
59

System-Level Throughput Analysis
for Process Variation Aware Multiple
Voltage-Frequency Island Designs

SIDDHARTH GARG and DIANA MARCULESCU

Carnegie Mellon University, Pittsburgh

The increasing variability in manufacturing process parameters is expected to lead to significant
performance degradation in deep submicron technologies. Multiple Voltage-Frequency Island (VFI)
design styles with fine-grained, process-variation aware clocking have recently been shown to pos-
sess increased immunity to manufacturing process variations. In this article, we propose a the-
oretical framework that allows designers to quantify the performance improvement that is to be
expected if they were to migrate from a fully synchronous design to the proposed multiple VFI de-
sign style. Specifically, we provide techniques to efficiently and accurately estimate the probability
distribution of the execution rate (or throughput) of both single and multiple VFI systems under the
influence of manufacturing process variations. Finally, using an MPEG-2 encoder benchmark, we
demonstrate how the proposed analysis framework can be used by designers to make architectural
decisions such as the granularity of VFI domain partitioning based on the throughput constraints
their systems are required to satisfy.

Categories and Subject Descriptors: B.8.2 [Hardware]: Performance and Reliability—Performance
analysis and design aids

General Terms: Performance, Design, Theory

Additional Key Words and Phrases: Globally asynchronous locally synchronous, maximum cy-
cle mean, performance analysis, manufacturing process variations, system-level design, voltage-
frequency islands

ACM Reference Format:
Garg, S. and Marculescu, D. 2008. System-level throughput analysis for process variation
aware multiple voltage-frequency island designs. ACM Trans. Des. Automat. Elect. Syst. 13,
4, Article 59 (September 2008), 25 pages, DOI = 10.1145/1391962.1391967 http://doi.acm.org/
10.1145/1391962.1391967

This research was supported in part by Semiconductor Research Corporation contract number
2005-HU-1314.
Author’s address: S. Garg, email: sgarg1@andrew.cmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/09-ART59 $5.00 DOI 10.1145/1391962.1391967 http://doi.acm.org/
10.1145/1391962.1391967

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:2 • S. Garg and D. Marculescu

1. INTRODUCTION

Progressive scaling of device dimensions has made it increasingly harder to
strictly control manufacturing process parameters such as gate length, gate
width and channel doping concentration. Variations in these process parame-
ters translate to variations in the performance characteristics of the manufac-
tured dies. The problem is further exacerbated by the fact that these variations
manifest themselves as either lot-to-lot (L2L), wafer-to-wafer (W2W), die-to-die
(D2D), or within-die (WID) variations. While L2L, W2W, and D2D variations
impact each device on a die in exactly the same fashion, WID variations can
impact each device on the same die differently. Furthermore, WID device vari-
ations can be entirely random in nature or spatially correlated. Traditionally,
the impact of WID variations on the system performance has been neglected,
but as the minimum device dimensions become smaller than the wavelength of
light used in the lithographic process, they can no longer be ignored. Bowman
et al. [2002] demonstrate that in scaled technologies, WID variations can indeed
have a significant impact on the operating frequency (and thereby performance)
of a design. They predict that unless a solution is found to the WID variability
problem, as much as 39% reduction in die frequency may be observed at the
32-nm technology node.

A number of solutions have been proposed to mitigate the impact of pro-
cess variation on system performance. They are divided broadly into two
categories—pre-silicon and post-silicon techniques [Kulkarni et al. 2006]. Pre-
silicon techniques adjust design time parameters such as device widths, thresh-
old voltages and layout styles to make the circuit less susceptible to process
variation. On the other hand, post-silicon techniques adjust the characteristics
of each individual die, after it has been manufactured, to compensate for the
impact of process variations on that specific die. For example, Adaptive Body
Biasing (ABB) [Tschanz et al. 2002] is a popularly used post-silicon technique
that sets the body bias of each die based on its leakage power dissipation. Dies
that exhibit greater (lesser) than the expected leakage power dissipation are set
at a reverse (forward) body bias, thereby increasing (decreasing) the threshold
voltage of all devices on the die, leading to a reduction (increase) in the over-
all leakage power dissipation. Another technique, called Speed Binning [Belete
et al. 2002], allows each die to operate at its maximum possible clock frequency
dictated by the extent to which process variations have sped-up or slowed-down
critical paths on that die.

In this article, we consider the case of embedded systems implemented as
multiple voltage and frequency island (VFI) designs with post-silicon tuning ca-
pabilities to cope with WID process variations. Specifically, we assume that each
VFI can operate at a frequency that is limited only by the slowest critical path
within that particular island—that is, we allow for independent speed-binning
of each VFI in the design instead of the traditional, die-level speed-binning that
is performed for fully-synchronous systems. Therefore, in the proposed archi-
tecture, even if some parts of the die contain frequency-limiting critical paths
due to WID process variations, only those parts would be required to run at
lower frequencies while the others could continue to operate at their optimum

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:3

clock speeds. This is in contrast to a fully synchronous design in which the op-
erating frequency is restricted by the slowest critical path on the entire die,
thereby forcing faster parts of the die to run at speeds limited by the slowest
part.

While it seems intuitively obvious that multiple VFI designs would be less
susceptible to WID process variations, it is essential to provide tools that allow
designers to quantify the performance benefits of moving to such a design style.
Furthermore, the performance benefits must be reported using a metric that
system-level designers can use in a practical manner; for example, the frame
encoding rate in frames/second would be a useful metric for an MPEG encod-
ing embedded system. To this end, the performance metric that we explore in
this paper is the execution rate or throughput of an embedded system whose
execution characteristics have been specified using a component graph. The pro-
posed framework allows designers to accurately and efficiently determine the
percentage of dies that will meet a specified throughput constraint, given the
system component graph, its partitioning into VFIs and the impact of process
variability on the clock speed of each VFI.

2. RELATED WORK

Multiple voltage island designs were originally proposed as a solution to the
increasing power dissipation concerns for digital ICs [Lackey et al. 2002]. The
authors argue that each functional block in a complex SOC need only be run
at the minimum voltage (and frequency) that is required to meet the specified
performance constraints, thereby leading to a decrease in chip power dissipa-
tion. On a related note, the Globally Asynchronous Locally Synchronous (GALS)
design style, introduced by Chapiro [1984], allows clock-domains, or locally syn-
chronous blocks (LSB), to be clocked independently and asynchronously with
respect to each other, while data transfer between the LSBs is orchestrated us-
ing asynchronous communication interfaces. GALS systems can significantly
reduce the power dissipated in the clock distribution network [Hemani et al.
1999], and, at the same time allow for independent dynamic voltage and fre-
quency scaling (DVFS) of each locally synchronous block for increased power
savings. This idea has been exploited previously to reduce the dynamic power
consumption of an out-of-order superscalar GALS processor [Semeraro et al.
2002; Marculescu and Iyer 2002], and of VFI-based embedded systems [Niyogi
and Marculescu 2005a]. While both these techniques use fine-grained voltage
and frequency adaptation to deal with workload driven variability, the idea of
using fine-grained frequency scaling to combat the impact of WID process vari-
ations was introduced later in the context of a GALS processor [Marculescu
and Talpes 2005]. The authors note that since each clock domain of the GALS
processor has fewer critical paths than the processor as a whole, WID process
variations would have a greater impact on a fully synchronous processor, which
would therefore run slower, on average, than each clock domain of the GALS
version. Based on this observation, the authors show that, a GALS processor
demonstrates superior performance, measured using a metric that combines
the impact of instructions-per-cycle (IPC), energy, and die area than its fully

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:4 • S. Garg and D. Marculescu

synchronous counterpart. However, since the IPC of a processor cannot be mea-
sured analytically with sufficient accuracy, the authors use exhaustive simula-
tion to evaluate the impact of moving to a GALS design style.

