
ar
X

iv
:1

20
5.

30
22

v1
  [

m
at

h.
N

A
] 

 1
4 

M
ay

 2
01

2

Algorithms and Data Structures for

Multi-Adaptive Time-Stepping

Johan Jansson

Royal Institute of Technology, Stockholm

and

Anders Logg

Center for Biomedical Computing, Simula Research Laboratory

Department of Informatics, University of Oslo

Multi-adaptive Galerkin methods are extensions of the standard continuous and discontinuous
Galerkin methods for the numerical solution of initial value problems for ordinary or partial dif-
ferential equations. In particular, the multi-adaptive methods allow individual and adaptive time
steps to be used for different components or in different regions of space. We present algorithms
for efficient multi-adaptive time-stepping, including the recursive construction of time slabs and
adaptive time step selection. We also present data structures for efficient storage and interpolation

of the multi-adaptive solution. The efficiency of the proposed algorithms and data structures is
demonstrated for a series of benchmark problems.
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1. INTRODUCTION

We have earlier in a sequence of papers [Logg 2003a; 2003b; 2006] introduced
the multi-adaptive Galerkin methods mcG(q) and mdG(q) for the approximate
(numerical) solution of ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1)
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2 · J. Jansson and A. Logg

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial
value, T > 0 a given final time, and f : RN × (0, T ]→ R

N a given function that is
Lipschitz continuous in u and bounded.
The multi-adaptive Galerkin methods mcG(q) and mdG(q) extend the standard

mono-adaptive continuous and discontinuous Galerkin methods cG(q) and dG(q),
studied before in [Hulme 1972b; 1972a; Jamet 1978; Delfour et al. 1981; Eriksson
et al. 1985; Johnson 1988; Eriksson and Johnson 1991; 1995a; 1995b; 1995c; Eriks-
son et al. 1998; Eriksson et al. 1995; Estep 1995; Estep and French 1994; Estep et al.
2000; Estep and Williams 1996; Estep and Stuart 2002], by allowing individual time
step sequences ki = ki(t) for the different components Ui = Ui(t), i = 1, 2, . . . , N ,
of the approximate solution U ≈ u of the initial value problem (1). For related
work on local time-stepping, see also [Hughes et al. 1983a; 1983b; Makino and
Aarseth 1992; Davé et al. 1997; Alexander and Agnor 1998; Osher and Sanders
1983; Flaherty et al. 1997; Dawson and Kirby 2001; Lew et al. 2003; Engstler and
Lubich 1997; Savcenco et al. 2005; Savcenco 2008]. In comparison with existing
method for local time-stepping, the main advantage of the multi-adaptive Galerkin
methods mcG(q) and mdG(q) is the automatic local step size selection based on a
global a posteriori error estimate built into these methods.
In the current paper, we discuss important aspects of the implementation of

multi-adaptive Galerkin methods. While earlier results on multi-adaptive time-
stepping presented in [Logg 2003a; 2003b; 2006] include the formulation of the
methods, a priori and a posteriori error estimates, together with a proof-of-concept
implementation and results for a number of model problems, the current paper ad-
dresses the important issue of efficiently implementing the multi-adaptive methods
with minimal overhead as compared to standard mono-adaptive solvers. For many
problems, in particular when the propagation of the solution is local in space and
time, the potential speedup of multi-adaptivity is large, but the actual speedup may
be far from the ideal speedup if the overhead of the more complex implementation
is significant.

1.1 Implementation

The algorithms presented in this paper are implemented by the multi-adaptive
ODE-solver available in DOLFIN [Logg et al. ; Hoffman and Logg 2002], Dynamic
Object-oriented Library for FINite element computation, which is the C++ inter-
face of the new open-source software project FEniCS [FEniCS 2008; Logg 2007;
Dupont et al. 2003] for the automation of Computational Mathematical Modeling
(CMM). The multi-adaptive solver in DOLFIN is based on the original implemen-
tation Tanganyika, presented in [Logg 2003b], but has been completely rewritten
for DOLFIN and is actively developed by the authors.

1.2 Obtaining the software

DOLFIN is licensed under the GNU (Lesser) General Public License [Free Software
Foundation 1999], which means that anyone is free to use or modify the software,
provided these rights are preserved. The complete source code of DOLFIN, includ-
ing numerous example programs, is available at the DOLFIN web page [Logg et al.
].
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1.3 Notation

The following notation is used throughout this paper: Each component Ui(t),
i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1) is a piecewise
polynomial on a partition of (0, T ] into mi sub-intervals. Sub-interval j for compo-
nent i is denoted by Iij = (ti,j−1, tij ], and the length of the sub-interval is given by
the local time step kij = tij − ti,j−1. We shall sometimes refer to Iij as an element.
This is illustrated in Figure 1. On each sub-interval Iij , Ui|Iij is a polynomial of
degree at most qij .
Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks

between certain synchronized time levels 0 = T0 < T1 < . . . < TM = T . For
each Tn, n = 0, 1, . . . ,M and each i = 1, 2, . . . , N , we require that there is a
0 ≤ j ≤ mi such that tij = Tn. We refer to the collection of local intervals between
two synchronized time levels Tn−1 and Tn as a time slab. We denote the length of
a time slab by Kn = Tn − Tn−1.

PSfrag replacements
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Fig. 1. Individual partitions of the interval (0, T ] for different components. Elements between
common synchronized time levels are organized in time slabs. In this example, we have N = 6
and M = 4.

