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ABSTRACT 
Application-specific instruction set extension is an effective 
technique for reducing accesses to components such as on- and 
off-chip memories, register file and enhancing the energy 
efficiency. However, the addition of custom functional units to 
the base processor is required for supporting custom 
instructions, which due to the increase of manufacturing and 
design costs in new nanometer-scale technologies and shorter 
time-to-market, is becoming an issue. To address above issues, 
in our proposed approach, an optimized reconfigurable 
functional unit is used instead, and instruction set customization 
is done after chip-fabrication. Therefore, while maintaining the 
flexibility of a conventional microprocessor, the low-energy 
feature of customization is applicable. Experimental results 
show that the maximum and average energy savings are 67% 
and 22%, respectively for our proposed architecture framework.   

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles – 
Adaptable architectures. 

General Terms: Performance, Design, Experimentation. 

Keywords: Custom Instruction, Reconfigurable Functional 
Unit, Conditional Execution, Low Energy Embedded Processor. 

1. INTRODUCTION 
The requirement of portability of embedded systems places 
severe restrictions on power consumption. Even though battery 
technology is improving continuously, battery life-time and 
battery weight are issues. Moreover, more computing power is 
required by these devices for future generations due to more 
functionality of the applications [6]. These properties raise the 
need to increase the energy efficiency of embedded systems.  

Hardware/software partitioning [8] is shown to be effective for 
minimizing the power consumption of processor-based 
embedded systems. Other effective techniques are using 

Application Specific Instruction set Processors (ASIPs) and 
extensible processors [1][3][4][7][9][21]. A custom instruction 
(CI) encapsulates the computation of a frequently executed 
subgraph of the program’s dataflow graph (DFG). Using CIs 
results not only in more speedup but also less energy 
consumption [3][5][17][5] due to reducing accesses to different 
components of the base processors (e.g. memories, decoder, 
register file, branch predictor, etc) compared to a conventional 
embedded processor. The target of these approaches is custom 
hardware. Although performance and energy efficiency can be 
obtained through custom hardwired implementation, it impacts 
flexibility. Moreover, the time and cost of designing and 
verifying a base processor with augmented custom hardware, 
causes many issues associated with designing a new processor 
from scratch, such as longer time-to-market and significant NRE 
(Non-Recurring Engineering) costs, specially that the NRE  and 
design costs keep on increasing for the new technologies 
[6][13]. Hence, reconfigurability is becoming more important in 
future embedded processors [20].  

In this paper, we describe our proposed ADaptive EXtensible 
processOR (ADEXOR) in which, CIs are generated and added 
after chip-fabrication. To cover higher percentage of dynamic 
instructions, unlike other methods for identifying and generating 
optimal set of CIs such as [1][4][7][21] that focus on CIs with 
single entry and single exit, we propose CIs with single entry 
but multiple exits (The CI entries and exits that we refer to are 
control dependencies for one node as opposed to data 
dependencies). Consequently, the proposed multi-exit CIs 
(MECIs) can cover hot directions of several branches into the CI 
without being limited to selecting just one or all of the 
directions. This brings about larger CIs, more instruction level 
parallelism (ILP), hiding branch misprediction penalty and 
reduction in accesses to the branch predictor. Moreover, we use 
a coarse-grain reconfigurable functional unit (referred in this 
paper as CRFU) instead of custom functional units, which 
brings flexibility and enables to support more CIs.  

The main contributions of this paper are i) proposing various 
architectures for integrating CRFU with the base processor, ii) 
proposing two methods for invocating MECIs, and iii) energy 
consumption, area overhead, and performance evaluation of 
various proposed configurations of ADEXOR. In Section 2, we 
highlight the related work. The subjects related to MECIs are 
discussed in Section 3. Then in Section 4, the architecture of the 
CRFU is given. The experimental results are presented in 
Section 5 and finally paper is closed by conclusions. 
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2. RELATED WORK 
The conventional embedded processors are the cheapest and the 
most flexible devices for implementing embedded systems, 
however their energy consumption is very high.  
Henkel [8] presents an approach that minimizes the power 
consumption of embedded systems through hardware/software 
partitioning among a processor and ASICs. A concept of 
instruction subsetting is introduced in [5] to create an ASIP 
from a more general processor. This work defines the notion of 
instruction subsetting and explores its use as a means of 
reducing power consumption from the system level of design. 
The work in [17] describes an automatic methodology to select 
CIs for an extensible processor, in order to maximize its 
performance/energy efficiency for a given application. Biswas 
et al., present an instruction set extension identification 
technique in [3] that can automatically identify state-holding 
custom functional units, thus being able to reduce memory 
traffic from cache and main memory to improve performance 
and reduce energy. The target of these approaches is custom 
hardware. Significant manufacturing and design costs and 
shrinking time-to-market are issues of these approaches [6][13].  