A significant body of research has emerged over the past few years that
analyzes the impact of process variation on system performance characteris-
tics such as circuit timing and leakage power dissipation at the transistor/gate
level. Researchers have only recently started looking at process variation at
the microarchitecture or system level. Marculescu and Garg [2006] analyze the
effect of WID process variations on the execution latency of embedded systems
implemented as both fully synchronous and multiple VFI designs. The pro-
posed techniques, however, are only applicable to embedded systems specified
as acyclic component graphs. This work introduces techniques to analyze the
impact of variability on the execution rate of throughput-constrained systems
with cyclic component graphs. Wang et al. [2007] solve the variation aware task
mapping and scheduling problem for heterogeneous multiprocessor platforms,
in which each PE can have differing variability characteristics. Again, while
this work uses an underlying system performance model that takes into account
the impact of process variations, the model is restricted to acyclic graphs only.
Hung et al. [2006] and Wang et al. [2008] both consider the variability-aware
module selection problem in high-level synthesis for fully synchronous sys-
tems. Recent work on variability-aware design for general-purpose high perfor-
mance microprocessor systems has focused on the use of pipeline time borrow-
ing [Tiwari et al. 2007], fine-grained body-biasing [Teodorescu et al. 2007] and
novel cache architectures [Liang et al. 2007] to mitigate the impact of process
variations.

Hu et al. [2001] and de Veciana and Jacome [1998] study the impact of vari-
ability in the application characteristics of the tasks running on an embedded
system on the final performance of the system. On the other hand, we assume
deterministic application characteristics, but are interested in variations that
arise from the variability in manufacturing process parameters. There are sev-
eral key differences between the work by Hu et al. [2001] and de Veciana and
Jacome [1998] and our work—first, both these prior works concentrated on ex-
ecution latency as a performance metric while we care about the application
throughput, which requires the computation of the maximum cycle mean in a
probabilistic setting. To the best of our knowledge, this has not been attempted
before, and we do not see any direct way the techniques from Hu et al. [2001]
and de Veciana and Jacome [1998] can be adapted to our problem. Second, one
of the primary goals of this work is to study the impact of the granularity of
VFI partitioning on the performance of variability aware multiple VFI designs,
to aid system-level designers in making informed trade-offs between design
complexity and performance. This scenario does not arise during performance
characterization under application variability (since it is purely a physical de-
sign issue), and has not been dealt with before.

Finally, from an implementation perspective, Datta et al. [2005] propose a
globally asynchronous locally synchronous (GALS) architecture consisting of
a number of processing units (PU), each implemented as a separate VFI. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:5

authors note that intra-die process variations can cause the maximum clock
frequency of each PU to shift by different margins and outline a software-based
self-test scheme to run each PU at its optimal clock frequency. Ernst et al. [2003]
propose a hardware based technique that uses shadow flip-flops to detect timing
violations, thereby allowing the synchronous logic to operate close to or at its
minimum possible supply voltage. The same technique can as well be used to
run each VFI in a multiple VFI system at its maximum clock frequency. Both
works focus on implementation issues, while our focus is on evaluating the
benefits of such implementations.

3. ARTICLE CONTRIBUTIONS

This work makes the following contributions:

—We consider the case of cyclic component graphs implemented using a multi-
ple VFI design style and derive distributions for the execution rate of these
systems under manufacturing process variations. Our technique offers signif-
icant speed-up over Monte Carlo based simulation at the expense of marginal
loss in accuracy.

—In the process of determining system throughput, we describe, to the best
of our knowledge, the first algorithm that solves the Maximum Cycle Mean
(MCM) problem in a probabilistic setting.

—Using a case study, we demonstrate how our framework can be used to eval-
uate the trade-off between performance and clock domain granularity, and
compare the performance of a multiple VFI design versus that of a fully
synchronous design.

The rest of the article is organized as follows: in Section 4 we outline the as-
sumptions we make about the underlying multiple VFI implementation under
consideration and introduce the mathematical notation we use in the rest of
the paper, in Section 5 we outline the algorithm we use to study the impact
of WID variability on the throughput of single and multiple VFI systems, in
Section 6 we provide some experimental results on synthetic and a real embed-
ded benchmark, and finally, we conclude in Section 7 with some comments and
possible future work.

4. PRELIMINARIES AND ASSUMPTIONS

We consider the case of embedded systems implemented using multiple process-
ing elements (PE), with each PE executing one of more of the tasks into which
the application has been partitioned. Based on the required performance, each
PE could be an embedded processor, a custom digital implementation or an
imported Intellectual Property (IP) component. We now examine two imple-
mentation alternatives for such systems—a fully synchronous design (hence-
forth referred to as an SSV design in keeping with the terminology introduced
by Marculescu and Garg [2006]) with a single global clock that drives all the
PEs, or a multiple VFI design in which each voltage-frequency island is con-
trolled by an independent clock source. We note that for SSV designs, the PEs

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:6 • S. Garg and D. Marculescu

Fig. 1. Component graph representation of an embedded system with five PEs implemented as
(a) an SSV design with a single global clock source; or (b) a multiple VFI design with two VFIs.
Mixed-clock FIFOs are used to communicate across clock domains.

communicate using point-to-point synchronous links, while in the multiple VFI
design case, links that cross clock domains communicate via mixed-clock FIFO
interfaces [Chelcea and Nowick 2001] modified to support voltage level con-
version. A similar network of point-to-point FIFOs was proposed by Carloni
and Sangiovanni-Vincentelli [2000] as part of the Latency Insensitive Design
paradigm, and is particularly well-suited for multiple VFI architectures. Fi-
nally, for both VFI and SSV systems, we assume that the implementation
supports fine grained frequency control, and there exists either hardware or
software based support [Datta et al. 2005; Ernst et al. 2003] to allow each clock
domain to run at or near its optimal clock frequency under the impact of process
variations.

We model a system comprising of a number of communicating PEs using a
component graph, represented as a directed graph G(V , E). Vertices in a com-
ponent graph represent PEs and edges represent control or data dependencies
between vertices. Figure 1 shows an example of a component graph with five
PEs. The graph on the left represents an SSV design that is clocked globally
with a single clock source, while the one on the right represents a multiple
VFI design with two voltage-frequency islands, each with its own local clock
source. Finally, for notational simplicity, we will assume throughout this arti-
cle that each PE has only one task mapped to it, thereby making the concept of
a “PE” inter-changeable with that of a “task.” In general, however, there may
be multiple tasks mapped to each PE; we will show in Section 5 how this case
can be handled by our framework.

5. THEORETICAL FORMULATION

Without any loss of generality, for a given component graph G(V , E), we make
the following assumptions:

—The component graph G(V , E) of a system with n PEs comprises the set of
nodes V = 1, 2, . . . , n and edges E = (i, j) : i → j , i, j ∈ V .

—Each node i, (1 ≤ i ≤ n), is characterized by the number of cycles Ci it
takes to produce an output data token after all its input data dependencies

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:7

are satisfied. For a PE implemented as an embedded processor, for example,
the number of cycles can be estimated by profiling the code for the task the
PE is required to perform on a cycle accurate simulator of the embedded
processor. Note that, in general, the number of execution cycles for a PE can
vary dynamically depending on the workload. However, in this work, we do
not model workload or application driven variability and therefore restrict
Ci to be a fixed number. From a practical perspective, Ci could represent the
average-case or the worst-case number of cycles, depending on whether the
metric of interest is average or worst-case execution rate.