1.4 Outline of the paper

We first give an introduction to multi-adaptive time-stepping in Section 2. We then
present the key algorithms used by the multi-adaptive ODE solver of DOLFIN in
Section 3, followed by a discussion of data structures for efficient representation and
interpolation of multi-adaptive solutions in Section 4. In Section 5, we discuss the
efficiency of multi-adaptive time-stepping and in Section 6, we present a number
of numerical examples that demonstrate the efficiency of the proposed algorithms
and data structures. Finally, we give some concluding remarks in Section 7.
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2. MULTI-ADAPTIVE TIME-STEPPING

In this section, we give a quick introduction to multi-adaptive time-stepping, in-
cluding the formulation of the methods, error estimates and adaptivity. For a more
detailed account, we refer the reader to [Logg 2003a; 2003b; 2006].

2.1 Formulation of the methods

The mcG(q) and mdG(q) methods are obtained by multiplying the system of equa-
tions (1) with a suitable test function v, to obtain the following variational problem:
Find U ∈ V with U(0) = u0, such that

∫ T

0

(v, U̇) dt =

∫ T

0

(v, f(U, ·)) dt ∀v ∈ V̂ , (2)

where (·, ·) denotes the standard inner product on R
N and (V̂ , V ) is a suitable pair

of discrete function spaces, the test and trial spaces respectively.
For the standard cG(q) method, the trial space V consists of the space of con-

tinuous piecewise polynomial vector-valued functions of degree q = q(t) on a par-
tition 0 = t0 < t1 < · · · < tM = T and the test space V̂ consist of the space
of (possibly discontinuous) piecewise polynomial vector-valued functions of degree
q− 1 on the same partition. The multi-adaptive mcG(q) method extends the stan-
dard cG(q) method by extending the test and trial spaces to piecewise polynomial
spaces on individual partitions of the time interval that satisfy the constraints in-
troduced in the previous section and illustrated in Figure 1. Thus, each component
Ui = Ui(t) is continuous and a piecewise polynomial on the individual partition
0 = ti0 < ti1 < · · · < timi

= T for i = 1, 2, . . . , N .
For the standard dG(q) method, the test and trial spaces are equal and consist of

the space of (possibly discontinuous) piecewise polynomial vector-valued functions
of degree q = q(t) on a partition 0 = t0 < t1 < · · · < tM = T , which extends
naturally to the multi-adaptive mdG(q) method by allowing each component of
the test and trial functions to be a piecewise polynomial on its own partition of
the time interval as above for the mcG(q) method. Note that for both the dG(q)
method and the mdG(q) method, the integral

∫

0,T (v, U̇) dt in (2) must be treated

appropriately at the points of discontinuity, see [Logg 2003a].
Both in the case of the mcG(q) and mdG(q) methods, the variational problem (2)

gives rise to a system of discrete equations by expanding the solution U in a suitable
basis on each local interval Iij ,

Ui|Iij =

qij
∑

m=0

ξijmφijm, (3)

where {ξijm}
qij
m=0 are the degrees of freedom for Ui on Iij and {φijm}

qij
m=0 is a

suitable basis for P qij (Iij). For any particular choice of quadrature, the resulting
system of discrete equations takes the form of an implicit Runge–Kutta method on
each local interval Iij . The discrete equations take the form

ξijm = ξ−ij0 + kij

qij
∑

n=0

w[qij ]
mn fi(U(τ−1

ij (s[qij ]n )), τ−1
ij (s[qij ]n )), (4)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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for m = 0, . . . , qij , where {w
[qij ]
mn }

qij
m=0,n=0 are weights, τij maps Iij to (0, 1], τij(t) =

(t − ti,j−1)/(tij − ti,j−1), and {s
[qij ]
n }

qij
n=0 are quadrature points defined on [0, 1].

Note that we have here assumed that the number of quadrature points is equal to
the number of nodal points. See [Logg 2003a] for a discussion of suitable quadrature
rules and basis functions.

2.2 Error estimates and adaptivity

The global error e = U − u of the approximate solution U of (1) may be bounded
in terms of computable quantities. Such an a posteriori error estimate is proved
in [Logg 2003a], both for the mcG(q) and mdG(q) methods. The a posteriori error
estimate provides a bound for any given linear functional M : RN → R of the
global error e(T ) at the final time, such as the error ei(T ) in a single component.
Bounds for the error itself in various norms may also be approximated. Below, we
state the basic a posteriori error estimate for the mcG(q) method and refer to [Logg
2003a] for a complete discussion, including error estimates for mdG(q).
For the mcG(q) method, the error estimate takes the following form:

|M(e(T ))| ≤ E ≡
N
∑

i=1

Si(T )max
[0,T ]
{Cik

qi
i |Ri|} , (5)

Here, R = U̇ − f(U, ·) denotes the residual of the computed solution, Ci = Ci(t)
denotes an interpolation constant (which may be different for each local interval)
and Si(T ) denotes a stability factor that measures the rate of propagation of local
errors for component Ui (the influence of a nonzero residual in component Ui on the
size of the error in the given functional). By selecting the local time steps ki = ki(t)
such that E = TOL for a given tolerance TOL, one may thus guarantee that the
error in the functionalM is bounded by the given tolerance, |M(e(T ))| ≤ TOL.
Comparing to standard Runge–Kutta methods for the solution of initial value

problems, the stability factor quantifies the relationship between the “local error”
and the global error. Note that alternatively, the stability information may be
kept as a local time-dependent stability weight for more fine-grained control of the
contributions to the global error. The stability factors are obtained by solving a dual
problem of (1) for the given functional M, see [Eriksson et al. 1995; Logg 2003a].
The particular form of the dual problem for (1) will be discussed in Section 3.5.
The individual time steps may be chosen so as to equidistribute the error in the

different components in an attempt to satisfy

Cijk
qij
ij max

Iij
|Ri| = TOL/(NSi(T )), (6)

for each local time interval Iij . This may be done in an iterative fashion, as outlined
in the following basic adaptive algorithm:

(0) Assume Si(T ) = 1 for i = 1, 2, . . . , N ;

(i) Solve the primal problem with time steps based on (6);

(ii) Solve the dual problem and compute the stability factors;

(iii) Compute an error bound E based on (5);

(iv) If E ≤ TOL then stop; if not go back to (i).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



6 · J. Jansson and A. Logg

3. ALGORITHMS

We present below a collection of key algorithms for multi-adaptive time-stepping.
The algorithms are given in pseudo-code and where appropriate we give remarks
on how the algorithms have been implemented in C++ for DOLFIN. In most cases,
we present simplified versions of the algorithms with focus on the most essential
steps.

3.1 General algorithm

The general multi-adaptive time-stepping algorithm is Algorithm 1. Starting at
t = 0, the algorithm creates a sequence of time slabs until the given end time T
is reached. In each macro time step, Algorithm 2 (CreateTimeSlab) is called to
create a time slab covering an interval [Tn−1, Tn] such that Tn ≤ T . For each time
slab, the system of discrete equations is solved iteratively, using direct fixed-point
iteration or a preconditioned Newton’s method, until the discrete equations given
by the mcG(q) or mdG(q) method have converged.

Algorithm 1 U = Integrate(ODE)

t← 0
while t < T
{time slab, t} ← CreateTimeSlab({1, . . . , N}, t, T )
SolveTimeSlab(time slab)

end while

The basic forward integrator, Algorithm 1, can be used as the main component
of an adaptive algorithm with automated error control of the computed solution
as outlined in Section 2. In each iteration, the primal problem (1) is solved using
Algorithm 1. An ODE of the form (1) representing the dual problem is then created
and solved using Algorithm 1. It is important to note that both the primal and
the dual problems may be solved using the same algorithm, but with (possibly)
different time steps, tolerances, methods, and orders. When the solution of the
dual problem has been computed, the stability factors {Si(T )}Ni=1 and the error
estimate may be computed.

3.2 Recursive construction of time slabs

In each step of Algorithm 1, a new time slab is created between two synchronized
time levels Tn−1 and Tn. The time slab is organized recursively as follows. The
root time slab covering the interval [Tn−1, Tn] contains a non-empty list of elements,
which we refer to as an element group, and a possibly empty list of time slabs, which
in turn may contain nested groups of elements and time slabs. Each such element
group together with the corresponding nested set of element groups is referred to
as a sub-slab. This is illustrated in Figure 2.
To create a time slab, we first compute the desired time steps for all components

as given by the a posteriori error estimate (5). We discuss in detail the time step
selection below in Section 3.4. A threshold θK is then computed based on the
maximum time step K among the components and a fixed parameter θ ∈ (0, 1)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Tn−1
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Fig. 2. The recursive organization of the time slab. Each time slab contains an element group
and a list of recursively nested time slabs. The root time slab in the figure contains one element
group of one element and three sub-slabs. The first of these sub-slabs contains an element group
of two elements and two nested sub-slabs, and so on. The root time slab recursively contains a
total of nine element groups and 33 elements.

controlling the density of the time slab. The components are partitioned into two
sets based on the threshold, and a large time step K is selected to be the smallest
time step among the components in the set with large time steps as described in
Algorithm 3 and illustrated in Figure 3. For each component in the group with
large time steps, an element is created and added to the element group of the time
slab. The remaining components with small time steps are processed by a recursive
application of this algorithm for the construction of time slabs.

We organize the recursive construction of time slabs as described by Algorithms
2, 3, 4, and 5. The recursive construction simplifies the implementation; each
recursively nested sub-slab can be considered as a sub-system of the ODE. Note
that the element group containing elements for components in group I1 is created
before the recursively nested sub-slabs for components in group I0. The tree of
time slabs is thus created recursively breadth-first, which means in particular that
the element for the component with the largest time step is created first.

Algorithm 3 for the partition of components can be implemented efficiently using
the function std::partition(), which is part of the Standard C++ Library.

3.3 Solving the system of discrete equations

On each time slab Tn, n = 1, 2, . . . ,M , we need to solve a system of equations for
the degrees of freedom on the time slab. On each local interval Iij ∈ Tn, these
equations are given by (4). Depending on the properties of the given system (1),
different solution strategies for the time slab system (4) may be appropriate as
outlined below.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 2 {time slab, Tn} = CreateTimeSlab(components, Tn−1, T )

{I0, I1, K} ← Partition(components)
if Tn−1 +K < T

Tn ← Tn−1 +K
else

Tn ← T
end if

element group ← CreateElements(I1, Tn−1, Tn)
time slabs ← CreateTimeSlabs(I0, Tn−1, Tn)
time slab ← {element group, time slabs}

Algorithm 3 {I0, I1, K} = Partition(components)

I0 ← ∅
I1 ← ∅
K ← maximum time step within components
for each component

k ← time step of component
if k < θK

I0 ← I0 ∪ {component}
else

I1 ← I1 ∪ {component}
endif

end for

K ← minimum time step within I1
K ← K

Algorithm 4 elements = CreateElements(components, Tn−1, Tn)

elements ← ∅
for each component

create element for component on [Tn−1, Tn]
elements ← elements ∪ element

end for

Algorithm 5 time slabs = CreateTimeSlabs(components, Tn−1, Tn)

time slabs ← ∅
t← Tn−1

while t < T
{time slab, t} ← CreateTimeSlab(components, t, Tn)
time slabs ← time slabs ∪ time slab

end while

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 3. The partition of components into groups of small and large time steps for θ = 1/2.

