
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Enhancing Energy Efficiency of Processor-Based
Embedded Systems through Post-Fabrication ISA
Extension

Noori, Hamid
Institute of Systems, Information Technologies and Nanotechnologies

Mehdipour, Farhad
Research Institute for Information Technology, Kyushu University

Inoue, Koji
Department of Informatics, Kyushu University

Murakami, Kazuaki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/11887

出版情報：International Symposium on Low Power Electronics and Design. 2008, pp.241-246, 2008-
08-12
バージョン：
権利関係：

Enhancing Energy Efficiency of Processor-Based Embedded
Systems through Post-Fabrication ISA Extension
Hamid Noori

Institute of Systems, Information
Technologies and Nanotechnologies
2-1-22 Momochihama- Sawara-ku,

Fukuoka 814-0001, Japan
+81-92-852-3450
noori@isit.or.jp

Farhad Mehdipour
Research Institute for Information
Technology, Kyushu University

3-8-33, Momochihama, Sawara-ku,
Fukuoka, 814-0001, Japan

+81-92-847-5190
farhad@c.csce.kyushu-u.ac.jp

Koji Inoue Kazuaki Murakami
Department of Informatics,

Kyushu University
744 Motooka Nishi-ku,

Fukuoka 819-0395, Japan
+81-92-802-3794

{inoue, murakami}@i.kyushu-u.ac.jp

ABSTRACT
Application-specific instruction set extension is an effective
technique for reducing accesses to components such as on- and
off-chip memories, register file and enhancing the energy
efficiency. However, the addition of custom functional units to
the base processor is required for supporting custom
instructions, which due to the increase of manufacturing and
design costs in new nanometer-scale technologies and shorter
time-to-market, is becoming an issue. To address above issues,
in our proposed approach, an optimized reconfigurable
functional unit is used instead, and instruction set customization
is done after chip-fabrication. Therefore, while maintaining the
flexibility of a conventional microprocessor, the low-energy
feature of customization is applicable. Experimental results
show that the maximum and average energy savings are 67%
and 22%, respectively for our proposed architecture framework.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles –
Adaptable architectures.

General Terms: Performance, Design, Experimentation.

Keywords: Custom Instruction, Reconfigurable Functional
Unit, Conditional Execution, Low Energy Embedded Processor.

1. INTRODUCTION
The requirement of portability of embedded systems places
severe restrictions on power consumption. Even though battery
technology is improving continuously, battery life-time and
battery weight are issues. Moreover, more computing power is
required by these devices for future generations due to more
functionality of the applications [6]. These properties raise the
need to increase the energy efficiency of embedded systems.

Hardware/software partitioning [8] is shown to be effective for
minimizing the power consumption of processor-based
embedded systems. Other effective techniques are using

Application Specific Instruction set Processors (ASIPs) and
extensible processors [1][3][4][7][9][21]. A custom instruction
(CI) encapsulates the computation of a frequently executed
subgraph of the program’s dataflow graph (DFG). Using CIs
results not only in more speedup but also less energy
consumption [3][5][17][5] due to reducing accesses to different
components of the base processors (e.g. memories, decoder,
register file, branch predictor, etc) compared to a conventional
embedded processor. The target of these approaches is custom
hardware. Although performance and energy efficiency can be
obtained through custom hardwired implementation, it impacts
flexibility. Moreover, the time and cost of designing and
verifying a base processor with augmented custom hardware,
causes many issues associated with designing a new processor
from scratch, such as longer time-to-market and significant NRE
(Non-Recurring Engineering) costs, specially that the NRE and
design costs keep on increasing for the new technologies
[6][13]. Hence, reconfigurability is becoming more important in
future embedded processors [20].