—The number of cycles, Ci (1 ≤ i ≤ n), can be written as the sum of the
number of cycles the PE spends performing computation, that is, computation
cycles (Ccomp

i), and the number of cycles it needs to communicate the output
data to its consumer nodes, that is, communication cycles (Ccomm

i). Therefore,
Ci = Ccomp

i + Ccomm
i . Furthermore, the communication-to-computation ratio

at node i, represented by αi, can be written as

αi = Ccomm
i

Ccomp
i

. (1)

—Each PE is characterized in terms of the probability density function (pdf)
of its cycle time Ti, where the cycle time, Ti, is defined as the inverse of the
clock frequency for that PE. If the PE is an external IP, the pdf of cycle time
could be provided by the IP vendor or it could be obtained using detailed
circuit level Statistical Static Timing Analysis (SSTA) assuming probability
distributions for the underlying process parameters. We note that from an
implementation perspective, the clock frequency of a PE is likely to be con-
trolled in discrete steps. If that is the case, the pdf of Ti will actually be a
discrete distribution, obtained by quantizing the continuous cycle time dis-
tribution into discrete time steps based on the available frequency values.
As we will show later, the proposed analysis techniques are valid for both
discrete and continuous cycle time distributions. However, we note that con-
tinuous cycle time distributions provide the asymptotic limit of performance
improvements that can be gained by moving to multiple VFI designs, and
can therefore be an extremely useful design tool. The pdf of Ti is represented
as fTi (t) and its corresponding cumulative density function (cdf) as FTi (t),
where FTi (t) = ∫ t

−∞ fTi (τ) dτ .
—The cycle time random variables for each PE are assumed to vary indepen-

dently of each other. While spatial correlations between process parameters
may lead to some degree of correlation between the PE cycle time random
variables, the magnitude of correlations seen between PE cycle times is
typically much smaller than between individual gates in the circuit dur-
ing traditional statistical timing analysis, since spatial correlations tend to
die out quickly as a function of distance (for example, Friedberg et al. [2006]
showed that spatial correlations go to zero at a distance of half the die length).
Related work at gate-level [Chang and Sapatnekar 2003] that has consid-
ered spatial correlations also determined that only adjacent gates are highly
correlated—this translates to negligible correlations between large PEs, like
the ones considered in our work. Furthermore, while gate length has been

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:8 • S. Garg and D. Marculescu

shown to posses spatial correlation characteristics, an important source of
threshold voltage variation is random dopant fluctuation (RDF) that is purely
random from transistor to transistor—this random component tends to fur-
ther decrease the correlation between PE cycle times. We demarcate the pre-
cise treatment of correlations between cycle time random variables as future
work.

—Given Ci and Ti for a PE, its execution latency Li = Ci.Ti will also be a
random variable. Since we have assumed Ci to be a fixed number, the pdf for
Li can be computed directly from the pdf of the cycle time. We will refer to
the pdf of Li as f Li (t) and its cdf as FLi (t).

—We point out that the notation and assumptions described above hold if
each PE lies in a separate VFI. In general, assume that there are p VFIs,
where p ≤ n. If p < n, there will be at least one domain with more than
one PE. The cycle time of the VFI j is given as T VFI

j , where 1 ≤ j ≤ p.
Without loss of generality, let the nodes (1, 2, . . . , r) belong to the j th VFI.
Since the cycle time of a VFI can be no smaller than the largest cycle time
of its constituent PEs, we can write Tj VFI = max(T1, T2 . . . , Tr). Further-
more, we need to make the following changes in the definition of the la-
tency Li of a PE: if PE i lies in VFI j , its latency Li = Ci.Tj . Though
our proposed algorithm is presented for the case in which each PE lies in
a separate VFI (to avoid notational complexity), these modifications make
it equally valid for the case when there is more than one PE in a clock
domain.

—If the number of VFIs is less than the number of PEs in the system, we
assume that the mapping of PEs to VFIs is predetermined. However, the
analysis techniques presented in this article could be used in an optimization
framework to determine the best possible (from a variability perspective) PE
to VFI mapping for a fixed number of VFIs, though we leave this as future
work.

—As mentioned in Section 4, we assume, for notational simplicity, that each
PE has only one task mapped to it. For the general case, in which multi-
ple tasks are mapped to each PE, we can define a mapping function, M ,
that maps tasks to PEs—that is, M (i) is the PE on which task i is mapped.
Therefore, the latency of task i can be written as Li = CM (i)TM (i), where
CM (i) is the number of clock cycles that task i takes to execute on PE M (i),
and TM (i) is the cycle time of PE M (i). It is clear that for the general case,
the latency distributions of tasks mapped to the same PE will be correlated
since they share the same cycle time random variables (in fact, they will
be perfectly correlated). However, the proposed algorithm only requires that
the latency of each task be specified as a linear function of a set of inde-
pendent random variables. This condition is clearly valid for the case in
which each PE has only one task mapped to it; more importantly, it is also
valid for the general case described above, since the latency of each task
is still a linear function of the cycle time random variables. The proposed
algorithm can, therefore, be easily extended to handle the general case as
well.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:9

5.1 Throughput Analysis for VFI Systems

In this section, we describe in detail the algorithm we propose to compute the
execution rate of an embedded system implemented using multiple VFI design
style under the impact of manufacturing process variations. For clarity, the
following discussion assumes that data communication over the asynchronous
interfaces between the clock-domains of a VFI design does not incur any per-
formance overhead. However, in Section 5.3, we remove this assumption by
appropriately modifying the proposed algorithm to account for the communica-
tion overheads in a multiple VFI design.

The execution rate (or throughput) of a component graph is restricted by
the presence of cycles in the graph [Mathur et al. 1998]. Cycles in component
graphs can only be found within strongly connected components (SCC). A SCC
is a set of nodes in which it is possible to traverse from every node to every
other node. While a graph can have more than one SCC, no two distinct SCCs
can have a node in common. Furthermore, all SCCs in a graph can be found
in linear time with respect to the number of nodes in the graph [Mathur et al.
1998]. It is, therefore, sufficient to individually compute the throughput con-
straining cycles of each SCC in a component graph to determine the system
throughput, which will just be the minimum throughput across all SCCs. In
the following discussion, therefore, we only discuss throughput analysis on a
component graph that is strongly connected, and later show how graphs with
multiple SCCs can be analyzed.