3.3.1 Direct fixed-point iteration. In the simplest case, the time slab system is
solved by direct fixed-point iteration on (4) for each element in the time slab. The
fixed-point iteration is performed in a forward fashion, sweeping over the elements
in the time slab in the same order as they are created by Algorithm 2. In particular,
this means that for each component in the time slab system, the end-time value on
each element is updated before the degrees of freedom for the following element.
Thus, for each element Iij ∈ Tn, we compute the degrees of freedom {ξijm}

qij
j=0

according to

ξijm = ξ−ij0 + kij

qij
∑

n=0

w[qij ]
mn fi(U(τ−1

ij (s[qij ]n )), τ−1
ij (s[qij ]n )), m = 0, 1, . . . , qij . (7)

Direct fixed-point iteration converges if the system is non-stiff and typically only a
few iterations are needed. In fact, one may consider a system to be stiff if direct
fixed-point iteration does not converge.

3.3.2 Damped fixed-point iteration. If the system is stiff, that is, direct fixed-
point iteration does not converge, one may introduce a suitable amount of damping
to adaptively stabilize the fixed-point iteration. The fixed-point iteration (7) may
be written in the form

ξijm = gijm(ξ), (8)

where ξ is the vector of degrees of freedom for the solution on the time slab. We
modify the fixed-point iteration by introducing a damping parameter α:

ξijm = (1 − αijm)ξijm + αijmgijm(ξ). (9)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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In [Logg 2004], a number of different strategies for the selection of the damping
parameter α are discussed. We mention two of these strategies here. The first
strategy chooses α based on the diagonal derivatives ∂fi/∂ui, i = 1, 2, . . . , N , cor-
responding to a modified Newton’s method where the Jacobian is approximated by
a diagonal matrix. This strategy works well for systems with a diagonally domi-
nant Jacobian, including many systems arising when modeling chemical reactions.
The second strategy adaptively chooses a scalar α based on the convergence of the
fixed-point iterations.

3.3.3 Newton’s method. Alternatively, one may apply Newton’s method directly
to the full system of equations (7) associated with each time slab. The linear system
in each Newton iteration may then be solved either by a direct method or an
iterative method such as a Krylov subspace method in combination with a suitable
preconditioner, depending on the characteristics of the underlying system (1). In
addition, one may also apply a special preconditioner that improves the convergence
by propagating values forward in time within the time slab. Note that if the multi-
adaptive efficiency index is large (see Section 5 below), then the time slab system is
not significantly larger than the corresponding time slab system for a mono-adaptive
method.

3.3.4 Choosing a solution strategy. Ultimately, an intelligent solver should au-
tomatically choose a suitable algorithm for the solution of the time slab system.
Thus, the solver may initially try direct fixed-point iteration. If the system is stiff,
the solver switches to adaptive fixed-point iteration (as outlined in [Logg 2004]).
Finally, if the adaptive fixed-point iteration converges slowly, the solver may switch
to Newton’s method.

3.3.5 Interpolation of the solution. To update the degrees of freedom on an
element according to (7), the appropriate component fi of the right-hand side of
(1) needs to be evaluated at the set of quadrature points. In order for fi to be
evaluated, each component Ui′ of the computed solution U on which fi depends,
needs to be evaluated at the quadrature points. We let Si ⊆ {1, . . . , N} denote
the sparsity pattern of component Ui, that is, the set of components on which fi
depends,

Si = {i
′ ∈ {1, . . . , N} : ∂fi/∂ui′ 6= 0}. (10)

Thus, to evaluate fi at a given quadrature point t, only the components {Ui′}i′∈Si

need to be evaluated at t, as in Algorithm 6. This is of particular importance
for problems of sparse structure and enables efficient multi-adaptive integration of
time-dependent PDEs, as demonstrated below in Section 6. The sparsity pattern
Si is automatically detected by the solver. Alternatively, the sparsity pattern may
be specified by a (sparse) matrix.
In Algorithm 6, the key step is the evaluation of a component Ui′ at a given

point t. For a standard mono-adaptive method, this is straightforward since all
components use the same time steps. In particular, if the quadrature points are
chosen to be the same as the nodal points, the value of Ui′(t) is known. For a multi-
adaptive method, a quadrature point t for the evaluation of fi is not necessarily
a nodal point for Ui′ . To evaluate Ui′(t), one thus needs to find the local interval

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 6 y = EvaluateRightHandSide(i, t)

for i′ ∈ Si
x(i′)← Ui′(t)

end for

y ← fi(x, t)

Ii′j′ such that t ∈ Ii′j′ and then evaluate Ui′(t) by interpolation on that interval.
In Section 4 below, we discuss data structures that allow efficient storage and
interpolation of the multi-adaptive solution. In particular, these data structures
give O(1) access to the value of any component Ui′ in the sparsity pattern Si at
any quadrature point t for fi.

