into a seamless calculus that supports functional
programming, and ideally imperative programming as well.

There have been quite a few efforts at combining nondeterminacy with func-
tions without moving into sets or relations, (e.g., Partsch [1990], Hoogerwoord
[1989], Norvell and Hehner [1993], Hehner [1993], Larsen and Hansen [1996],
Lassen [1998], and Hughes and Moran [1995]), but they almost universally
impose significant limitations on how nondeterminacy may be employed, or
they lack a theory, or they lack a model, or they confine themselves to demonic
nondeterminacy. Nondeterminacy sometimes occurs unavoidably in functional
programming such as in parallelism (e.g., Bois et al. [2002]) or exception han-
dling (e.g., Jones et al. [1999]), but in these situations the approach has been to
cage it rather than embrace it. More ambitious approaches to adding nondeter-
minacy to functions include Morris and Bunkenburg [1999] and Ward [1994].
Morris and Bunkenburg [1999] includes a theory and a model but deals only
with demonic nondeterminacy. (The model of Morris and Bunkenburg [1999]
is set-theoretic in which terms are denoted by certain upclosed sets. We sur-
mize that it could be equivalently expressed in terms of free complete semi-
lattices over a poset.) Ward [1994] supports both kinds of nondeterminacy, but
offers only a model and not a theory. Definitions are introduced and laws are
proved with respect to the model. The laws as presented are not comprehen-
sive, and harbor inconsistency [Morris and Bunkenburg 2002]. Both Morris and
Bunkenburg [1999] and Ward [1994] were motivated by a desire to introduce
the notion of refinement into functions. Naumann [2001b] gives a presenta-
tion of the refinement calculus with higher-order procedures added, and in

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:30 • J. M. Morris and M. Tyrrell

which refinement of expressions is considered in the special case of procedure
expressions.

de Moor and Gibbons [2000] offers nondeterminacy (of just one kind) within
a functional programming setting primarily by providing noninjective pattern
matching in function parameters. Naumann [2001a] identifies some shortcom-
ings in its relational semantics, however, and sets out to address them, giving
in addition a model based on predicate transformers. Naumann shows that it
is possible to define angelic and demonic choice operators in the language (even
unbounded ones), and presents many properties of them. The primary focus
of Naumann [2001a] is on noninjective patterns, and in offering simulations
that connect functional, relational, and predicate transformer interpretations
of lambda and pattern terms.

7.3 Models for Nondeterminacy

Free completely distributive lattices over posets represent a new model for
nondeterminacy. They do not appear to be well documented in the literature,
other than as cited in the proof of Theorem 5.1. They are not mentioned in the
encyclopaedic paper of Freese et al. [1995]. The thesis of Bonsangue [1998]
uses the simpler structure of the free completely distributive lattices over
a set to model a first-order language with both kinds of nondeterminacy. In
Cattani and Winskel [1996] and Nygaard and Winskel [2002, 2004], concur-
rent languages with one kind of nondeterminacy are given a denotational
semantics using presheaf models. Whereas we take a poset as the base of
our free stucture, presheaf models generalise the base to arbitrary cate-
gories, but only considering non-strict join-preserving maps and not complete
maps.

Power domains [Plotkin 1976; Smyth 1978; Smyth 1983] have been used for
many years in denotational models of nondeterminacy. See Heckmann [1991b]
for a comprehensive account in an algebraic setting. The classical power do-
mains deal with bounded nondeterminacy. Apt and Plotkin [1986] deals with
unbounded demonic nondeterminacy but limited to discretely-ordered domains;
see Laird [2006] for further developments of this approach using bidomains
[Berry 1978]. The presentation of power domains as free structures is developed
in Hennessy and Plotkin [1979], Main [1985], Hoofman [1987], and Heckmann
[1991b]; there is a comprehensive account in Abramsky and Jung [1994].