Although reconfigurable hardware consume more energy 
compared to custom hardware, they’ve been shown to be 
effective in energy saving while increasing flexibility. Wan et 
al. [19] present a fine-grain loosely-coupled reconfigurable 
architecture template for low-power digital signal processing, 
and then an energy conscious design methodology to bridge the 
algorithm to architecture gap. Stitt [16] describes a loop-
oriented partitioning for moving critical code from software to a 
fine-grain loosely-coupled accelerator. They show the 
effectiveness of their proposed method in energy reduction as 
well as obtaining higher speedup. XiRisc [9] is a VLIW 
processor with a tightly coupled fine-grain reconfigurable 
functional unit. Mapping computation intensive algorithmic 
portions on the reconfigurable unit allows a more efficient 
elaboration, thus leading to an improvement in both timing 
performance and power consumption. Fine-grain reconfigurable 
accelerators allow for very flexible computations, but they 
consume more energy, have a longer latency and 
reconfiguration time compared to coarse grain counterparts. 
Moreover, they need a larger configuration memory (i.e. more 
energy consumption and area overhead). 

CRISP [2] is a coarse-grain reconfigurable processor designed 
for multimedia applications. Its reconfigurable functional unit is 
composed of complex blocks such as ALUs and is tightly 
coupled with the base processor. Average 2.5 times the 
performance of a RISC processor is achieved with an average of 
18% energy increase. The proposed reconfigurable processors 
need new programming model, new compiler, source code 
modifications, or new opcode for CIs which results in binary or 
object code incompatibility.  

The method proposed in [10] shows the effectiveness of 
dynamic hardware/software partitioning on energy reduction by 
using binary code instead of source code. However, it needs an 
online profiler and hardware for dynamic optimization and 
synthesis. In this method, loops are accelerated on their 
proposed fine-grain configurable logic. 

In our approach a coarse-grain reconfigurable functional unit is 
used, however to make it more energy efficient, the amount of 
augmented hardware is evaluated through a quantitative 
approach [12]. In the proposed architecture there is no need to a 
new programming model, new compiler, or new opcodes which 
obviate rewriting or recompiling the source codes. 
Consequently, our approach maintains binary compatibility and 
is applicable to cases where the source code is not available.  

3. MULTI-EXIT CUSTOM INSTRUCTIONS 
3.1 Motivation Example  
Fig. 1 shows the control flow graph (CFG) of a part of the main 
loop in adpcm[11]. This part of loop contains six basic blocks 
(BB1 to BB6). Each node represents an instruction of the base 
processor. In order to have single-entry, single-exit CIs (atomic 
CIs), generating CI should be limited to one basic block or both 
taken and not-taken directions of branches should be included in 
the CI. If CI is limited to one basic block, due to the small basic 
blocks, no considerable improvement will be obtained for Fig. 
1.  
On the other hand, there are two main issues for including both 
taken and not-taken directions of branches into a CI. First, for 
some cases the target of taken direction of a branch is very far, 
or there are some nested branches. In these cases collapsing both 
taken and not-taken directions of branches results in very large 
CIs. However, there are always area constraints.  

When the target of CIs is a reconfigurable hardware, where the 
instruction set extension is done after chip-fabrication, there are 
hardware resource constraints that limit the size of CIs. Suppose 
that there is a CRFU that can support up to 9 primitive 
instructions (nodes) and only atomic CIs are allowed. Therefore, 
the CI for Fig. 1 (starting from node 0) should be limited to BB1 
while there is still hardware for more 5 nodes in the CRFU that 
are not used. However, if the CI were not limited to single exit, 
then the CI could be extended up to node 8, hence hardware 
resources in the CRFU could be used more efficiently. For this 
extension, the CI needs to support more than one exit. In this 
example, the CI has two exits at nodes 6 (taken direction of 
branch) and 8. If the taken direction of node 6 should be 
followed at execution time, although nodes 7 and 8 are included 
in the CI, they should not be executed or should not affect the 
final results. Hence, the MECIs are said to be non-atomic. 