3.4 Multi-adaptive time step selection

The individual and adaptive time steps kij are determined during the recursive
construction of time slabs based on an a posteriori error estimate as discussed in
Section 2. Thus, according to (6), each local time step kij should be chosen to
satisfy

kij =

(

TOL

CijNSi(T )maxIij |Ri|

)1/qij

. (11)

where TOL is a given tolerance.
However, the time steps can not be based directly on (11), since that leads to

unwanted oscillations in the size of the time steps. If ri,j−1 = maxIi,j−1
|Ri| is

small, then kij will be large, and as a result rij will also be large. Consequently,
ki,j+1 and ri,j+1 will be small, and so on. To avoid these oscillations, we adjust
the time step kij according to Algorithm 7, which determines the new time step
as a weighted harmonic mean value of the previous time step and the time step
given by (11). Alternatively, DOLFIN provides time step control based on the PID
controllers presented in [Gustafsson et al. 1988; Söderlind 2003], including H0211
and H211PI. However, the simple controller of Algorithm 7 performs well compared
to the more sophisticated controllers in [Gustafsson et al. 1988; Söderlind 2003]. A
suitable value for the weight w in Algorithm 7 is w = 5 (found empirically).

Algorithm 7 k = Controller(knew, kold, kmax)

k ← (1 + w)koldknew/(kold + wknew)
k ← min(k, kmax)

The initial time steps k11 = k21 = · · · = kN1 = K1 are chosen equal for all
components and are determined iteratively for the first time slab. The size K1

of the first time slab is first initialized to some default value, possibly based on
the length T of the time interval, and then adjusted until the local residuals are
sufficiently small for all components.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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3.5 Solving the dual problem

Stability factors may be approximated by numerically solving an auxiliary dual
problem for (1). This dual problem is given by the following system of linear
ordinary differential equations:

−ϕ̇(t) = J(U(t), t)⊤ϕ(t), t ∈ [0, T ),

ϕ(T ) = ψ,
(12)

where J(U(t), t) denotes the Jacobian of the right-hand side f of (1) at time t
and ψ = M′ (the Riesz representer of M) is initial data for the dual problem
corresponding to the given functional M to be estimated. Note that we need to
linearize around the computed solution U , since the exact solution u of (1) is not
known. To solve this backward problem over [0, T ) using the forward integrator
Algorithm 1, we rewrite (12) as a forward problem. With w(t) = ϕ(T − t), we have
ẇ = −ϕ̇(T − t) = J(U(T − t), T − t)⊤w(t), and so (12) can be written as a forward
problem for w in the form

ẇ(t) = f∗(w(t), t) ≡ J(U(T − t), T − t)⊤w(t), t ∈ (0, T ],

w(0) = ψ.
(13)

4. DATA STRUCTURES

For a standard mono-adaptive method, the solution on a time slab is typically
stored as an array of values at the right end-point of the time slab, or as a list
of arrays (possibly stored as one contiguous array) for a higher order method with
several stages. However, a different data structure is needed to store the solution on
a multi-adaptive time slab. Such a data structure should ideally store the solution
with minimal overhead compared to the cost of storing only the array of degrees
of freedom for the solution on the time slab. In addition, it should also allow for
efficient interpolation of the solution, that is, accessing the values of the solution
for all components at any given time within the time slab. We present below a data
structure that allows efficient storage of the entire solution on a time slab with little
overhead, and at the same time allows efficient interpolation with O(1) access to
any given value during the iterative solution of the system of discrete equations.

4.1 Representing the solution

The multi-adaptive solution on a time-slab can be efficiently represented using a
data structure consisting of eight arrays as shown in Table I. For simplicity, we
assume that all elements in a time slab are constructed for the same choice of
method, mcG(q) or mdG(q), for a given fixed q.
The recursive construction of time slabs as discussed in Section 3.2 generates a

sequence of sub slabs, each containing a list of elements (an element group). For
each sub-slab, we store the value of the time t at the left end-point and at the right
end-point in the two arrays sa and sb. Thus, for sub-slab number s covering the
interval (as, bs), we have

as = sa[s],

bs = sb[s].
(14)
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Furthermore, for all elements in the (root) time slab, we store the degrees of freedom
in the order they are created in the array jx (mapping a degree of freedom j to the
value x of that degree of freedom). Thus, if each element has q degrees of freedom,
as in the case of the multi-adaptive mcG(q) method, then the length of the array
jx is q times the number of elements. In particular, if all components use the same
time steps, then the length of the array jx is qN .
For each element, we store the corresponding component index i in the array ei in

order to be able to evaluate the correct component fi of the right-hand side f of (1)
when iterating over all elements in the time slab to update the degrees of freedom.
When updating the values on an element according to (7), it is also necessary to
know the left and right end-points of the elements. Thus, we store an array es

that maps the number e of a given element to the number s of the corresponding
sub-slab containing the element. As a consequence, the left end-point ae and right
end-point be for a given element e are given by

ae = sa[es[e]],

be = sb[es[e]].
(15)

Array Type Description

sa double left end-points for sub-slabs
sb double right end-points for sub-slabs
jx double values for degrees of freedom
ei int component indices for elements
es int time slabs containing elements
ee int previous elements for elements
ed int first dependencies for elements
de int elements for dependencies

Table I. Data structures for efficient representation of a multi-adaptive time slab.