Intimately related to bounded nondeterminacy is continuity of the func-
tions being modelled [Apt and Plotkin 1986; Dijkstra 1976]. Power domains
describe nondeterminacy in continuous functions as they occur in program-
ming languages, whereas we have placed our nondeterministic functions in
the more general setting of specification languages which are monotonic but
not necessarily continuous. The base of our construction is a poset in contrast
with the directed complete posets of power domain theory, and our injection
functions are not continuous. On the other hand, our construction enjoys many
of the properties of a power domain, and might liberally be viewed as one. In
particular, our structure can be expressed as a Kleisli triple and so admits of a
treatment in terms of monads (see Heckmann [1991c]).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:31

It is known (see Flannery and Martin [1990] and Heckmann [1991a]) that
two of the classic power domains, the lower and upper ones, commute to yield
a free structure called a frame that can encapsulate both kinds of nondeter-
minacy. However, frames have bounds on the nondeterminacy, take complete
posets (CPOs) rather than posets as their starting point, and do not possess all
the distribution properties we require. We are not aware of work seeking to use
frames in a denotational semantics of functions with both kinds of nondetermi-
nacy, or as the basis for an algebra of nondeterminacy.

Harmer and McCusker [1999] and Levy [2005] model nondeterminacy using
game semantics, but limited to demonic nondeterminacy. Other models that
handle both kinds of nondeterminacy in a functional setting include multire-
lations [Martin et al. 2004] and predicate transformers [Ward 1994; Naumann
2001a]. Actually, it is known that multirelations are in essence the same as
predicate transformers (see Hesselink [2004]). Additionally, there is an isomor-
phism between predicate transformers and denotational semantics including
power domains [Smyth 1983; Plotkin 1979; Apt and Plotkin 1986; Bonsangue
and Kok 1994], and (as a referee has pointed out to us) there is a similar-
ity between Theorem 5.2 above and the well-known factorization of predicate
transformers [Hesselink 1990; Gardiner et al. 1994]. It suggests that a detailed
comparison of the various models would be fruitful, although we do not pursue
it further here.

ACKNOWLEDGMENTS

Many people have helped us in this work, particularly in suggesting many im-
provements to the technical presentation. We especially thank the anonymous
referees who went to great pains to understand the work in detail and made
many important observations and suggestions, and in addition David Naumann
and Eric Hehner. The research on process algebras has been joint work with
Andrew Butterfield and Arthur Hughes.

REFERENCES

ABRAMSKY, S. AND JUNG, A. 1994. Domain theory. In Handbook of Logic in Computer Science,
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds. Vol. 3. Clarendon Press, 1–168.

APT, K. R. AND PLOTKIN, G. D. 1986. Countable nondeterminism and random assignment. J.
ACM 33, 4, 724–767.

BACK, R.-J. R. 1980. Correctness preserving program refinements: Proof theory and applications.
Tract 131, Mathematisch Centrum, Amsterdam.

BACK, R.-J. R. AND VON WRIGHT, J. 1990. Duality in specification languages: a lattice-theoretical
approach. Acta Inf. 27, 7, 583–625.

BACK, R.-J. AND VON WRIGHT, J. 1998. Refinement Calculus: A Systematic Introduction. Springer-
Verlag, New York.

BARTENSCHLAGER, G. 1995. Free bounded distributive lattices over finite ordered sets and their
skeletons. Acta Math. Univ. Comen. 64, 1–23.

BERRY, G. 1978. Stable models of typed lambda-calculi. In Proceedings of the 5th Colloquium on
Automata, Languages and Programming. Lecture Notes in Comput. Science, vol. 62. Springer-
Verlag, New York, 72–89.

BIRD, R. AND DE MOOR, O. 1997. Algebra of Programming. Prentice Hall, London. ISBN 0-13-
507245-X.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:32 • J. M. Morris and M. Tyrrell

BIRKHOFF, G. 1967. Lattice Theory, 3rd ed. Colloquium Publications, vol. 25. American Mathe-
matical Society.

BOIS, A. R. D., POINTON, R., LOIDL, H.-W., AND TRINDER, P. 2002. Implementing declarative parallel
bottom-avoiding choice. In Proceedings of the 14th Symposium on Computer Architecture and
High Performance Computing, A. F. de Souza, Ed. IEEE Computer Society Press, Los Alamitos,
CA.