The second issue is that the execution frequencies of taken and 
not-taken directions widely vary for different branches.  

Fig. 1. Control flow graph of a part of adpcm loop 

For example, in Fig.1, for the branches of nodes 4 and 6 the 
execution frequency of taken and not-taken is almost 50%-50% 
and 40%-60%, respectively. However for the branch of node 13, 
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it is 95%-5%. Hence, for nodes 4 and 6, it is worth to collapse 
both directions in the CI but for node 13, excluding not-taken 
direction of branch from CI and adding more nodes from taken 
direction (starting from node 19) instead, results in more 
efficient use of the available hardware resources of the CRFU.  

3.2 Tool Chain for Generating MECIs 
Fig. 2 shows the tool chain that is used for generating MECIs. 
First, the applications are run on an instruction set simulator and 
profiled (our simulation environment is based on Simplescalar-
PISA configuration [15]). Using the profiling data, the hot basic 
blocks (HBBs are basic blocks with an execution frequency 
more than a given threshold) are detected, read from object 
code, and linked to make a hot instruction sequence (HIS). The 
HIS is a link list of HBBs which is used as an input for 
generating MECIs. Indirect jump, call, return, and hot backward 
branches determine the end points (terminal) of a HIS.  

MECIs should not cross loop boundaries, since they result in 
multi-entry CIs which we do not support. Therefore, hot loops 
are detected and sorted from the innermost loop to the outermost 
in the ascending order considering the start addresses. To 
generate a HIS, the start address of the first HBB of the loop is 
checked whether it has been covered by previous MECIs or not. 
If it has not been covered, the HBB is read from the object code 
and added to the current HIS. An HBB reading terminates when 
a control instruction is encountered. Then a recursive function is 
applied to the last instruction of the HBB (which is a control 
instruction) for linking HBBs of hot directions to the HIS. This 
function examines the last instruction of the HBB. If it is 
indirect jump, return, call, or hot backward branch it returns 
from the function. If it is a branch and not-taken direction is hot, 
the function recalls itself with the target address of not-taken 
direction and if taken direction is hot, it is recalled with the 
target address of taken direction. In this way the HBBs are 
linked to each other and a HIS is generated[12]. 

Fig. 2. Tool chain for generating MECIs 

Fig. 3. Generated HIS for Fig. 1   

This process is repeated for each new added HBB until HIS 
reaches to the end (terminal) points in all directions. After 
processing the loops, the process is continued for the remaining 
HBBs. The remaining HBBs are sorted in ascending order 
according to the start address and then HIS generation starts 
from the smallest address to the largest using a similar 
algorithm. The control dataflow graph (CDFG) is then generated 
for each HIS and passed to the MECI generator. Fig. 3 shows 

the HIS for Fig. 1, assuming that the node 21 is a hot backward 
branch to node 0 and not-taken direction of node 13 is not hot.  

3.3 Generating MECIs 
In the current implementation, each MECI includes only fixed- 
point instructions except multiply, divide, and load. It can 
support at most one store instruction. 

MECI generator looks for the largest sequence of instruction 
(subgraph) that can be executed on the CRFU, in the CDFG. 
Then, after checking the flow-, anti-, and output-dependence 
between instructions, valid instructions in each HBB are moved 
and added to the entry point (head) and exit point(s) (tails) of 
the detected largest instruction sequence (subgraph).  Valid 
instructions are those instructions that can be executed by the 
CRFU and invalid (i.e. floating point, load, divide, multiply, 
second store) are those that are not supported by the CRFU.  