In this paper, we describe our proposed ADaptive EXtensible
processOR (ADEXOR) in which, CIs are generated and added
after chip-fabrication. To cover higher percentage of dynamic
instructions, unlike other methods for identifying and generating
optimal set of CIs such as [1][4][7][21] that focus on CIs with
single entry and single exit, we propose CIs with single entry
but multiple exits (The CI entries and exits that we refer to are
control dependencies for one node as opposed to data
dependencies). Consequently, the proposed multi-exit CIs
(MECIs) can cover hot directions of several branches into the CI
without being limited to selecting just one or all of the
directions. This brings about larger CIs, more instruction level
parallelism (ILP), hiding branch misprediction penalty and
reduction in accesses to the branch predictor. Moreover, we use
a coarse-grain reconfigurable functional unit (referred in this
paper as CRFU) instead of custom functional units, which
brings flexibility and enables to support more CIs.

The main contributions of this paper are i) proposing various
architectures for integrating CRFU with the base processor, ii)
proposing two methods for invocating MECIs, and iii) energy
consumption, area overhead, and performance evaluation of
various proposed configurations of ADEXOR. In Section 2, we
highlight the related work. The subjects related to MECIs are
discussed in Section 3. Then in Section 4, the architecture of the
CRFU is given. The experimental results are presented in
Section 5 and finally paper is closed by conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’08, August 11–13, 2008, Bangalore, India.
Copyright 2008 ACM 978-1-60558-109-5/08/08…$5.00.

241

2. RELATED WORK
The conventional embedded processors are the cheapest and the
most flexible devices for implementing embedded systems,
however their energy consumption is very high.
Henkel [8] presents an approach that minimizes the power
consumption of embedded systems through hardware/software
partitioning among a processor and ASICs. A concept of
instruction subsetting is introduced in [5] to create an ASIP
from a more general processor. This work defines the notion of
instruction subsetting and explores its use as a means of
reducing power consumption from the system level of design.
The work in [17] describes an automatic methodology to select
CIs for an extensible processor, in order to maximize its
performance/energy efficiency for a given application. Biswas
et al., present an instruction set extension identification
technique in [3] that can automatically identify state-holding
custom functional units, thus being able to reduce memory
traffic from cache and main memory to improve performance
and reduce energy. The target of these approaches is custom
hardware. Significant manufacturing and design costs and
shrinking time-to-market are issues of these approaches [6][13].

Although reconfigurable hardware consume more energy
compared to custom hardware, they’ve been shown to be
effective in energy saving while increasing flexibility. Wan et
al. [19] present a fine-grain loosely-coupled reconfigurable
architecture template for low-power digital signal processing,
and then an energy conscious design methodology to bridge the
algorithm to architecture gap. Stitt [16] describes a loop-
oriented partitioning for moving critical code from software to a
fine-grain loosely-coupled accelerator. They show the
effectiveness of their proposed method in energy reduction as
well as obtaining higher speedup. XiRisc [9] is a VLIW
processor with a tightly coupled fine-grain reconfigurable
functional unit. Mapping computation intensive algorithmic
portions on the reconfigurable unit allows a more efficient
elaboration, thus leading to an improvement in both timing
performance and power consumption. Fine-grain reconfigurable
accelerators allow for very flexible computations, but they
consume more energy, have a longer latency and
reconfiguration time compared to coarse grain counterparts.
Moreover, they need a larger configuration memory (i.e. more
energy consumption and area overhead).

CRISP [2] is a coarse-grain reconfigurable processor designed
for multimedia applications. Its reconfigurable functional unit is
composed of complex blocks such as ALUs and is tightly
coupled with the base processor. Average 2.5 times the
performance of a RISC processor is achieved with an average of
18% energy increase. The proposed reconfigurable processors
need new programming model, new compiler, source code
modifications, or new opcode for CIs which results in binary or
object code incompatibility.

The method proposed in [10] shows the effectiveness of
dynamic hardware/software partitioning on energy reduction by
using binary code instead of source code. However, it needs an
online profiler and hardware for dynamic optimization and
synthesis. In this method, loops are accelerated on their
proposed fine-grain configurable logic.