We start with a component graph G(V , E) with n nodes, as described in the
previous section. We make an additional assumption that G(V , E) is strongly
connected. We note that if the graph is not strongly connected, we can run the
proposed algorithm on each of its SCCs individually and take the statistical
minimum of the resulting distributions from each SCC, as we will demonstrate
in the final step of the proposed algorithm. Finally we associate weights w(u, v)
to every edge e ∈ E that connects nodes u and v. The weight assigned to edge
e is equal to the latency (as defined in the previous Section) of the source node
of that edge. Specifically:

w(u, v) = Lu, ∀(u, v) ∈ E. (2)

Since the latencies are random variables, the edge weights are random vari-
ables also. We can now compute the throughput for the graph by computing
its maximum cycle mean (MCM) [Mathur et al. 1998]. The cycle mean (CM) of
a cycle C in G(V , E) is defined as the sum of the weights of the edges in the
cycle divided by the number of edges in the cycle. The MCM can then be com-
puted by determining the maximum value of the cycle mean over all cycles in
the graph. The throughput for the graph is then inversely proportional to the
MCM. Formally, if λ∗ is the throughput for G(V , E), then:

λ∗ = max
C∈G

|C|∑
(u,v)∈C

w(u, v)
, (3)

where |C| represents the number of edges in cycle C. Mathur et al. [1998],
use Karp’s algorithm [Karp 1978] to compute the MCM. According to Karp’s

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:10 • S. Garg and D. Marculescu

Fig. 2. An example graph with four vertices and annotated edge weights. The table shows how
the distance variables in Karp’s algorithm are computed.

algorithm, the MCM (�∗ = 1
λ∗) is given as:

�∗ = 1
λ∗ = max

v∈V
min

0≤k≤n−1

Dn
v − Dk

v

n − k
, (4)

where Dk
v (0 ≤ k ≤ N) is defined as the maximum k step distance between node

v and an arbitrarily picked node s ∈ V in the graph. This can be computed by
enumerating all paths between s and v that contain exactly k edges and picking
the path that has the maximum sum of edge weights. The algorithm begins by
D0

s = 0 (since the node s can reach itself in zero steps) and D0
i = −∞ for every

other node i ∈ V . Now Dk
v can be computed for 1 ≤ k ≤ n and all v ∈ V using

the following recurrence relation

Dk
v = max

u∈V ,(u,v)∈E

(
Dk−1

u + w(u, v)
)
. (5)

This completes the description of Karp’s MCM algorithm for fixed edge weights.
Before proceeding further, we will now demonstrate how Karp’s algorithm
works using a simple example. Consider the graph shown in Figure 2 with
nodes a, b, and s. As mentioned earlier, each edge is assigned a weight equal to
the latency of the source node of that edge; in our example these weights have
been randomly picked. Looking at the graph, it is clear that it contains only
two cycles, C1 = (s → a → b → s) and C2 = (a → b → a). The cycle means of
C1 and C2 can therefore be calculated as 5+4+3

3 = 4 and 5+4
2 = 4.5 respectively.

Finally the maximum cycle mean is given by max(4, 4.5) = 4.5.
To see how the same result can be obtained from Karp’s algorithm, in

Figure 2, we first compute and tabulate the values of the distance variable,
Dk

v , for k ∈ [0, 3] and v ∈ {s, a, b} using Equation (5). To further illustrate how
the distance variables are computed, the table in Figure 2 has the value of
distance variable D2

b marked specifically (D2
b = 7), along with the path that is

followed from source node s to node b in the component graph. It can be verified
that this is indeed the longest path, and in this example the only path, from
node s to node b that traverses exactly two edges. We can now use the computed
values of the distance variables in Equation (4) to calculate the maximum cy-
cle mean as max(12−3

2 , 12−0
3) = 4.5. Note that not only does Karp’s algorithm

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:11

provide the correct result, but it also computes the final max over exactly the
same values as those determined via visual inspection.

The discussion so far has demonstrated how the MCM of a component graph
can be computed for fixed values of edge weights in an SCC. We now shift our
focus to the primary contribution of this work—computing the MCM for graphs
where the edge weights (derived from the node latencies of the component
graph) are random variables. Before proceeding, we note that it is critically
important for a statistical version of Karp’s MCM algorithm to keep track of
correlations between the distance variables (Dk

v for all v ∈ V and 1 ≤ k ≤ n).
Unlike SSTA, that needs to operate only on independent variables if there are
no structural or spatial correlations between critical paths, statistical MCM
always needs to account for correlations. This is due to the existence of the
term (Dn

v −Dk
v) in Equation (4). Specifically, the variables Dn

v and Dk
v will always

be correlated for throughput constraining cycles in the graph, since the edges
represented in Dk

v will be a subset of those in Dn
v . To ensure that we keep track

of correlations at all stages in the algorithm, we represent all intermediate
random variables in the algorithm as linear functions of the input random
variables, and use a moment matching based scheme [Zhan et al. 2005] to
propagate the random variables across operations.

For each random variable Ti, we introduce a new random variable T
′

i that
is a normalized version of Ti. If μTi is the mean of Ti and σTi is its standard
deviation, we can write T

′
i as:

T
′

i = Ti − μTi

σTi

. (6)

The cdf of T
′

i can now be written in terms of FTi (t) as:

FT ′
i
(t) = FTi (σTi t + μTi). (7)

Since the only random variables we take as input to our algorithm are the
cycle times Ti, or equivalently T

′
i , we would like to express the intermediate

variables Dk
v for 1 ≤ k ≤ n and for all v ∈ V as:

Dk
v = ak

v,0 +
∑

1≤i≤n

ak
v,iT

′
i , (8)

where the coefficients ak
v,i ∈
 for 0 ≤ i ≤ n. The goal is to determine these

coefficients for Dk
v . We start by assigning D0

s = 0 as in Karp’s MCM algorithm by
setting a0

s,i = 0 for 0 ≤ i ≤ n. We can now solve the recurrence relationship to get

Dk
v = max

u∈V ,(u,v)∈E

(
ak−1

u,0 +
∑

1≤i≤n

ak−1
u,i T

′
i + Cu(σTu T

′
u + μTu)

)
, (9)

but we also know that:

Dk
v = ak

v,0 +
∑

1≤i≤n

ak
v,iT

′
i . (10)

We now need to determine the coefficients ak
v,i for 0 ≤ i ≤ n. Without any loss

in generality, consider a generic max function that takes as input two variables

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:12 • S. Garg and D. Marculescu

A and B that are linear combinations of the random variables T
′

i , 1 ≤ i ≤ n:

D = max(A, B) = max

(
α0 +

∑
1≤i≤n

αiT
′

i , β0 +
∑

1≤i≤n

βiT
′

i

)
. (11)

We want to write:

D = γ0 +
∑

1≤i≤n

γiT
′

i . (12)

This can be accomplished by noting that:

E(T ′
i D) = γi = E(T ′

i max(A, B)), ∀(1 ≤ i ≤ n) (13)

and

E(D) = γ0 = E(max(A, B)), (14)

where E(X) represents the expectation of random variable X . Exact alge-
braic expressions for the terms E(max(A, B)) and E(T

′
i max(A, B)) are pro-

vided by Zhan et al. [2005] and can be evaluated numerically. Having com-
puted the coefficients for each Dk

v for 1 ≤ k ≤ n and v ∈ V , we can now rewrite
Equation (4) as:

1
λ∗ = max

v∈V
min

0≤k≤n−1

an
v,0 − ak

v,0 +
∑

1≤i≤n

(
an

v,i − ak
v,i

)
T

′
i

n − k
. (15)

This equation needs, again, a series of max and min operations over inputs that
are linear combinations of random variables, where, at each stage we express
the output as another linear combination over the same random variables. Even
though we have only described in detail how this can be done using moment
matching for the max operation, the expressions for the min operation can be
derived in exactly the same fashion as for the max operation.

Algorithm 1 is the formal description of our proposed technique and yields
the desired coefficients δi, where (0 ≤ i ≤ n), that allow us to write:

�∗ = 1
λ∗ = δ0 +

n∑
i=1

δiT
′

i . (16)

We can now write the cdf of the random variable �∗, as1:

F�∗ (τ) = FT ′
1

(
τ − δ0

δ1

)
∗ FT ′

2

(
τ − δ0

δ2

)
∗ . . . ∗ FT ′

n

(
τ − δ0

δn

)
. (17)

Before proceeding further, we now demonstrate using a simple example how
the cdf of the maximum cycle mean of a given component graph is derived using

1Throughout this paper, we use ∗ operator to denote the convolution operation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:13

Algorithm 1. Statistical MCM

Inputs: Number of cycles for each PE (Ci), cdfs of cycle time random variables
(Ti , T

′
i).

