A Stateless Approach to
Connection-Oriented Protocols

ALAN SHIEH, ANDREW C. MYERS, and EMIN GUN SIRER
Cornell University

Traditional operating system interfaces and network protocol implementations force some system
state to be kept on both sides of a connection. This state ties the connection to its endpoints, impedes
transparent failover, permits denial-of-service attacks, and limits scalability. This article introduces
a novel TCP-like transport protocol and a new interface to replace sockets that together enable all
state to be kept on one endpoint, allowing the other endpoint, typically the server, to operate without
any per-connection state. Called Trickles, this approach enables servers to scale well with increasing
numbers of clients, consume fewer resources, and better resist denial-of-service attacks. Measure-
ments on a full implementation in Linux indicate that Trickles achieves performance comparable to
TCP/IP, interacts well with other flows, and scales well. Trickles also enables qualitatively different
kinds of networked services. Services can be geographically replicated and contacted through an
anycast primitive for improved availability and performance. Widely-deployed practices that cur-
rently have client-observable side effects, such as periodic server reboots, connection redirection,
and failover, can be made transparent, and perform well, under Trickles. The protocol is secure
against tampering and replay attacks, and the client interface is backward-compatible, requiring
no changes to sockets-based client applications.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed
Systems—Client/server; C.2.5 [Computer-Communication Networks]: Local and Wide-Area
Networks—Internet; D.4.4 [Operating Systems]: Communications Management; D.4.7 [Operat-
ing Systems]: Organization and Design

General Terms: Design, Performance

Additional Key Words and Phrases: Stateless interfaces, stateless protocols

This work was supported by the Department of the Navy, Office of Naval Research, ONR Grant
N00014-01-1-0968; and National Science Foundation grant 0430161. Andrew Myers is supported
by an Alfred P. Sloan Research Fellowship. Opinions, findings, conclusions, or recommendations
contained in this material are those of the authors and do not necessarily reflect the views of these
sponsors. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

Author’s address: A Shieh, Cornell University; email: ashieh@cs.cornell.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 0734-2071/2008/09-ARTS8 $5.00 DOI 10.1145/1394441.1394444 http://doi.acm.org/
10.1145/1394441.1394444

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:2 . A. Shieh et al.

ACM Reference Format:

Shieh, A., Myers, A. C., and Sirer, E. G. 2008. A stateless approach to connection-oriented pro-
tocols. ACM Trans. Comput. Syst. 26, 3, Article 8 (September 2008), 50 pages. DOI=10.1145/
1394441.1394444 http://doi.acm. org/10.1145/1394441.1394444

1. INTRODUCTION

The flexibility, performance, and security of networked systems depend in large
part on the placement and management of system state, including both the
kernel-level and application-level state used to provide a service. A critical
issue in the design of networked systems is where to locate, how to encode, and
when to update system state. These three aspects of network protocol stack
design have far reaching ramifications: they determine protocol functionality,
dictate the structure of applications, and may enhance or limit performance.

Consider a point-to-point connection between a web client and server. The
system state consists of TCP protocol parameters, such as window size, RTT es-
timate, and slow-start threshold, as well as application-level data, such as user
ID, session ID, and authentication status. There are only three locations where
state can be stored, namely, the two endpoints and the network in the middle.
While the end-to-end argument provides guidance on where not to place state
and implement functionality, it still leaves a considerable amount of design
flexibility that has remained largely unexplored.

Traditional systems based on sockets and TCP/IP distribute hard state across
both sides of a point-to-point connection. Distributed state leads to three prob-
lems. First, connection failover and recovery is difficult, nontransparent, or
both, since reconstructing lost state is often nontrivial. Web server failures,
for instance, can lead to user-visible connection resets. Second, dedicating re-
sources to keeping state invites denial of service (DoS) attacks that use up
these resources. Defenses against such attacks often disable useful functional-
ity: few stacks accept piggybacked data on SYN packets, which increases the
overhead of short connections, and Internet servers often do not allow long-
running persistent HTTP connections, which increases the overhead of bursty
accesses [Chakravorty et al. 2004]. Finally, state in protocol stacks limits scal-
ability: servers cannot scale up to large numbers of clients because they need
to commit per-client resources.