In our approach a coarse-grain reconfigurable functional unit is
used, however to make it more energy efficient, the amount of
augmented hardware is evaluated through a quantitative
approach [12]. In the proposed architecture there is no need to a
new programming model, new compiler, or new opcodes which
obviate rewriting or recompiling the source codes.
Consequently, our approach maintains binary compatibility and
is applicable to cases where the source code is not available.

3. MULTI-EXIT CUSTOM INSTRUCTIONS
3.1 Motivation Example
Fig. 1 shows the control flow graph (CFG) of a part of the main
loop in adpcm[11]. This part of loop contains six basic blocks
(BB1 to BB6). Each node represents an instruction of the base
processor. In order to have single-entry, single-exit CIs (atomic
CIs), generating CI should be limited to one basic block or both
taken and not-taken directions of branches should be included in
the CI. If CI is limited to one basic block, due to the small basic
blocks, no considerable improvement will be obtained for Fig.
1.
On the other hand, there are two main issues for including both
taken and not-taken directions of branches into a CI. First, for
some cases the target of taken direction of a branch is very far,
or there are some nested branches. In these cases collapsing both
taken and not-taken directions of branches results in very large
CIs. However, there are always area constraints.

When the target of CIs is a reconfigurable hardware, where the
instruction set extension is done after chip-fabrication, there are
hardware resource constraints that limit the size of CIs. Suppose
that there is a CRFU that can support up to 9 primitive
instructions (nodes) and only atomic CIs are allowed. Therefore,
the CI for Fig. 1 (starting from node 0) should be limited to BB1
while there is still hardware for more 5 nodes in the CRFU that
are not used. However, if the CI were not limited to single exit,
then the CI could be extended up to node 8, hence hardware
resources in the CRFU could be used more efficiently. For this
extension, the CI needs to support more than one exit. In this
example, the CI has two exits at nodes 6 (taken direction of
branch) and 8. If the taken direction of node 6 should be
followed at execution time, although nodes 7 and 8 are included
in the CI, they should not be executed or should not affect the
final results. Hence, the MECIs are said to be non-atomic.

The second issue is that the execution frequencies of taken and
not-taken directions widely vary for different branches.

Fig. 1. Control flow graph of a part of adpcm loop

For example, in Fig.1, for the branches of nodes 4 and 6 the
execution frequency of taken and not-taken is almost 50%-50%
and 40%-60%, respectively. However for the branch of node 13,

242

it is 95%-5%. Hence, for nodes 4 and 6, it is worth to collapse
both directions in the CI but for node 13, excluding not-taken
direction of branch from CI and adding more nodes from taken
direction (starting from node 19) instead, results in more
efficient use of the available hardware resources of the CRFU.

3.2 Tool Chain for Generating MECIs
Fig. 2 shows the tool chain that is used for generating MECIs.
First, the applications are run on an instruction set simulator and
profiled (our simulation environment is based on Simplescalar-
PISA configuration [15]). Using the profiling data, the hot basic
blocks (HBBs are basic blocks with an execution frequency
more than a given threshold) are detected, read from object
code, and linked to make a hot instruction sequence (HIS). The
HIS is a link list of HBBs which is used as an input for
generating MECIs. Indirect jump, call, return, and hot backward
branches determine the end points (terminal) of a HIS.

MECIs should not cross loop boundaries, since they result in
multi-entry CIs which we do not support. Therefore, hot loops
are detected and sorted from the innermost loop to the outermost
in the ascending order considering the start addresses. To
generate a HIS, the start address of the first HBB of the loop is
checked whether it has been covered by previous MECIs or not.
If it has not been covered, the HBB is read from the object code
and added to the current HIS. An HBB reading terminates when
a control instruction is encountered. Then a recursive function is
applied to the last instruction of the HBB (which is a control
instruction) for linking HBBs of hot directions to the HIS. This
function examines the last instruction of the HBB. If it is
indirect jump, return, call, or hot backward branch it returns
from the function. If it is a branch and not-taken direction is hot,
the function recalls itself with the target address of not-taken
direction and if taken direction is hot, it is recalled with the
target address of taken direction. In this way the HBBs are
linked to each other and a HIS is generated[12].