4.2 Interpolating the solution at quadrature points

Updating the values on an element according to (7) also requires knowledge of the
value at the left end-point, which is given as the end-time value on the previous
element in the time slab for the same component (or the end-time value from the
previous time slab). This information is available in the array ee, which stores for
each element the number of the previous element (or −1 if there is no previous
element).
As discussed above in Section 3.3, the system of discrete equations on each time

slab is solved by iterating over the elements in the time slab and updating the values
on each element, either in a direct fixed-point iteration or a Newton’s method. We
must then for any given element e corresponding to some component i = ei[e]
evaluate the right-hand side fi at each quadrature point t within the element.
This requires the values of the solution U at t for all components contained in the
sparsity pattern Si for component i according to Algorithm 6. As a consequence of
Algorithm 2 for the recursive construction of time slabs, elements for components
that use large time steps are constructed before elements for components that use
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small time steps. Since all elements of the time slab are traversed in the same
order during the iterative solution of the system of discrete equations, elements
corresponding to large time steps have recently been visited and cover any element
that corresponds to a smaller time step. The last visited element for each component
is stored in an auxiliary array elast of size N . Thus, if i′ ∈ Si and component
i′ has recently been visited, then it is straight-forward to find the latest element
e′ = elast[i′] for component i′ that covers the current element for component i and
interpolate Ui′ at time t. It is also straight-forward to interpolate the values for any
components that are present in the same element group as the current element.
However, when updating the values on an element e corresponding to some com-

ponent i = ei[e] depending on some other component i′ ∈ Si which uses smaller
time steps, one must find for each quadrature point t on the element e the element
e′ for component i′ containing t, which is non-trivial. The element e′ can be found
by searching through all elements for component i′ in the time slab, but this quickly
becomes inefficient. Instead, we store for each element e a list of dependencies to
elements with smaller time steps in the two arrays ed and de. These two arrays
store a sparse integer matrix of dependencies to elements with smaller time steps
for all elements in the time slab. Thus, for any given element e, the number of
dependencies to elements with smaller time steps is given by

ed[e+ 1]− ed[e], (16)

and the elements with smaller time steps that need to be interpolated at the quadra-
ture points for element e are given by

{de[ed[e]], de[ed[e] + 1], . . . , de[ed[e+ 1]− 1]}. (17)

5. PERFORMANCE

The efficiency of multi-adaptive time-stepping compared to standard mono-adaptive
time-stepping depends on the system being integrated, the tolerance, and the ef-
ficiency of the implementation. For many systems, the potential speedup is large,
but the actual speedup depends also on the overhead needed to handle the addi-
tional complications of a multi-adaptive implementation: the recursive construction
of time slabs and the interpolation of values within a time slab.
To study the performance of multi-adaptive time-stepping, we consider a system

of N components and time steps given by {kij = |Iij | : Iij ∈ Tn} on some time slab
Tn. We define the multi-adaptive efficiency index µ by

µ =
N/kmin

|Tn|/kmax
=
kmax

kmin

N

|Tn|
, (18)

where kmin = minIij∈Tn
kij , kmax = maxIij∈Tn

kij and |Tn| is the number of local
intervals in the time slab Tn. Thus, to obtain the multi-adaptive efficiency index,
we divide the number of local intervals per unit time for a mono-adaptive discretiza-
tion with the actual number of local intervals per unit time for a multi-adaptive
discretization. This is the potential speedup when compared to a mono-adaptive
method that is forced to use the same small time step kmin for all components.
However, the actual speedup is always smaller than µ for two reasons. The first
is the overhead of the multi-adaptive implementation and the second is that the
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system of discrete equations on each time slab may sometimes be more expensive
to solve than the corresponding mono-adaptive systems (because they are typically
larger in size).
Consider a model problem consisting of N = NK + Nk components, where NK

components vary on a slow time scale K and Nk components vary on a fast time
scale k as in Figure 4. The potential speedup is given by the multi-adaptive effi-
ciency index,

µ =
K

k

N

NK +NkK/k
=
K

k

N/K

NK/K +Nk/k
∼
K

k
≫ 1, (19)

if NK/K ≫ Nk/k and K ≫ k, that is the number of large elements dominates
the number of small elements. Thus, the potential speedup can be very large for
a system where a large part of the system varies on a large time scale and a small
part of the system varies on a small time scale.
If, on the other hand, K ∼ k or NK ∼ Nk, then the multi-adaptive efficiency

index may be of moderate size. As a consequence, the actual speedup may be
small (or even “negative”) if the overhead of the multi-adaptive implementation is
significant. In the next section, we indicate the multi-adaptive efficiency index and
compare this to the actual speedup for a number of benchmark problems.

PSfrag replacements

Tn−1 Tn

Fig. 4. A time slab with NK = Nk = 2 and multi-adaptive efficiency index µ = 16/10 = 1.6
.

6. NUMERICAL EXAMPLES AND BENCHMARK RESULTS

In this section, we present two benchmark problems to demonstrate the efficiency
of multi-adaptive time-stepping. Both examples are time-dependent PDEs that we
discretize in space using the cG(1) finite element method to obtain a system of
ODEs, sometimes referred to as the method of lines approach. In each case, we
lump and invert the mass matrix so as to obtain a system of the form (1).
In the first of the two benchmark problems, the individual time steps are cho-

sen automatically based on an a posteriori error estimate as discussed above in
Section 3.4. For the second problem, the time steps are fixed in time and deter-
mined according to a local CFL condition k ∼ h on each element. The results were
obtained with DOLFIN version 0.6.2.
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6.1 A nonlinear reaction-diffusion equation

As a first example, we solve the following nonlinear reaction-diffusion equation,
taken from [Savcenco et al. 2005]:

ut − ǫuxx = γu2(1− u) in Ω× (0, T ],

∂nu = 0 on ∂Ω× (0, T ],

u(·, 0) = u0 in Ω,

(20)

with Ω = (0, L), ǫ = 0.01, γ = 1000 and final time T = 1.
The equation is discretized in space with the standard cG(1) method using a

uniform mesh with 1000 mesh points. The initial data is chosen according to

u0(x) =
1

1 + exp(λ(x− 1))
. (21)

The resulting solution is a reaction front, sweeping across the domain from left to
right, as demonstrated in Figure 5. The multi-adaptive time steps are automatically
selected to be small in and around the reaction front and sweep the domain at the
same velocity as the reaction front, as demonstrated in Figure 6.
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Fig. 5. Propagation of the solution of the reaction–diffusion problem (20).