Outputs: δi ; ∀i : 0 ≤ i ≤ n
for k = 0 to n do

for each node v ∈ V do
ak

v,i = −∞; ∀i : 0 ≤ i ≤ n
end for

end for
a0

s,i = 0, ∀i : 0 ≤ i ≤ n
for k = 1 to n do

for each node v ∈ V do
ti = 0; ∀i : 0 ≤ i ≤ n
for each node u s.t. (u, v) ∈ E do

A = t0 + ∑n
i=1 tiT

′
i

B = ak−1
u,0 + ∑n

i=1 ak−1
u,i T

′
i + σTuCuT

′
u + μTuCu

ti = E(T ′
i max(A, B)); ∀i : 1 ≤ i ≤ n

t0 = E(max(A, B))
end for
ak

v,i = ti ; ∀i : 0 ≤ i ≤ n
end for

end for
δi = 0; ∀i : 0 ≤ i ≤ n
for each node v ∈ V do

ti = ∞; ∀i : 0 ≤ i ≤ n
for k = 0 to n − 1 do

A = t0 + ∑n
i=1 tiT

′
i

B = an
v,0−ak

v,0
n−k + ∑n

i=1

(
an

v,i−ak
v,i

n−k

)
T

′
i

ti = E(T ′
i min(A, B)); ∀i : 1 ≤ i ≤ n

t0 = E(min(A, B))
end for
C = δ0 + ∑n

i=1 δiT
′

i

D = t0 + ∑n
i=1 tiT

′
i

δi = E(T ′
i max(C, D)); ∀i : 1 ≤ i ≤ n

δ0 = E(max(C, D))
end for

the statistical version of Karp’s MCM Algorithm. Figure 3(a) shows an example
component graph with three PEs. Each PE is annotated with its cycle count and
the mean and variance of its cycle time distribution (which is assumed to be a
normal distribution). Furthermore, it is assumed that each PE maps to a differ-
ent VFI, that is, the system has three VFIs. In the first step, we normalize the
cycle time random variables (Ti) to zero-mean unit-variance random variables

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:14 • S. Garg and D. Marculescu

Fig. 3. (a) A three-PE component graph. Each PE is annotated with its cycle count and the mean
and variance of its cycle time distribution. (b) Equivalent directed cyclic graph representing the
component graph in (a). Each edge is annotated with an edge weight which is equal to the latency
of the PE from which the edge originates.

as shown in Equation (6) to obtain the normalized variables T ′
i . The latency

of each PE is then computed in terms of these normalized random variables
to obtain the edge weights of all the outgoing edges of each PE. This yields a
directed cyclic graph, shown in Figure 3(b) with annotated edge weights that
can now be used as an input to the statistical MCM algorithm.

The first step of the statistical MCM algorithm is to compute the distance
variables, Dk

v , using the recurrence relationship in Equation (5). It is important
to note that unlike the previous example in which the table of distance variables
consisted of fixed numbers (because the inputs to the algorithm were fixed
numbers) each entry of the distance variable table will be a linear function of
the normalized cycle time random variables T ′

i . Figure 4(a) shows the distance
variable table for this example. Note that the distance variable table implicitly
contains the values of ak

v,i coefficients, which are simply the coefficients of the
normalized cycle time random variables of the appropriate distance variable.
For example, since D3

s = 12 + 0.28T ′
s + 0.28T ′

a + 0.28T ′
b, the corresponding

coefficients take the values a3
s,0 = 12, a3

s,1 = 0.28, a3
s,2 = 0.28 and a3

s,3 = 0.28.
Now, using Equation (4), we can write the MCM of the given component graph
as:

�∗ = max
(

D3
s − D0

s

3 − 0
,

D3
b − D1

b

3 − 1

)
. (18)

Furthermore, by substituting the expressions corresponding to the distance
variables in Equation (18) from the distance variable table in Figure 4, we
get:

�∗ = max (4 + 0.093T ′
s + 0.093T ′

a + 0.093T ′
b, 4 + 0.14T ′

a + 0.14T ′
b). (19)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:15

Fig. 4. (a) The distance variable table for the component graph in Figure 3. (b) The computed cdf
of the maximum cycle mean of the component graph in Figure 3 versus the cdf obtained for the
same system using Monte-Carlo simulations.

Finally, using the proposed moment matching approach, �∗ can further be ap-
proximated as:

�∗ = 4.052 + 0.065T ′
s + 0.107T ′

a + 0.107T ′
b. (20)

Since �∗ has been approximated as a weighted sum of Gaussian random vari-
ables, it is also a Gaussian random variable whose mean and variance are easily
computed. In Figure 4(b), we plot the cdf of �∗ as computed in Equation (20)
(Statistical MCM) versus the cdf of maximum cycle mean obtained from 10,000
runs of Monte-Carlo simulations for the component graph. We observe that the
two cdfs are almost indistinguishable. In addition, note that besides approx-
imating the cdf of the maximum cycle mean of the given component graph,
Equation (20) also yields the sensitivity of the maximum cycle mean distribu-
tion to the cycle times of each of the PEs. Specifically, note that in Equation (20),
the random variable representing the cycle time of PE b, that is, T ′

b, has the
minimum weight. This is to be expected since PE b only contributes to the cycle

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:16 • S. Garg and D. Marculescu

mean of one of the two cycles in the component graph, while the other two PEs
impact both cycles.

The final step of the statistical MCM algorithm is to compute the cdf for the
throughput of G, represented as Fλ∗ (λ), using the following expression:

1 − Fλ∗ (λ) = FT ′
1

(
1 − δ0λ

δ1λ

)
∗ FT ′

2

(
1 − δ0λ

δ2λ

)
∗ . . . FT ′

n

(
1 − δ0λ

δnλ

)
. (21)

Finally, the description above applies to a component graph that is an SCC. If
there are more than one such SCCs in the graph, we run the steps described
above on each SCC individually and obtain the cdfs of the throughput for each
SCC. These cdfs can then be combined using a simple statistical min operation
to yield the final result. If Fλ∗

i
(λ) represents the cdf for the ith SCC in the graph,

we can write the cdf of throughput for the entire graph by taking the statistical
minimum across the throughput distributions from each SCC. If X , Y , and Z
are some arbitrary random variables, and Z = min(X , Y), the cdf of Z can be
written in terms of the cdf of X and Y as:

1 − FZ (z) = (1 − FX (z))(1 − FY (z)). (22)

We can therefore write:

1 − Fλ∗ (λ) = (
1 − Fλ∗

1
(λ)

)(
1 − Fλ∗

2
(λ)

)
. . .

(
1 − Fλ∗

m
(λ)

)
. (23)

Equations (13), (14), (17), (21), and (23) can be computed efficiently using the
techniques outlined by Devgan and Kashyap [2003]. This completes the de-
scription of the proposed algorithm. We note that the time complexity of the
algorithm is O(p|V ||E|), since Karp’s MCM is itself O(|V ||E|) [Mathur et al.
1998], and we replace the max function in Karp’s MCM with the computation of
p coefficients (the description in this section assumes p = n, but in the general
case p ≤ n).