BONSANGUE, M. 1998. Topological Duality in Semantics. Electronic Notes in Theoretical Com-
puter Science, vol. 8. Elsevier, Amsterdam.

BONSANGUE, M. M. AND KOK, J. N. 1994. The weakest precondition calculus: Recursion and duality.
Formal Asp. Comput. 6, 788–800.

BOUTE, R. T. 2005. Functional declarative language design and predicate calculus: a practical
approach. ACM Trans. Program. Lang. Syst. 27, 5, 988–1047.

BROY, M. 1986. A theory for nondeterminism, parallelism, communication, and concurrency. The-
oret. Comput. Sci. 45, 1, 1–61.

CATTANI, G. L. AND WINSKEL, G. 1996. Presheaf models for concurrency. In Computer Science Logic,
D. van Dalen and M. Bezem, Eds. Lecture Notes in Computer Science, vol. 1258. Springer, 58–75.

COUSOT, P. 1996. Abstract interpretation. ACM Comput. Surv. 28, 2, 324–328.
DAVEY, B. AND PRIESTLEY, H. 2002. Introduction to Lattices and Order, 2nd ed. Cambridge

University Press.
DE MOOR, O. AND GIBBONS, J. 2000. Invited talk: Pointwise relational programming. In Proceedings

of the 8th International Conference on Algebraic Methodology and Software Technology. Lecture
Notes in Computer Science. Vol. 1816. Springer-Verlag, New York, 371–390.

DEROEVER, W.-P. AND ENGELHARDT, K. 1999. Data Refinement: Model-Oriented Proof Methods and
Their Comparison. Cambridge University Press, New York, NY, USA.

DIJKSTRA, E. W. 1976. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ.
DIJKSTRA, E. W. 1982. The equivalence of bounded nondeterminacy and continuity. In Selected

Writings on Computing: A Personal Perspective, Springer-Verlag, New York.
FLANNERY, K. E. AND MARTIN, J. J. 1990. The Hoare and Smith power domain constructors commute

under composition. J. Comput. Syst. Sci. 40, 2, 125–135.
FREESE, R., JEZEK, J., AND NATION, J. 1995. Free Lattices. Mathematical Surveys and Monographs,

vol. 42. American Mathematical Society.
GARDINER, P. H. B., MARTIN, C. E., AND DE MOOR, O. 1994. An algebraic construction of predicate

transformers. Sci. Comput. Program. 22, 1-2, 21–44.
GARDINER, P. H. B. AND MORGAN, C. C. 1991. Data refinement of predicate transformers. Theoret.

Comput. Sci. 87, 143–162.
GRIES, D. AND SCHNEIDER, F. B. 1993. A Logical Approach to Discrete Math. Springer-Verlag, New

York.
HARMER, R. AND MCCUSKER, G. 1999. A fully abstract game semantics for finite nondeterminism.

In Proceedings of the 14th Annual Symposium on Logic in Computer Science. IEEE Computer
Society Press, Los Alamitos, CA, 422–430.

HECKMANN, R. 1991a. Lower and upper power domain constructions commute on all cpos. Inf.
Process. Lett. 40, 1, 7–11.

HECKMANN, R. 1991b. Power domain constructions. Sci. Comput. Program. 17, 1-3, 77–117.
HECKMANN, R. 1991c. An upper power domain construction in terms of strongly compact sets. In

MFPS, S. D. Brookes, M. G. Main, A. Melton, M. W. Mislove, and D. A. Schmidt, Eds. Lecture
Notes in Computer Science, vol. 598. Springer-Verlag, New York, 272–293.

HEHNER, E. C. R. 1993. A Practical Theory of Programming. Springer Verlag, New York, London.
2nd ed. 2004 at http://www.cs.toronto.edu/ hehner/aPToP/.

HENNESSY, M. AND PLOTKIN, G. D. 1979. Full abstraction for a simple parallel programming lan-
guage. In MFCS, J. Becvár, Ed. Lecture Notes in Computer Science, vol. 74. Springer, 108–120.