For those parts where instructions are moved, the object code is 
rewritten. Moving instructions should be limited inside a basic 
block. In the current version, a MECI can have up to four exit 
points. The types of exit points are: i) branch with only one hot 
direction, ii) indirect jump and return, iii) call, iv) hot backward 
branch and v) an instruction whose descendant instruction is 
invalid. Exit point addresses of a MECI are detected and saved 
as part of its configuration data. These are used to select a valid 
exit point when the MECI is executed on the CRFU [12]. Fig. 4 
shows the CFG of generated MECI (with four exits) for the HIS 
of Fig. 3 as well as the object code before and after generating 
MECI. The bold instructions are those instructions that have 
been collapsed into the MECI. Note that, 1) nodes 1 and 9 are 
load (invalid) instructions, 2) nodes 0, 10 and 11 are valid 
instructions 3) there is no data-dependences between nodes 0 
and 1 and also nodes 9 and 10, 4) there are data-dependences 
between nodes 9 and 11, and 5) nodes 0 and 1 and also nodes 9 
and 10 have been swapped in the object code. 

 

Fig. 4. Generated MECI for HIS of Fig. 3   
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Fig. 5. Proposed architecture for the CRFU

3.4 Invocating MECIs  
Two MECI invocation techniques are proposed to handle MECIs 
detection and execution during run-time. In the first method 
(invoke-mtc1) the entry point instruction of the subgraph of each 
MECI is overwritten by mtc1 (move to coprocessor) instruction 
in the object code to flag the start of a MECI. When the 
application is executed on the base processor and the mtc1 is 
decoded, its operand is used for indexing and loading 
configuration bits from configuration memory of the CRFU for 
the corresponding MECI.  

In the second approach (invoke-seq), a hardware called sequencer 
is utilized. The sequencer is a CAM (Context Address Memory) 
that keeps the addresses of entry nodes of MECIs (e.g. in Fig. 4 
0x400418 is saved in the sequencer). Then, for each access to the 
instruction cache, the program counter is applied to the 
sequencer. For a hit the corresponding data is used for indexing 
the configuration memory to load the configuration bits of the 
MECI on the CRFU. Obviously invoke-seq imposes more area 
and energy overhead compared to invoke-mtc1. However, in 
invoke-mtc1 we have the overhead for fetching and executing 
mtc1 instructions and hence, less dynamic instructions coverage. 

4. THE ARCHITECTURE OF THE CRFU 
Our CRFU is a coarse-grain accelerator based on matrix of 
functional units (FUs) that support fixed point operations 
(excluding multiply and divide). It has eight inputs and six 
outputs. The width, depth and number of FUs of the CRFU are 6, 
5, and 16 respectively. The final architecture of the CRFU is 
shown in Figure 5. The 8 input ports have been replicated and 
distributed among different rows to facilitate data access (7, 3, 2, 
2, and 1 inputs for Row1 to Row5, respectively). The output of 
each FU in a row can be used by all FUs in the subsequent row 
(connections with length one). Besides to these connections, 
there are four connections with length two (Row1  Row3 × 2, 
Row2  Row4 × 2) and two connections with length three 
(Row1  Row4, Row2  Row5) and one connection with 
length four (Row1  Row5).   

The HDL code of the CRFU was developed and synthesized 
using Design Compiler (from Synopsys) and Hitachi 0.18μm 
library. The area of the CRFU is 1.7 mm2. The CRFU needs 375 
bits for control signals and 240 bits for immediate values and exit 
points. Therefore, each MECI requires a total of 615 bits for 
configuration. CRFU is a multi-cycle functional unit, to avoid 
being the critical path of the circuit. Each FU output can be 
accessed directly via the output ports of the CRFU and the depth 

of each MECI (length of critical path in the DFG) is known after 
mapping. Due to these facts, the CRFU can have a variable 
execution time in terms of the number of clock cycles, in which 
the required execution clock cycles are determined according to 
the depth of each MECI, the clock frequency of the base 
processor, and the delays of the CRFU for MECIs with various 
depths from 1 to 5 (which are 2.3ns, 4.2ns, 6.1ns, 8.0ns, and 
9.8ns, respectively). According to the synthesis result, the clock 
frequency of ADEXOR is 130MHz, therefore, MECIs with 
depths 1, 2, and 3 need one clock cycle while MECIs with depth 
4 and 5 require two clock cycles to be executed on the CRFU.  

The CRFU is tightly coupled with the base processor. It is in 
parallel with the ALU. It reads/writes to/from the register file. 
The ADEXOR has two phases: configuration phase and normal 
phase. The configuration phase is done offline. In configuration 
phase, the tool chain in Fig. 2 is used for generating MECIs and 
their corresponding configuration bit-stream which are stored in 
the configuration memory. Inserting mtc1 instructions or 
initializing sequencer are done in this phase as well. In the 
normal phase the bit-streams from the configuration memory are 
used and loaded on the CRFU for executing MECIs. 