Fig. 2. Tool chain for generating MECIs

Fig. 3. Generated HIS for Fig. 1

This process is repeated for each new added HBB until HIS
reaches to the end (terminal) points in all directions. After
processing the loops, the process is continued for the remaining
HBBs. The remaining HBBs are sorted in ascending order
according to the start address and then HIS generation starts
from the smallest address to the largest using a similar
algorithm. The control dataflow graph (CDFG) is then generated
for each HIS and passed to the MECI generator. Fig. 3 shows

the HIS for Fig. 1, assuming that the node 21 is a hot backward
branch to node 0 and not-taken direction of node 13 is not hot.

3.3 Generating MECIs
In the current implementation, each MECI includes only fixed-
point instructions except multiply, divide, and load. It can
support at most one store instruction.

MECI generator looks for the largest sequence of instruction
(subgraph) that can be executed on the CRFU, in the CDFG.
Then, after checking the flow-, anti-, and output-dependence
between instructions, valid instructions in each HBB are moved
and added to the entry point (head) and exit point(s) (tails) of
the detected largest instruction sequence (subgraph). Valid
instructions are those instructions that can be executed by the
CRFU and invalid (i.e. floating point, load, divide, multiply,
second store) are those that are not supported by the CRFU.

For those parts where instructions are moved, the object code is
rewritten. Moving instructions should be limited inside a basic
block. In the current version, a MECI can have up to four exit
points. The types of exit points are: i) branch with only one hot
direction, ii) indirect jump and return, iii) call, iv) hot backward
branch and v) an instruction whose descendant instruction is
invalid. Exit point addresses of a MECI are detected and saved
as part of its configuration data. These are used to select a valid
exit point when the MECI is executed on the CRFU [12]. Fig. 4
shows the CFG of generated MECI (with four exits) for the HIS
of Fig. 3 as well as the object code before and after generating
MECI. The bold instructions are those instructions that have
been collapsed into the MECI. Note that, 1) nodes 1 and 9 are
load (invalid) instructions, 2) nodes 0, 10 and 11 are valid
instructions 3) there is no data-dependences between nodes 0
and 1 and also nodes 9 and 10, 4) there are data-dependences
between nodes 9 and 11, and 5) nodes 0 and 1 and also nodes 9
and 10 have been swapped in the object code.

Fig. 4. Generated MECI for HIS of Fig. 3

243

Connect ions from input ports to
inputs of the rows

CRFU Input Ports

CRFU Output Ports

Outputs of 1st row to the
inputs of 3rd, 4th and 5th rows

Outputs of 2nd row to the
inputs of 4th and 5th rows

Row1

Row5

Adder/
subtractor AND OR XOR Barrel

Shifter

Configurat ion
bits

Configurat ion
bits

Configurat ion
bits

FU FU FU FU

Fig. 5. Proposed architecture for the CRFU

3.4 Invocating MECIs
Two MECI invocation techniques are proposed to handle MECIs
detection and execution during run-time. In the first method
(invoke-mtc1) the entry point instruction of the subgraph of each
MECI is overwritten by mtc1 (move to coprocessor) instruction
in the object code to flag the start of a MECI. When the
application is executed on the base processor and the mtc1 is
decoded, its operand is used for indexing and loading
configuration bits from configuration memory of the CRFU for
the corresponding MECI.

In the second approach (invoke-seq), a hardware called sequencer
is utilized. The sequencer is a CAM (Context Address Memory)
that keeps the addresses of entry nodes of MECIs (e.g. in Fig. 4
0x400418 is saved in the sequencer). Then, for each access to the
instruction cache, the program counter is applied to the
sequencer. For a hit the corresponding data is used for indexing
the configuration memory to load the configuration bits of the
MECI on the CRFU. Obviously invoke-seq imposes more area
and energy overhead compared to invoke-mtc1. However, in
invoke-mtc1 we have the overhead for fetching and executing
mtc1 instructions and hence, less dynamic instructions coverage.