5.2 Throughput Analysis for SSV Systems

An SSV system has only one global clock frequency. Let the cycle time of the
global clock be TG . Since TG is constrained by the cycle times of each of the
individual PEs, we can write

TG = max
1≤i≤n

Ti. (24)

If we assume that the individual cycle times vary independently due to random
variations we can write the cdf of TG as

FTG (t) = FT1 (t).FT2 (t) . . . FTn(t). (25)

In the previous section, we outlined an algorithm to compute the distribution
of λ∗ given the input latencies Li = CiTi for all nodes in V . Formally:

λ∗ = Q(C1T1, C2T2 . . . CnTn), (26)

where the function Q(.) represents the proposed probabilistic version of Karp’s
MCM algorithm. We note that Q(ax, ay) = aQ(x, y) since scaling the latency

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:17

Fig. 5. Black box model of the mixed-clock FIFO.

of each node by a fixed amount can only scale the output by the same amount.
Now, for an SSV system

λ∗
SSV = Q(C1.TG , C2.TG . . . Cn.TG) (27)

= TG .Q(C1, C2, . . . , Cn). (28)

Since the cycle counts are single values, and we have already computed the
cdf (and therefore pdf) of TG in Equation (25), we just need a single run of the
classic Karp’s MCM algorithm over input values that are fixed numbers.

5.3 Communication Overhead

We now discuss how we model the communication overhead of crossing clock
domain boundaries in the case of multiple VFI designs. As mentioned before,
we assume that in the case of a fully synchronous design, PE i (1 ≤ i ≤ n) uses
Ccomm

i cycles out of its total number of execution cycles Ci to write data to the
input buffers of its consumer nodes. The amount of data transferred from the
producer to the consumer in a single cycle is referred to as a token of data. Now,
if the producer (node i) and consumer (node j) lie in different clock-domains,
instead of writing directly (and synchronously) to the input buffer of the con-
sumer node, the producer node will have to communicate Ccomm

i data tokens to
the consumer node j via a mixed-clock FIFO. Figure 5 shows a black-box model
of the mixed-clock FIFO that we use in the multiple VFI design. For a more
detailed description of the design, we refer the reader to Chelcea and Nowick
[2001]; however, for the purpose of this discussion, it is important to point out
that the FIFO write clock signal is driven by the producer clock-domain while
the FIFO read clock signal is driven by the consumer clock. Furthermore, in
the steady state, the producer can enqueue a data item in every producer clock
cycle and the consumer can dequeue a data item in every consumer clock cycle.
Consider a case when the producer node i is running slower than the consumer
node j , that is, Ti > Tj , and the producer tries to send Ccomm

i tokens of data to
the consumer. In this case, even though the consumer may stall occasionally due
to an empty signal from the FIFO, the producer will always be able to insert a
data token into the FIFO in every producer clock cycle. A similar argument can
be made if the consumer runs slower than the producer node, in which case the
consumer will always be able to withdraw a data token from the FIFO in every
clock cycle. Therefore, the mixed-clock FIFO is able to offer a bandwidth dic-
tated by the maximum of the cycle times of the producer and consumer clocks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:18 • S. Garg and D. Marculescu

Table I. Results for Synthetic Benchmarks

Benchmark n p α = 0.1 α = 0.3 α = 0.5 Speed-up
Error(μ) Error(Y.P.) Error(μ) Error(Y.P.) Error(μ) Error(Y.P.)

synth-15 15 5 0.38% 0.59% 0.23% 0.87% 0.36% 0.09% 260X
synth-30 30 10 0.44% 1.88% 0.55% 2.1% 0.29% 1.27% 147X
synth-45 45 15 1.18% 0.41% 1.36% 0.24% 1.31% 0.68% 97X
synth-60 60 20 1.22% 0.06% 1.05% 0.33% 1.30% 0.55% 78X

As a result, the latency incurred in sending Ccomm
i tokens of data from the pro-

ducer to the consumer can now be written as Ccomm
i ∗max (Ti, Tj). This has been

experimentally verified using cycle-accurate simulations of a mixed-clock FIFO
by Niyogi and Marculescu [2005b].

To account for this additional communication latency, we need to modify the
weights of the edges in the component graph. Recall that in Section 5.1, we
assign the weight to the edge between nodes i and j , w(i, j) = Li = CiTi, for
all (i, j) ∈ E. This is now modified as follows:

w(i, j) = Ccomp
i Ti + Ccomm

i max (Ti, Tj), ∀(i, j) ∈ E. (29)

Note that Equation (29) can be directly incorporated into the proposed Statis-
tical MCM framework by using the described moment matching approach to
represent w(i, j) (∀(i, j) ∈ E) as a weighted linear combination of the Ti and Tj
(equivalently T

′
i and T

′
j) random variables.

6. EXPERIMENTAL RESULTS

We implemented the proposed algorithm for determining the throughput dis-
tribution of single and multiple voltage-frequency island systems in C, and ran
experiments on a workstation equipped with a 2.4 GHz Intel Pentium Proces-
sor running a Linux OS. The implementation takes as input the component
graph for the given application, the number of execution cycles and the cycle
time distribution for each PE in the graph, the number of clock domains and
the allocation of PEs to clock domains and provides the cdf of the throughput
for the application. There is, unfortunately, an acknowledged lack of embedded
system benchmarks that have cyclic component graphs [Stuijk et al. 2006]. We
therefore validate the accuracy and efficiency of our proposed techniques on a
set of synthetic benchmarks that are generated using the algorithm presented
by Stuijk et al. [2006]. We then demonstrate the impact of our proposed anal-
ysis framework on the design of multiple VFI systems with a case study on a
real embedded benchmark (MPEG-2 encoder). All results are compared to an
exhaustive simulation that consists of 10,000 runs of Monte Carlo simulation
[Zhan et al. 2005; Devgan and Kashyap 2003; Chang and Sapatnekar 2003].

6.1 Synthetic Benchmarks

Stuijk et al. [2006] outline an algorithm to generate cyclic component graphs
with specified properties. Using this approach, we generate a set of four syn-
thetic benchmarks that we label synth-1,synth-2,synth-3, and synth-4. We vary

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:19

Fig. 6. The MPEG-2 Encoder Benchmark. For MCV-3, nodes with similar background patterns
are clustered into VFIs.

the number of PEs (n) in the graphs from 15 to 60 and the number of clock
domains (p) from 5 to 20, since these numbers are, in our opinion, representa-
tive of the increasingly complex SOC designs that will emerge in future scaled
technologies. The number of execution cycles for each PE is chosen randomly
from a uniform distribution between 50 and 100. Furthermore, for each bench-
mark, we vary the communication to computation ratio of the PEs, as defined in
Equation (1), by setting αi = (0.1, 0.3, 0.5) for all i ∈ (1, n). Finally, we assume
that the cycle times of the PEs are normally distributed with a 3σ of 20% of the
mean [Marculescu and Garg 2006]. Table I shows the error between the mean
and the 99% yield points of the throughput distributions for each of the bench-
marks for different values of the computation to communication ratio. We note
that the average error in the mean of the throughput distribution, compared
to the Monte Carlo results, is 0.80% (maximum 1.36%) and the average error
in the 99% yield point is 0.71% (maximum 2.1%). This comes at a speed-up
ranging from 78X to 260X (average 145X).