5. EXPERIMENT RESULTS 
It is assumed that the base processor is a single issue in-order 
RISC processor (MIPS instruction set) with one ALU, one 
multiplier, one divider and floating point unit. Multiply and 
divide are run in parallel with ALU operations. The register file 
is exploited with four read ports and two write ports containing 
32×32-bit registers. According to the synthesis results, 
multiplication and division take 5 and 8 cycles, respectively. 
Table 1 includes further details of the base processor.  

The CRFU has 8 inputs and 6 outputs (Fig. 5) but the register file 
includes 4-read/2-write ports. We examine two architectures for 
integrating CRFU with the base processor. For the first 
architecture (referred as arch1), the available register file is used 
and the numbers of read/write ports of the register file are not 
modified. In this case for MECIs with more than four inputs, one 
more clock cycle is needed for reading other extra inputs. Also 
for MECIs with more than two outputs and less than five one 
extra clock cycle and for MECIs with more than four outputs two 
extra clock cycles are required for writing the results to the 
register file. For the second architecture (referred as arch2) the 4-
read/2-write ports register file is replaced with an 8-read/ 4-write 
ports register file. In this case only one extra clock cycle is 
needed for MECIs with more than four outputs, however it 
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affects the area overhead, clock frequency and energy 
consumption. We use different applications from Mibecnh [11] to 
perform the experiments. 

Table 1. Base Processor Configuration 
Issue 1-way 

L1-I Cache, L1-D Cache 32K, 4 way, 1 cycle latency 
for hit,  20 cycles for miss 

Execution units 1 Int unit, 1 FP unit , 1 div (8 
cycles), 1 mult (5 cycles) 

Branch predictor bimodal 

Branch prediction table size 256 

Extra branch misprediction 3 
Clock frequency 135 MHz 

●Area overhead 
The base processor (Table 1) was modeled using VHDL and 
synthesized using Hitachi 0.18μm library. The area of the base 
processor (without considering instruction and data caches) is 
4.5mm2. We modeled the instruction and data caches using 
CACTI [18] for 0.18μm. The area of a 32KB 4-way cache is 
2.25mm2. Considering the area of caches, the total area of the 
base processor is 9.0 mm2. 

The area of CRFU is 1.7 mm2 (Section 4). Each MECI needs 
totally 615 bits (~ 80 bytes) for its configuration bit-stream. The 
configuration memory is assumed to keep up to 32 MECIs. 
Therefore, the size of the configuration memory is 80×32 bytes 
SRAM with a 640-bit width data bus, so that in one clock cycle 
the configuration can be loaded to the CRFU. The configuration 
memory was modeled using CACTI in 0.18μm. The area of 
configuration memory is 0.56mm2. By adding the CRFU and 
configuration memory to the base processor (arch1) the area 
increases by 25.1%. In the case of using invoke-seq for 
invocating MECIs, the area of the sequencer (0.092mm2) should 
also be considered, which results in 26.1% area overhead. By 
replacing the original register file with the one including 8-
read/4-write ports, the area of ADEXOR (arch2) compared to the 
base processor increases by 30% for invoke-mtc1 and 31% for 
invoke-seq. The clock frequency decreases by 3.7% (to 
130MHz).   

●Energy Consumption Evaluation 
The power consumption of the base processor and the CRFU 
(Hitachi 0.18μm) are 71.5mW and 229.7mW, respectively. The 
power consumption of CRFU is larger than the base processor, 
however it is used only for executing MECIs, while the base 
processor is used in each clock cycle. We used CACTI 4.2 [18] 
to determine the energy for accessing a 32KB 4-way caches 
(instruction and data) and configuration memory (in 0.18μm), 
which are 0.294 nJ and 0.146 nJ, respectively. According to [22] 
it is assumed that for each cache miss and access to off-chip 
memory 25.0 nJ energy is consumed.  

Using invoke-seq, there is another energy overhead that relates to 
the sequencer (which is a CAM). According to CACTI 4.2 the 
energy for each access to a full-set-associative memory with 32 
entries is 0.184 nJ. For arch2 compared to arch1, there is another 
energy overhead using a register file with more read/write ports. 
In 180nm the leakage power is negligible compared to the active 
power [14], therefore, it has been neglected in our evaluation. 