4. THE ARCHITECTURE OF THE CRFU
Our CRFU is a coarse-grain accelerator based on matrix of
functional units (FUs) that support fixed point operations
(excluding multiply and divide). It has eight inputs and six
outputs. The width, depth and number of FUs of the CRFU are 6,
5, and 16 respectively. The final architecture of the CRFU is
shown in Figure 5. The 8 input ports have been replicated and
distributed among different rows to facilitate data access (7, 3, 2,
2, and 1 inputs for Row1 to Row5, respectively). The output of
each FU in a row can be used by all FUs in the subsequent row
(connections with length one). Besides to these connections,
there are four connections with length two (Row1 Row3 × 2,
Row2 Row4 × 2) and two connections with length three
(Row1 Row4, Row2 Row5) and one connection with
length four (Row1 Row5).

The HDL code of the CRFU was developed and synthesized
using Design Compiler (from Synopsys) and Hitachi 0.18μm
library. The area of the CRFU is 1.7 mm2. The CRFU needs 375
bits for control signals and 240 bits for immediate values and exit
points. Therefore, each MECI requires a total of 615 bits for
configuration. CRFU is a multi-cycle functional unit, to avoid
being the critical path of the circuit. Each FU output can be
accessed directly via the output ports of the CRFU and the depth

of each MECI (length of critical path in the DFG) is known after
mapping. Due to these facts, the CRFU can have a variable
execution time in terms of the number of clock cycles, in which
the required execution clock cycles are determined according to
the depth of each MECI, the clock frequency of the base
processor, and the delays of the CRFU for MECIs with various
depths from 1 to 5 (which are 2.3ns, 4.2ns, 6.1ns, 8.0ns, and
9.8ns, respectively). According to the synthesis result, the clock
frequency of ADEXOR is 130MHz, therefore, MECIs with
depths 1, 2, and 3 need one clock cycle while MECIs with depth
4 and 5 require two clock cycles to be executed on the CRFU.

The CRFU is tightly coupled with the base processor. It is in
parallel with the ALU. It reads/writes to/from the register file.
The ADEXOR has two phases: configuration phase and normal
phase. The configuration phase is done offline. In configuration
phase, the tool chain in Fig. 2 is used for generating MECIs and
their corresponding configuration bit-stream which are stored in
the configuration memory. Inserting mtc1 instructions or
initializing sequencer are done in this phase as well. In the
normal phase the bit-streams from the configuration memory are
used and loaded on the CRFU for executing MECIs.

5. EXPERIMENT RESULTS
It is assumed that the base processor is a single issue in-order
RISC processor (MIPS instruction set) with one ALU, one
multiplier, one divider and floating point unit. Multiply and
divide are run in parallel with ALU operations. The register file
is exploited with four read ports and two write ports containing
32×32-bit registers. According to the synthesis results,
multiplication and division take 5 and 8 cycles, respectively.
Table 1 includes further details of the base processor.

The CRFU has 8 inputs and 6 outputs (Fig. 5) but the register file
includes 4-read/2-write ports. We examine two architectures for
integrating CRFU with the base processor. For the first
architecture (referred as arch1), the available register file is used
and the numbers of read/write ports of the register file are not
modified. In this case for MECIs with more than four inputs, one
more clock cycle is needed for reading other extra inputs. Also
for MECIs with more than two outputs and less than five one
extra clock cycle and for MECIs with more than four outputs two
extra clock cycles are required for writing the results to the
register file. For the second architecture (referred as arch2) the 4-
read/2-write ports register file is replaced with an 8-read/ 4-write
ports register file. In this case only one extra clock cycle is
needed for MECIs with more than four outputs, however it

244

affects the area overhead, clock frequency and energy
consumption. We use different applications from Mibecnh [11] to
perform the experiments.