6.2 Case Study: MPEG-2 Encoder

The results from the previous section demonstrate that the proposed technique
is able to accurately estimate the throughput distribution of multiple VFI sys-
tems with an appreciable speed-up in runtime. Using an example of an MPEG-2
encoder [Carloni and Sangiovanni-Vincentelli 2000], we now demonstrate how
such a framework can be used by system level designers to evaluate multiple
VFI systems. Figure 6 shows the component graph of the MPEG-2 encoder. To
determine the number of execution cycles for each of the components, we simu-
lated a software version of the MPEG-2 encoder on an ARM7TDMI core using
the publicly available sunflower embedded system simulation tool [Stanley-
Marbell and Marculescu 2007] (the tool performs cycle-accurate simulation of
embedded systems consisting of multiple ARM7TDMI or Hitachi SuperH cores)
to obtain cycle counts for each module. We note that for the software implemen-
tation we used, the DCT and Quantizer modules were implemented together,
as were the IDCT and IQ modules. Instead of rewriting the software to separate
the two modules, we divided the cycle counts equally between the modules that
were implemented together. The cycle counts for each of the MPEG-2 encoder

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:20 • S. Garg and D. Marculescu

Fig. 7. cdfs of throughput obtained for the MPEG-2 encoder benchmark for three different
architectures.

modules are shown in Table II. As in the previous section, we assumed the cycle
time of each PE to be normally distributed with a 3σ of 20% of the mean (by
2008 and beyond, gate length variation, and thus delay variation, will reach
and possibly exceed this limit [Nassif 2000]).

Using these simulation parameters, we considered three possible implemen-
tations of the MPEG-2 encoder: MCV-9, MCV-3, and SSV. MCV-9 is a nine clock
domain architecture in which each PE lies in its own VFI and has a mean
frequency of 133 MHz (the nominal frequency of the ARM7TDMI core simu-
lated). MCV-3 has three VFIs, with three PEs in each VFI, as represented by
the shaded regions in Figure 6. The mean frequency of each VFI for the MCV-3
architecture is 129.3 MHz, which is, as expected, lower than the MCV-9 archi-
tecture since the frequency of each VFI in MCV-3 is limited by the slowest of
the three PEs in that VFI. Finally, SSV is a fully synchronous design with a
single clock domain that runs at a mean frequency of 121 MHz.

Figure 7 shows the cdf of throughput obtained (normalized to the nominal
cycle time of a PE) using our approach and using Monte Carlo simulations for
each of the three architectures (for SSV the proposed method always yields exact
results and therefore we only show the Monte Carlo curve for SSV). The results
allow us to quantify the yield of any of the three designs for a given throughput
constraint. We can see that for a throughput constraint that gives 50% yield for
a fully synchronous system, a nine clock domain architecture (MCV-9) achieves

Table II. Cycle Counts for Each Component in the MPEG-2 Encoder Example

MPEG-2 Encoder Src DCT+Q ME+MC VLC IDCT+IQ F.M.

Cycles/Macro-block 3188 370060 101282 43222 351259 16722

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:21

Fig. 8. Predicted and actual yield of the MCV-9 architecture as a function of the communication
to computation ratio α for each PE.

100% yield (proposed scheme also predicts 100%) while a three clock domain ar-
chitecture (MCV-3) achieves 98% yield (proposed scheme predicts 92%). The im-
provements are more dramatic when we consider the 25% yield point of the SSV
architecture- MCV-9 again achieves 100% yield (predicted 99.8%) while MCV-3
is able to achieve 77% yield (predicted 71%). Such information could be used
by designers, in conjunction with the throughput constraints that the design is
expected to meet, to decide on the number of clock domains for their design or
even choose between a fully synchronous and a multiple VFI design style.

We point out that it is not always the case that multiple VFI designs are bet-
ter than their fully synchronous counterparts—for example, if the throughput
of the component graph is determined only by the cycle time of the slowest PE
in the system, both the MCV and SSV design styles will have exactly the same
performance distribution in the absence of any overheads due to crossing clock
domains, and MCV designs may actually perform worse than SSV designs if
these are accounted for. To demonstrate the impact of the overhead of crossing
clock domain boundaries on the performance of VFI systems, we performed ad-
ditional experiments on the MPEG-2 encoder benchmark in which we increased
the communication to computation ratio, α, of each PE from 0.1 to 0.7 in steps
of 0.2 for the nine clock-domain architecture (MCV-9). In Figure 8, we plot the
actual (obtained from Monte-Carlo simulations) and predicted (from the pro-
posed analytical techniques) yield for the MCV-9 architecture as a function of
the communication to computation ratio for a throughput constraint that pro-
vides 75% yield for α = 0.1. As expected, the yield decreases with increasing
communication to computation ratio, falling to about 46% for α = 0.7. We note
that since the nine clock-domain architecture has the finest granularity of VFI
partitioning, it is the most susceptible to performance loss due to the overhead

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:22 • S. Garg and D. Marculescu

Fig. 9. cdfs of throughput obtained for the MPEG-2 encoder benchmark for MCV-9 with a con-
tinuous range of frequency values (MCV-9-infinite), MCV-9 with a discrete set of frequency values
(MCV-9-discrete) and a fully-synchronous design with a continuous range of frequency values (SSV-
infinite). For MCV-9-discrete, we plot cdfs obtained from Monte-Carlo simulations as well as from
the proposed analytical framework.

of crossing clock domains; in fact, if the volume of communication across clock
boundaries is high enough, it is possible that the performance gained by moving
to a fine-grain VFI implementation may be entirely eclipsed by the loss due to
communication over mixed-clock interfaces.

Finally, to determine the performance impact of controlling the VFI clocks in
discrete steps, we performed experiments for the MCV-9 architecture in which
each clock domain was only allowed to select from a discrete set of ten equally
spaced frequency values. In Figure 9, we plot the cdf of throughput obtained for
the MCV-9 architecture with a continuous range of frequency values for each
VFI (this cdf was also plotted in Figure 7 and is replicated here for comparison
purposes) along with the cdfs obtained from Monte Carlo simulations and the
proposed analytical techniques for the case in which only discrete frequency
values are allowed. Finally, we also plot the cdf of throughput for the fully
synchronous design (SSV) with a continuous range of frequency levels. From the
figure, we can see that the cdfs for the discrete case obtained from Monte Carlo
simulations and from the proposed framework are almost indistinguishable.
Furthermore, even though the restriction of choosing from a discrete range
of frequency values leads to some performance degradation with respect to the
case in which we allow a continuous range of frequency values, the performance

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:23

of the MCV-9 design with discrete frequency steps is still significantly superior
to the SSV design with infinite frequency levels.

7. CONCLUSIONS AND FUTURE WORK

In this article, we propose a framework that allows embedded-system designers
to analyze the performance impact of WID variability on their designs at the
system level, with a specific focus on variability adaptive multiple VFI designs.
Using the proposed framework, designers can choose between either a fully
synchronous design or an equivalent multiple voltage-frequency island imple-
mentation based on the extent of improvement in execution rate or throughput
yield that migrating to a multiple VFI design provides them. Furthermore, as
shown in the experimental results section, the proposed techniques can also
be used to examine the trade-off between performance yield and granularity
of VFI island partitioning. Our results indicate that multiple VFI implementa-
tions can offer a significant performance improvement over fully-synchronous
designs in the face of WID manufacturing process variations. Specifically, we
show that for a throughput constraint for which a fully synchronous imple-
mentation of an MPEG-2 encoder benchmark yields only 50%, a nine clock
domain architecture (MCV-9) can yield 100% while a three clock domain design
(MCV-3) would yield 99.8%. While these results assume that the each VFI can
precisely tune its frequency to any value within a given range, we also show
that moving to a more practical implementation in which the frequency can
only be set in discrete steps is still significantly superior to a fully synchronous
implementation with precise frequency control.

As future work, we intend to explore more sophisticated models of WID vari-
ability that include systematic and correlated sources of variations on process
parameters. We would also like to examine the impact a VFI design style could
have on reducing variability in circuit leakage power dissipation.