Using MECIs and the CRFU result in less energy consumption 
because of shorter execution time and fewer accesses to different 
components of the base processor such as decoder, branch 
predictor, register file, ALU, and instruction cache. Reduction in 
access to instruction cache results in fewer instruction cache 
misses, hence fewer off-chip memory accesses which are too 
energy consuming. Fig. 6 shows the access reduction percentage 
of different components of the base processor for invoke-seq 
approach applied to different applications of Mibench. 

Reduction of instruction cache misses is up to 48% for fft. As 
expected, because the register file has been shared between the 
CRFU and the ALU, the percentage of its access reduction is less 
compared to the other components. Besides, for the register file, 
before executing each MECI all the required input registers for 
different paths in a MECI should be read. avg-seq and avg-mtc1 
show the average access reduction regarding to the two proposed 
MECI invocation approaches: invoke-seq and invoke-mtc1. The 
avg-mtc1 is almost 7% less compared to avg-seq, due to the mtc1 
instructions execution overhead. The average instruction cache 
miss reduction for invoke-seq is 8.2% while for invoke-mtc1 is 
7.5%. The average access reduction for instruction cache, register 
file, branch predictor, and other components are 55%, 23%, 42% 
and around 55% using invoke-seq, respectively. 
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Fig. 6. Access reduction to different components of the base 
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Fig. 7. Breakdown of energy consumption for arch1/mtc1  

Fig. 7 and 8 show the normalized breakdown of energy 
consumption for arch1/mtc1 and arch2/sequencer. The energy 
consumption of the base processor is assumed to be 100%. For 
arch1/mtc1 energy consumption is reduced for all applications, 
however, for arch2/sequencer, some applications (e.g. basicmath, 
dijkstra, and patricia) consume more energy compared to the 
base processor, due to the sequencer and larger register file. For 
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applications like adpcm, crc, gsm, and sha that MECIs cover a 
high percentage of dynamic instructions, more energy saving is 
obtained compared to other applications. Using MECIs and the 
CRFU improves the performance as well. Table 2 shows the 
minimum, maximum and average energy saving and speedup for 
different configurations of ADEXOR. 
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Fig. 8. Breakdown of energy consumption for 

arch2/sequencer  

Table 2. Min, Max and Average energy saving and speedup 
for different configurations of ADEXOR 

 Energy Saving  

Min,Max,Avg(%) 

Speedup 

Min,Max,Avg 

Area 
Overhead 

arch1/mtc1 4.8, 56, 21.9 1.0, 3.6, 1.47 25.1% 

arch1/sequencer -3.1, 48.3, 18.9 1.13, 4.4, 1.67 26.1% 

arch2/mtc1 1.9, 66.7, 16.0 0.92, 3.9, 1.58 30% 

arch2/sequencer -8.1, 56.7, 13.6 1.1, 4.9, 1.87 31% 

6. CONCLUSIONS 
To shorten time-to-market and reduce high design and NRE costs 
of extensible processors, an adaptive extensible processor was 
proposed in which CIs are generated and added after fabrication. 
An approach was presented for generating and executing CIs 
including multiple basic blocks. These CIs can include branch 
instructions and have single-entry but multiple exits. The coarse-
grain reconfigurable functions unit used for executing MECIs is 
based on functional units with 8 inputs, 6 outputs and 16 FUs. 

Two techniques were used for invocating MECIs including: 
invoke-seq and invoke-mtc1. In invoke-seq approach, more 
hardware (more area and energy overhead) is needed, however it 
can cover more dynamic instructions compared to invoke-mtc1 
approach. Using invoke-seq approach results in more average 
speedup (30% more compared to mtc1) while by using invoke-
mtc1 approach, more average energy saving (3% more compared 
to invoke-seq) can be reached. We also tried two architectures for 
integrating the CRFU with the base processor. In one case the 
register file has 4-read/2-write ports (arch1) and in the other case 
it has 8-read/4-write ports (arch2). Larger register file in arch2 
results in 5% more area overhead and 20% more speedup while 
5% less energy saving can be obtained compared to arch1, in 
average. Experimental results show that the energy consumption 
is reduced up to 67% and 22% in average.  
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