Table 1. Base Processor Configuration
Issue 1-way

L1-I Cache, L1-D Cache 32K, 4 way, 1 cycle latency
for hit, 20 cycles for miss

Execution units 1 Int unit, 1 FP unit , 1 div (8
cycles), 1 mult (5 cycles)

Branch predictor bimodal

Branch prediction table size 256

Extra branch misprediction 3
Clock frequency 135 MHz

●Area overhead
The base processor (Table 1) was modeled using VHDL and
synthesized using Hitachi 0.18μm library. The area of the base
processor (without considering instruction and data caches) is
4.5mm2. We modeled the instruction and data caches using
CACTI [18] for 0.18μm. The area of a 32KB 4-way cache is
2.25mm2. Considering the area of caches, the total area of the
base processor is 9.0 mm2.

The area of CRFU is 1.7 mm2 (Section 4). Each MECI needs
totally 615 bits (~ 80 bytes) for its configuration bit-stream. The
configuration memory is assumed to keep up to 32 MECIs.
Therefore, the size of the configuration memory is 80×32 bytes
SRAM with a 640-bit width data bus, so that in one clock cycle
the configuration can be loaded to the CRFU. The configuration
memory was modeled using CACTI in 0.18μm. The area of
configuration memory is 0.56mm2. By adding the CRFU and
configuration memory to the base processor (arch1) the area
increases by 25.1%. In the case of using invoke-seq for
invocating MECIs, the area of the sequencer (0.092mm2) should
also be considered, which results in 26.1% area overhead. By
replacing the original register file with the one including 8-
read/4-write ports, the area of ADEXOR (arch2) compared to the
base processor increases by 30% for invoke-mtc1 and 31% for
invoke-seq. The clock frequency decreases by 3.7% (to
130MHz).

●Energy Consumption Evaluation
The power consumption of the base processor and the CRFU
(Hitachi 0.18μm) are 71.5mW and 229.7mW, respectively. The
power consumption of CRFU is larger than the base processor,
however it is used only for executing MECIs, while the base
processor is used in each clock cycle. We used CACTI 4.2 [18]
to determine the energy for accessing a 32KB 4-way caches
(instruction and data) and configuration memory (in 0.18μm),
which are 0.294 nJ and 0.146 nJ, respectively. According to [22]
it is assumed that for each cache miss and access to off-chip
memory 25.0 nJ energy is consumed.

Using invoke-seq, there is another energy overhead that relates to
the sequencer (which is a CAM). According to CACTI 4.2 the
energy for each access to a full-set-associative memory with 32
entries is 0.184 nJ. For arch2 compared to arch1, there is another
energy overhead using a register file with more read/write ports.
In 180nm the leakage power is negligible compared to the active
power [14], therefore, it has been neglected in our evaluation.

Using MECIs and the CRFU result in less energy consumption
because of shorter execution time and fewer accesses to different
components of the base processor such as decoder, branch
predictor, register file, ALU, and instruction cache. Reduction in
access to instruction cache results in fewer instruction cache
misses, hence fewer off-chip memory accesses which are too
energy consuming. Fig. 6 shows the access reduction percentage
of different components of the base processor for invoke-seq
approach applied to different applications of Mibench.

Reduction of instruction cache misses is up to 48% for fft. As
expected, because the register file has been shared between the
CRFU and the ALU, the percentage of its access reduction is less
compared to the other components. Besides, for the register file,
before executing each MECI all the required input registers for
different paths in a MECI should be read. avg-seq and avg-mtc1
show the average access reduction regarding to the two proposed
MECI invocation approaches: invoke-seq and invoke-mtc1. The
avg-mtc1 is almost 7% less compared to avg-seq, due to the mtc1
instructions execution overhead. The average instruction cache
miss reduction for invoke-seq is 8.2% while for invoke-mtc1 is
7.5%. The average access reduction for instruction cache, register
file, branch predictor, and other components are 55%, 23%, 42%
and around 55% using invoke-seq, respectively.