HESSELINK, W. H. 1990. Modalities of nondeterminacy. In Beauty is our Business: A Birthday
Salute to E.W. Dijkstra, W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and J. Misra, Eds.
Springer-Verlag, New York, 182–192.

HESSELINK, W. 2004. Multirelations are predicate transformers. Tech. rep., Dept. of Computing
Science, University of Groningen, The Netherlands.

HOARE, C. A. R. 1984. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

Dually Nondeterministic Functions • 34:33

HOARE, C. A. R., HE, J., AND SANDERS, J. W. 1987. Prespecification in data refinement. Inf. Process.
Lett. 25, 2, 71–76.

HOOFMAN, R. 1987. Powerdomains. Tech. Rep. RUU-CS-87-23, Institute of Information and Com-
puting Sciences, Utrecht University.

HOOGERWOORD, R. R. 1989. The design of functional programs: a calculational approach. Ph.D.
thesis, Technische Universiteit Eindhoven.

HUGHES, J. AND MORAN, A. 1995. Making choices lazily. In Proceedings of the 7th International
Conference on Functional Programming Languages and Computer Architecture. ACM, New York,
108–119.

HUGHES, J. AND O’DONNELL, J. 1991. Nondeterministic functional programming with sets. In Pro-
ceedings of the 4th Higher Order Workshop Banff 1990 (Sept. 10–14, 1990, Alberta, Bc, Canada).
Springer-Verlag, New York.

JACOBS, D. AND GRIES, D. 1985. General correctness: A unification of partial and total correctness.
Acta Inf. 22, 1, 67–83.

JONES, S. P., REID, A., HENDERSON, F., HOARE, T., AND MARLOW, S. 1999. A semantics for imprecise
exceptions. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation. ACM, New York, 25–36.

LAIRD, J. 2006. Bidomains and full abstraction for countable nondeterminism. In Proceedings of
the Foundations of Software Science and Computation Structures 2006. Lecture Notes in Com-
puter Science, vol. 3921. Springer-Verlag, New York.

LARSEN, P. G. AND HANSEN, B. S. 1996. Semantics of under-determined expressions. Form. Asp.
Comput. 8, 1, 47–66.

LASSEN, S. B. 1998. Relational reasoning about functions and nondeterminism. Ph.D. disserta-
tion. Dept of Computer Science, University of Aarhus.

LEVY, P. B. 2005. Infinite trace equivalence. In Proceedings of the 21st Annual Conference on
Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Com-
puter Science, vol. 155. Springer-Verlag, New York, 195–209.

MAIN, M. G. 1985. Free constructions of powerdomains. In Mathematical Foundations of Pro-
gramming Semantics, A. Melton, Ed. Lecture Notes in Computer Science, vol. 239. Springer-
Verlag, New York, 162–183.

MARTIN, C. E., CURTIS, S. A., AND REWITZKY, I. 2004. Modelling nondeterminism. In Proceedings
of the 7th International Conference on Mathematics of Program Construction, D. Kozen and
C. Shankland, Eds. Lecture Notes in Computer Science, vol. 3125. Springer-Verlag, New York,
228–251.

MORGAN, C. 1988. The specification statement. ACM Trans. Prog. Lang. Syst. 10, 403–419.
MORGAN, C. 1990. Programming from Specifications. Series in Computer Science. Prentice-Hall,

Englewood Cliffs, NJ.
MORGAN, C. AND GARDINER, P. H. B. 1991. Data refinement by calculation. Acta Informatica 27,

481–503.
MORRIS, J. M. 1987. A theoretical basis for stepwise refinement and the programming calculus.

Sci. Comput. Prog. 9, 287–306.
MORRIS, J. M. 2004. Augmenting types with unbounded demonic and angelic nondeterminacy.

In Proceedings of the 7th International Conference on Mathematics of Program Construction,
D. Kozen and C. Shankland, Eds. Lecture Notes in Computer Science, vol. 3125. Springer-Verlag,
New York, 274–288.

MORRIS, J. M. AND BUNKENBURG, A. 1999. Specificational functions. ACM Trans. Prog. Lang.
Syst. 21, 677–701.