To study the performance of the multi-adaptive solver, we compute the solution
for a range of tolerances with L = 5 and compare the resulting error and CPU
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Fig. 6. The multi-adaptive time steps as function of space at a sequence of points in time for the
test problem (20).

time with a standard mono-adaptive solver that uses equal (adaptive) time steps
for all components. To make the comparison fair, we compare the multi-adaptive
mcG(q) method with the mono-adaptive cG(q) method. In the benchmarks, we
only examine q = 1. Both methods are implemented for general order q in the
same programming language (C++) within a common framework (DOLFIN), but
the mono-adaptive method takes full advantage of the fact that the time steps are
equal for all components. In particular, the mono-adaptive solver may use much
simpler data structures (a plain C array) to store the solution on each time slab
and there is no overhead for interpolation of the solution. Furthermore, for the
multi-adaptive solver, we need to supply a right-hand side function f which may
be called to evaluate single components fi(U(t), t), while for the mono-adaptive
solver, we may evaluate all components of f at the same time, which is usually an
advantage (for the mono-adaptive solver).

This is a more meaningful measure of performance compared to only measuring
the number degrees of freedom (local steps) or comparing the CPU time against
the same multi-adaptive solver when it is forced to use identical time steps for all
components as in [Logg 2003a], since one must also take into account the over-
head of the more complicated algorithms and data structures necessary for the
implementation of multi-adaptive time-stepping.
Note that we do not solve the dual problem to compute stability factors (or

stability weights) which is necessary to obtain a reliable error estimate. Thus, the
tolerance controls only the size of the error modulo the stability factor, which is
unknown.
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In addition, we also compare the two methods for varying size L of the domain Ω,
keeping the same initial conditions but scaling the number of mesh points according
to the length of the domain, N = 1000L/5. As the size of the domain increases,
we expect the relative efficiency of the multi-adaptive method to increase, since
the number of inactive components increases relative to the number of components
located within the reaction front.

In Figure 7, we plot the CPU time as function of the tolerance and number of
components (size of domain) for the mcG(1) and cG(1) methods. We also summa-
rize the results in Table II and Table III. As expected, the speedup expressed as the
multi-adaptive efficiency index µ, that is, the ideal speedup if the cost per degree
of freedom were the same for the multi- and mono-adaptive methods, is large in
all test cases, around a factor 100. The speedup in terms of the total number of
time slabs is also large. Note that in Table II, the total number of time slabs M
remains practically constant as the tolerance and the error are decreased. The de-
creased tolerance instead results in finer local resolution of the reaction front, which
is evident from the increasing multi-adaptive efficiency index. At the same time,
the mono-adaptive method needs to decrease the time step for all components and
so the relative efficiency of the multi-adaptive method increases as the tolerance
decreases. See also Figure 8 for a comparison of the multi-adaptive time steps at
two different tolerances.

The situation is slightly different in Table III, where the tolerance is kept constant
but the size of the domain and number of components vary. Here, the number of
time slabs remains practically constant for both methods, but the multi-adaptive
efficiency index increases as the size of the domain increases, since the reaction
front then becomes more and more localized relative to the size of the domain. As
a result, the efficiency index of the multi-adaptive method increases as the size of
the domain is increased.

In all test cases, the multi-adaptive method is more efficient than the standard
mono-adaptive method also when the CPU time (wall-clock time) is chosen as a
metric for the comparison. In the first set of test cases with varying tolerance, the
actual speedup is about a factor 2.0 whereas in the second test case with varying
size of the domain, the speedup increases from about a factor 2.0 to a factor 5.7 for
the range of test cases. These are significant speedups, although far from the ideal
speedup which is given by the multi-adaptive efficiency index.

There are mainly two reasons that make it difficult to attain full speedup. The
first reason is that as the size of the time slab increases, the number of iterations n
needed to solve the system of discrete equations increases. In Table III, the number
of iterations, including local iterations on individual elements as part of a global
iteration on the time slab, is about a factor 1.5 larger for the multi-adaptive method.
However, the main overhead lies in the more straightforward implementation of the
mono-adaptive method compared to the more complicated data structures needed
to store and interpolate the multi-adaptive solution. For constant time step and
equal time step for all components, this overhead is roughly a factor 5 for the
test problem, but the overhead increases to about a factor 100 when the time slab
is locally refined. It thus remains important to further reduce the overhead of the
implementation in order to increase the range of problems where the multi-adaptive
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methods give a positive speedup.
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Fig. 7. CPU time as function of the error (left) and number of components N (right) for mcG(1)
(dashed line) and cG(1) (solid line) for the test problem (20).