-5

15

35

55

75

95

basic
math

bitc
ount

qsor
t

su
sa

n
cjp

eg
djpeg

dijk
str

a

patri
cia

blo
wfis

h

rijn
dae

l
sh

a

ad
pcm crc fft gsm

str
ingse

arch

av
g-se

q

av
g-m

tc1

A
cc

es
s

re
du

ct
io

n
(%

)
decoder
branch pred
reg file
icache
ALU
icache-miss

Fig. 6. Access reduction to different components of the base

processor for invoke-seq

0
10
20
30
40
50
60
70
80
90

100

bas
icm

ath

bitc
oun

t
qso

rt
su

sa
n
cjp

eg
djpeg

dikj
str

a

patr
ici

a

blowfis
h

rijn
da

el sh
a

ad
pcm crc fft

gsm

str
ing

se
arc

h

En
er

gy
 C

on
su

m
pt

io
n

B
re

ak
do

w
n

Base Processor CRFU Config Mem

Fig. 7. Breakdown of energy consumption for arch1/mtc1

Fig. 7 and 8 show the normalized breakdown of energy
consumption for arch1/mtc1 and arch2/sequencer. The energy
consumption of the base processor is assumed to be 100%. For
arch1/mtc1 energy consumption is reduced for all applications,
however, for arch2/sequencer, some applications (e.g. basicmath,
dijkstra, and patricia) consume more energy compared to the
base processor, due to the sequencer and larger register file. For

245

applications like adpcm, crc, gsm, and sha that MECIs cover a
high percentage of dynamic instructions, more energy saving is
obtained compared to other applications. Using MECIs and the
CRFU improves the performance as well. Table 2 shows the
minimum, maximum and average energy saving and speedup for
different configurations of ADEXOR.

0

20

40

60

80

100

bas
icm

ath

bitc
oun

t
qso

rt
su

sa
n
cjp

eg
djpeg

dijk
str

a

patr
ici

a

blowfis
h

rijn
da

el sh
a

ad
pcm crc fft

gsm

str
ing

se
arc

h

En
er

gy
 C

on
su

m
pt

io
n

Br
ea

kd
ow

n

Base Processor CRFU Config Mem Reg File Sequencer

Fig. 8. Breakdown of energy consumption for

arch2/sequencer

Table 2. Min, Max and Average energy saving and speedup
for different configurations of ADEXOR

 Energy Saving

Min,Max,Avg(%)

Speedup

Min,Max,Avg

Area
Overhead

arch1/mtc1 4.8, 56, 21.9 1.0, 3.6, 1.47 25.1%

arch1/sequencer -3.1, 48.3, 18.9 1.13, 4.4, 1.67 26.1%

arch2/mtc1 1.9, 66.7, 16.0 0.92, 3.9, 1.58 30%

arch2/sequencer -8.1, 56.7, 13.6 1.1, 4.9, 1.87 31%

6. CONCLUSIONS
To shorten time-to-market and reduce high design and NRE costs
of extensible processors, an adaptive extensible processor was
proposed in which CIs are generated and added after fabrication.
An approach was presented for generating and executing CIs
including multiple basic blocks. These CIs can include branch
instructions and have single-entry but multiple exits. The coarse-
grain reconfigurable functions unit used for executing MECIs is
based on functional units with 8 inputs, 6 outputs and 16 FUs.

Two techniques were used for invocating MECIs including:
invoke-seq and invoke-mtc1. In invoke-seq approach, more
hardware (more area and energy overhead) is needed, however it
can cover more dynamic instructions compared to invoke-mtc1
approach. Using invoke-seq approach results in more average
speedup (30% more compared to mtc1) while by using invoke-
mtc1 approach, more average energy saving (3% more compared
to invoke-seq) can be reached. We also tried two architectures for
integrating the CRFU with the base processor. In one case the
register file has 4-read/2-write ports (arch1) and in the other case
it has 8-read/4-write ports (arch2). Larger register file in arch2
results in 5% more area overhead and 20% more speedup while
5% less energy saving can be obtained compared to arch1, in
average. Experimental results show that the energy consumption
is reduced up to 67% and 22% in average.