MORRIS, J. M. AND BUNKENBURG, A. 2002. A source of inconsistency in theories of nondeterministic
functions. Sci. Comput. Program. 43, 1, 77–89.

MORRIS, J. M., BUNKENBURG, A., AND TYRRELL, M. 2008. Term transformers: A new approach to
state. submitted.

MORRIS, J. M. AND TYRRELL, M. 2007. Dual unbounded nondeterminacy, recursion, and fixpoints.
Acta Inf. 44, 5, 323–344.

NAUMANN, D. A. 2001a. Ideal models for pointwise relational and state-free imperative program-
ming. In Proceedings of the 3rd ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming. ACM, New York, 4–15.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

34:34 • J. M. Morris and M. Tyrrell

NAUMANN, D. A. 2001b. Predicate transformer semantics of a higher-order imperative language
with record subtyping. Sci. Comput. Prog. 41, 1, 1–51.

NELSON, G. 1992. Some generalizations and applications of Dijkstra’s guarded commands. In Pro-
gramming and Mathematical Method, M. Broy, Ed. NATO ASI Series F: Computer and Systems
Sciences, vol. 88. Springer-Verlag New York.

NORVELL, T. S. AND HEHNER, E. C. R. 1993. Logical specifications for functional programs. In Pro-
ceedings of the 2nd International Conference on Mathematics of Program Construction. Lecture
Notes in Computer Science, vol. 669. Springer-Verlag, New York, 269–290.

NYGAARD, M. AND WINSKEL, G. 2002. Linearity in process languages. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, Press, Los
Alamitos, CA, 433–441.

NYGAARD, M. AND WINSKEL, G. 2004. Domain theory for concurrency. Theoret. Comput. Sci. 316, 1,
153–190.

PARTSCH, H. A. 1990. Specification and Transformation of Programs. Springer-Verlag, New York.
PLOTKIN, G. 1976. A powerdomain construction. SIAM J. Comput. 5, 3, 452–487.
PLOTKIN, G. 1979. Dijkstra’s predicate transformers and smyth’s powerdomains. In Proceedings

of the Copenhagen Winter School on Abstract Software Specifications, D. Bjorner, Ed. Lecture
Notes in Computer Science, vol. 96. Springer-Verlag, New York, 527 – 553.

REYNOLDS, J. C. 1998. Theories of Programming Languages. Cambridge University Press,
Cambridge, UK.

ROSCOE, A. W. 1998. The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs,
NJ.

SMYTH, M. B. 1978. Power domains. J. Comput. Syst. Sci. 16, 1, 23–26.
SMYTH, M. B. 1983. Power domains and predicate transformers: A topological view. In Proceedings

of the 10th Colloquium on Automata, Languages and Programming, J. Diaz, Ed. Lecture Notes
in Computer Science, vol. 153. Springer-Verlag, London, UK, 662–675.

SPIVEY, J. 1988. Understanding Z: A Specification Language and its Formal Semantics.
Cambridge University Press, Cambridge, UK.

TUNNICLIFFE, W. R. 1985. The free completely distributive lattice over a poset. Algebra Univ. 21,
133–135.

TYRRELL, M., MORRIS, J. M., BUTTERFIELD, A., AND HUGHES, A. 2006. A lattice-theoretic model for
an algebra of communicating sequential processes. In Proceedings of the 3rd International Col-
loquium on Theoretical Aspects of Computing, K. Barkaoui, A. Cavalcanti, and A. Cerone, Eds.
Lecture Notes in Computing Science, vol. 4281. Springer-Verlag, New York.

VON WRIGHT, J. 1994. The lattice of data refinement. Acta Inf. 31, 105–135.
WARD, N. 1994. A refinement calculus for nondeterministic expressions. Ph.D. dissertation,

University of Queensland.
WINSKEL, G. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT

Press, Cambridge, MA, USA.
WOODCOCK, J. AND LOOMES, M. 1988. Software engineering mathematics. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA.

Received December 2005; revised October 2006, July 2007; accepted February 2008

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 6, Article 34, Pub. date: October 2008.