REFERENCES

BELETE, D., RAZDAN, A., SCHWARZ, W., RAINA, R., HAWKINS, C., AND MOREHEAD, J. 2002. Use of DFT
techniques in speed grading a 1 GHz+ microprocessor. In Proceedings of the International Test
Conference. 1111–1119.

BOWMAN, K., DUVALL, S., AND MEINDL, J. 2002. Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J.
Solid-State Circ. 37, 2.

CARLONI, L. AND SANGIOVANNI-VINCENTELLI, A. 2000. Performance analysis and optimization of la-
tency insensitive systems. In Proceedings of the 37th Conference on Design Automation. 361–367.

CHANG, H. AND SAPATNEKAR, S. 2003. Statistical timing analysis considering spatial correlations
using a single pert-Like traversal. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD). 621–625.

CHAPIRO, D. 1984. Globally-asynchronous locally-synchronous systems. Ph.D. thesis, Stanford
University.

CHELCEA, T. AND NOWICK, S. 2001. Robust interfaces for mixed-timing systems with application
to latency-insensitive protocols. In Proceedings of the 38th Conference on Design Automation.
21–26.

DATTA, A., BHUNIA, S., BANERJEE, N., AND ROY, K. 2005. A power-aware GALS architecture for real-
time algorithm-specific tasks. In Proceedings of the 6th International Symposium on Quality of
Electronic Design. 358–363.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

59:24 • S. Garg and D. Marculescu

DE VECIANA, G. AND JACOME, M. 1998. Hierarchical algorithms for assessing probabilistic con-
straints on system performance. In Proceedings of the IEEE/ACM Design Automation Conference
(DAC).

DEVGAN, A. AND KASHYAP, C. 2003. Block-based static timing analysis with uncertainty. In Pro-
ceedings of the International Conference on Computer-Aided Design (ICCAD). 607–614.

ERNST, D., FLAUTNER, K., MUDGE, T., KIM, N., DAS, S., PANT, S., RAO, R., PHAM, T., ZIESLER, C., BLAAUW,
D., ET AL. 2003. Razor: A low-power pipeline based on circuit-level timing speculation. In Pro-
ceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, 7–18.

FRIEDBERG, P., CHEUNG, W., AND SPANOS, C. 2006. Spatial modeling of micron-scale gate length
variation. In Data Analysis and Modeling for Patterning Control III. SPIE, vol. 6155.

HEMANI, A., MEINCKE, T., KUMAR, S., POSTULA, A., OLSSON, T., NILSSON, P., OBERG, J., ELLERVEE, P.,
AND LUNDQVIST, D. 1999. Lowering power consumption in clock by using globally asynchronous
locally synchronous design style. In Proceedings of the 36th ACM/IEEE Conference on Design
Automation Conference, 873–878.

HU, X. S., ZHOU, T., AND SHA, E. H.-M. 2001. Estimating probabilistic timing performance for
real-time embedded systems. IEEE Trans. TVLSI.

HUNG, W.-L., WU, X., AND XIE, Y. 2006. Guaranteeing performance yield in high-level synthe-
sis. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design.
303–309.

KARP, R. 1978. A characterization of the minimum cycle mean in a digraph. Discrete Math
23.

KULKARNI, S., SYLVESTER, D., AND BLAAUW, D. 2006. A statistical framework for post-silicon tuning
through body bias clustering. Proceedings of the International Conference on Computer-Aided
Design (ICCAD). 39–46.

LACKEY, D., ZUCHOWSKI, P., BEDNAR, T., STOUT, D., GOULD, S., AND COHN, J. 2002. Managing power
and performance for system-on-chip designs using voltage islands. Proceedings of the 2002
IEEE/ACM international conference on Computer-aided design, 195–202.

LIANG, X., CANAL, R., WEI, G.-Y., AND BROOKS, D. 2007. Process variation tolerant 3t1d-based
cache architectures. In Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’07). 15–26.

MARCULESCU, D. AND GARG, S. 2006. System level process-driven variability analysis for single and
multiple voltage-frequency islands. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD). 541–546.

MARCULESCU, D. AND IYER, A. 2002. Power and performance evaluation of globally asynchronous
locally synchronous processors. Proceedings of the 29th International Symposium on Computer
Architecture (ISCA-02). 30, 158–168.

MARCULESCU, D. AND TALPES, E. 2005. Variability and energy awareness: a microarchitecture-level
perspective. In Proceedings of the 42nd Annual Conference on Design Automation. 11–16.

MATHUR, A., DASDAN, A., AND GUPTA, R. 1998. Rate analysis for embedded systems. ACM Trans.
Des. Automat. Electron. Syst. 3, 3, 408–436.

NASSIF, S. 2000. Design for manufacturability in DSM technologies. In Proceedings of the IEEE
International Symposium on Quality Electronic Design.

NIYOGI, K. AND MARCULESCU, D. 2005a. Speed and voltage selection for GALS systems based on
voltage/frequency islands. In Proceedings of the Conference on Asia South Pacific Design Automa-
tion. 292–297.

NIYOGI, K. AND MARCULESCU, D. 2005b. System level power and performance modeling of GALS
point-to-point communication interfaces. In Proceedings of the International Symposium on Low
Power Electronics and Design. 381–386.

SEMERARO, G., ALBONESI, D. H., DROPSHO, S. G., MAGKLIS, G., DWARKADAS, S., AND SCOTT, M. L. 2002.
Dynamic frequency and voltage control for a multiple clock domain microarchitecture. In Proceed-
ings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO’35).

STANLEY-MARBELL, P. AND MARCULESCU, D. 2007. Sunflower: Full-system, embedded microarchitec-
ture evaluation. In Proceedings of the International Conference on High Performance Embedded
Architectures and Compilers (HiPEAC).

STUIJK, S., GEILEN, M., AND BASTEN, T. 2006. SDF 3: SDF for free. In Proceedings of the 6th Inter-
national Conference on Application of Concurrency to System Design. 276–278.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

Throughput Analysis for Variation Aware Multiple VFI Designs • 59:25

TEODORESCU, R., NAKANO, J., TIWARI, A., AND TORRELLAS, J. 2007. Mitigating parameter variation
with dynamic fine-grain body biasing. In Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’07). 27–42.

TIWARI, A., SARANGI, S. R., AND TORRELLAS, J. 2007. Recycle:: pipeline adaptation to tolerate process
variation. In Proceedings of the 34th annual international symposium on Computer architecture
(ISCA’07). 323–334.

TSCHANZ, J., KAO, J., NARENDRA, S., NAIR, R., ANTONIADIS, D., CHANDRAKASAN, A., AND DE, V. 2002.
Adaptive Body Bias for Reducing Impacts of Die-to-Die. IEEE J. Solid-State Circ. 37, 11.

WANG, F., NICOPOULOS, C., WU, X., XIE, Y., AND VIJAYKRISHNAN, N. 2007. Variation-aware task allo-
cation and scheduling for mpsoc. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. 598–603.

WANG, F., WU, X., AND XIE, Y. 2008. Variability-driven module selection with joint design time
optimization and post-silicon tuning. In Proceedings of the Conference on Asia and South Pacific
Design Automation. 2–9.

ZHAN, Y., STROJWAS, A., LI, X., PILEGGI, L., NEWMARK, D., AND SHARMA, M. 2005. Correlation-aware
statistical timing analysis with non-gaussian delay distributions. In Proceedings of the 42nd
Annual Conference on Design Automation, 77–82.

Received April 2007; revised January 2008, April 2008; accepted May 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 59, Pub. date: Sept. 2008.