7. ACKNOWLEDGMENTS
We would like to thank Institute of Systems, Information Technologies and
Nanotechnologies and all members of the System LSI Lab. of Kyushu University.
This research was supported in part by Core Research for Evolutional Science and
Technology (CREST) of Japan Science and Technology Corporation (JST).

8. REFERENCES
[1] Atasu, K., Pozzi, L. and Ienne, P., 2003. Automatic application-

specific instruction-set extension under microarchitectural
constraints. Proc. of DAC.

[2] Barat, F., Lauwereins, R. and Deconinck, G., 2003. Low-Power
Coarse-Grained Reconfigurable Instruction Set Processor,
Proceeding of FPL.

[3] Biswas P., Dutt, N.D., Ienne, P. and Pozzi, L., 2006. Automatic
Identification of Application-Specific Functional Units with
Architecturally Visible Storage, Proceeding of DATE.

[4] Blome, J., Chu, M., Mahlke, S., Biles, S. and Flautner, K., 2005. An
Architecture Framework for Transparent Instruction Set
Customization in Embedded Processors. ISCA.

[5] Dougherty, W., Pursley, D.J., Thomas, D.E., 1999. Subsetting
behavioral intellectual property for low power ASIP design. J. of
VLSI Signal Process.

[6] Furuyama, T., 2007. Challenges of Digital Consumer and Mobile
SoC’s: More Moore Possible? Keynote Address, DATE.

[7] Goodwin, D. and Petkov, D., 2003. Automatic generation of
application specific processors. CASES.

[8] Henkel, J. 1999. A Low-Power Hardware/Software Partitioning
Approach for Core-based Embedded Systems, Proc. of DAC.

[9] Lodi, A. et al.2003. A VLIW Processor with Reconfigurable
Instruction Set for Embedded Applications. IEEE Journal of Solid-
State Circuits, vol. 38, no. 11.

[10] Lysecky, R. and Vahid, F., 2005, A Study of the Speedups and
Competitiveness of FPGA Soft Processor Cores using Dynamic
Hardware/Software Partitioning, Proc. of DATE.

[11] Mibench, www.eecs.umich.edu/mibench
[12] Noori, H., Mehdipour, H., Inoue, K. and Murakami, K., 2008. A

Reconfigurable Functional Unit with Conditional Execution for
Multi-Exit Custom Instructions. IEICE Trans. Electron., Vol. E91-
C, No. 4, pp. 497-508.

[13] Sakurai, T., 2007. Meeting with the forthcoming IC Design,
Keynote Address, Proceeding of ASP-DAC.

[14] Semenov, O. et al. 2003, Burn-in Temperature Projections for Deep
Sub-micro Technologies, International Test Conference.

[15] Simplescalar, www.simplescalar.com
[16] Stitt, G., Lysecky, R. and Vahid, F., 2004, Energy Savings and

Speedups from Partitioning Critical Software Loops to Hardware in
Embedded Systems, ACM Transactions on Embedded Computing
Systems.

[17] Sun, F., Ravi, S., Raghunathan, A. and Jha, N.K., 2004. Custom
Instruction Synthesis for Extensible-Processor Platforms. IEEE
Transaction on Computer-Aided Design of Integrated Circuits and
Systems.

[18] Tarjan, D. et al. 2006. Cacti 4.0 HP Laboratories, Technical Report.
[19] Wan, M. et al. 2001, Design Methodology of a Low-Energy

Reconfigurable Single-Chip DSP System. Journal of VLSI Signal
Processing.

[20] Wong, S., Vassiliadis, S., Cotofana, S., 2004, Future Directions of
Programmable and Reconfigurable Embedded Processors, Domain-
Specific Processors: Systems, Architectures, Modeling, and
Simulation.

[21] Yu, P. and Mitra, T. 2004, Characterizing Embedded Applications
for Instruction-Set Extensible Processors. Proc of DAC.

[22] Zhang, C, Vahid, F. and Najjar, W. 2005. A Highly Configurable
Cache Architecture for Embedded Systems. ACM Transactions on
Embedded Computing Systems, Vol. 4, No. 2.

246

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