TOL ‖e(T )‖∞ CPU time M n µ

1.0 · 10−6 1.8 · 10−5 14.2 s 1922 (5) 3.990 (1.498) 95.3

5.0 · 10−7 1.1 · 10−5 23.3 s 1912 (9) 4.822 (1.544) 138.2

1.0 · 10−7 1.9 · 10−6 48.1 s 1929 (7) 4.905 (1.594) 142.6

5.0 · 10−8 9.0 · 10−7 49.8 s 1917 (7) 4.131 (1.680) 172.4

TOL ‖e(T )‖∞ time M n µ

1 · 10−6 2.3 · 10−5 28.1 s 117089 (1) 4.0 1.0

5 · 10−7 1.2 · 10−5 39.5 s 165586 (1) 4.0 1.0

1 · 10−7 2.3 · 10−6 71.9 s 370254 (1) 3.0 1.0

5 · 10−8 1.2 · 10−6 101.7 s 523615 (1) 3.0 1.0

Table II. Benchmark results for mcG(1) (above) and cG(1) (below) for varying tolerance and fixed
number of components N = 1000 for the test problem (20). The table shows the tolerance TOL
used for the computation, the error ‖e(T )‖∞ in the maximum norm at the final time, the time
used to compute the solution, the number of time slabs M (with the number of rejected time slabs
in parenthesis), the average number of iterations n on the time slab system (with the number of

local iterations on sub-slabs in parenthesis), and the multi-adaptive efficiency index µ.

6.2 The wave equation

Next, we consider the wave equation,

utt −∆u = 0 in Ω× (0, T ],

∂nu = 0 on ∂Ω× (0, T ],

u(·, 0) = u0 in Ω,

(22)
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Fig. 8. Multi-adaptive time steps at t = 0.5 for two different tolerances for the test problem (20).

N ‖e(T )‖∞ CPU time M n µ

1000 1.8 · 10−5 13.6 s 1922 (5) 4.0 (1.5) 95.3

2000 1.7 · 10−5 17.3 s 1923 (5) 4.0 (1.2) 140.5

4000 1.6 · 10−5 24.0 s 1920 (6) 4.0 (1.0) 185.0

8000 1.7 · 10−5 33.7 s 1918 (5) 4.0 (1.0) 218.8

16000 1.7 · 10−5 57.9 s 1919 (5) 4.0 (1.0) 240.0

N ‖e(T )‖∞ time M n µ

1000 2.3 · 10−5 28.1 s 117089 (1) 4.0 1.0

2000 2.2 · 10−5 64.8 s 117091 (1) 4.0 1.0

4000 2.2 · 10−5 101.3 s 117090 (1) 4.0 1.0

8000 2.2 · 10−5 175.1 s 117089 (1) 4.0 1.0

16000 2.2 · 10−5 327.7 s 117089 (1) 4.0 1.0

Table III. Benchmark results for mcG(1) (above) and cG(1) (below) for fixed tolerance TOL =
1.0·10−6 and varying number of components (and size of domain). (See Table II for an explanation
of table legends.)
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on a two-dimensional domain Ω consisting of two square sub-domains of side
length 0.5 separated by a thin wall with a narrow slit of size 0.0001 × 0.0001 at
its center. The initial condition is chosen as a plane wave traversing the domain
from right to left. In Figure 9, we plot the initial data together with the (fixed)
multi-adaptive time steps. The resulting solution is shown in Figure 10.
The geometry of the domain Ω forces the discretization to be very fine close to

the narrow slit. Further away from the slit, we let the mesh be coarse. The mesh
was created by specifying a mesh size h with h ≫ w where w is the width of the
narrow slit. We note that for the multi-adaptive efficiency index µ defined in (19) to
be large, the total number of elements must be large in comparison the to number
of small elements close to the narrow slit. Furthermore, the average mesh size must
be large compared to the mesh size close to the narrow slit.
For a mono-adaptive method, a global CFL condition puts a limit on the size of

the global time step, roughly given by

k ≤ hmin = min
x∈Ω

h(x), (23)

where h = h(x) is the local mesh size. With a larger time step, an explicit method
will be unstable or, correspondingly, direct fixed-point iteration on the system of
discrete equations on each time slab will not converge without suitable stabilization.
On the other hand, with a multi-adaptive method, the time step may be chosen

to satisfy the CFL condition only locally, that is,

k(x) ≤ h(x), x ∈ Ω, (24)

and as a result, the number of local steps may decrease significantly (depending
on the properties of the mesh). In this case, with k = 0.1h, the speedup for the
multi-adaptive mcG(1) method was a factor 4.2.
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Fig. 9. Initial data (left) and multi-adaptive time steps (right) for the solution of the wave
equation.
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Fig. 10. The solution of the wave equation at times t = 0.25, t = 0.4, t = 0.45 and t = 0.6.
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Fig. 11. The mesh used for the solution of the wave equation on a domain intersected by a thin
wall with a narrow slit (left) and details of the mesh close to the slit (right).
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7. CONCLUSIONS

We have presented algorithms and data structures for multi-adaptive time-stepping,
including the recursive construction of time slabs and efficient interpolation of
multi-adaptive solutions. The efficiency of the multi-adaptive methods was demon-
strated for a pair of benchmark problems. The multi-adaptive methods mcG(q)
and mdG(q) are available as components of DOLFIN, together with implementa-
tions of the standard mono-adaptive cG(q) and dG(q) methods. The ODE solvers
of DOLFIN are currently being integrated with other components of the FEniCS
project, in particular the FEniCS Form Compiler (FFC) [Logg et al. 2006; Kirby
and Logg 2006; 2007] in order to provide reliable, efficient and automatic integration
of time dependent PDEs.
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