In this article, we investigate a fundamentally different way to structure a
network protocol stack in which system state can be kept entirely on one side of
a network connection. Our Trickles protocol stack enables encapsulated state
to be pushed from the server to the client. The client then presents this state
to the server when requesting service in subsequent packets, to reconstitute
the server-side state. The encapsulated state thus acts as a form of network
continuation (Figure 1). A new server-side interface to the network protocol
stack, designed to replace sockets, allows network continuations to carry both
kernel and application level state, and thus enables stateless network services.
On the client side, a compatibility layer ensures that sockets-based clients can
transparently migrate to Trickles. The use of the TCP packet format at the wire

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols .

X.X.X.2
X.X.Xx.1 X.X.X.2 Ack Iil
Application| |Application X.X.X.
state state
TCP state) |TCP state _-E
Server)
A) Client
xx.x.1 h IW
Request
App/TCP qk X.X.X.1
state n)

Server 2 App/TCP
App/TCP Data st?te n ||
state n+1i K Client

(B)

Fig.1. TCPversus Trickles state. (A) TCP holds state at the server, even for idle connection x.x.x.2.
ACKs from the client trigger server-side processing using the state associated with that connection.
(B) Trickles encapsulates and ships server state to the client. The Trickles client embeds within
each Trickles request any server state needed for processing the request. Like TCP ACKs, Trickles
requests trigger congestion control actions.

level reduces disruption to existing network infrastructure, such as NATs and
traffic shapers, and enables incremental deployment.

A stateless network protocol interface and implementation have many rami-
fications for service construction. Self-describing packets carrying encapsulated
per-connection server state, enable services to be replicated and migrated be-
tween servers. So long as servers maintain the consistency of other state, such
as the files exported by a Web server, failure recovery can be instantaneous and
transparent, since redirecting a continuation-carrying Trickles packet to a live
server replica will enable that server to respond to the request immediately. In
the wide area, Trickles obviates a key concern about the suitability of anycast
primitives [Ballani and Francis 2004] for stateful connection-oriented sessions
by eliminating the need for route stability. Server replicas can thus be placed in
geographically diverse locations, and satisfy client requests regardless of their
past communications history. Eliminating the client-server binding obviates
the need for DNS redirection and reduces the potential security vulnerabilities
posed by redirectors. In wireless networks, Trickles enables connection sus-
pension and migration [Snoeren 2002; Sultan 2004] to be performed without
recourse to intermediate nodes in the network to temporarily hold state.

A stateless protocol stack can rule out many types of denial-of-service attacks
on memory resources. While previous work has examined how to thwart DoS
attacks targeted at specific parts of the transport protocol, such as SYN floods,
Trickles provides a general approach applicable for all attacks against state
residing in the transport protocol implementation and the application.

Overall, this article makes three contributions. First, it describes the design
and implementation of a network protocol stack that enables all per-connection
state to be safely migrated to one end of a network connection. Second, it

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:4 . A. Shieh et al.

outlines a new TCP-like transport protocol and a new application interface that
facilitates the construction of event-driven, continuation-based applications
and fully stateless servers. Finally, it demonstrates through a full implementa-
tion that applications based on this infrastructure achieve performance compa-
rable to that of TCP, interact well with other TCP-friendly flows, and scale well.

The rest of the article describes Trickles in more detail. Section 2 describes
the Trickles transport protocol. Section 3 presents the new stateless server
API, while Section 4 describes the behavior of the client. Section 5 presents
optimizations that can significantly increase the performance of Trickles.
Section 6 evaluates our Linux implementation and illustrates several appli-
cations enabled by the Trickles approach. Section 8 discusses related work,
and Section 9 summarizes our contributions and their implications for server
design.

2. STATELESS TRANSPORT PROTOCOL

The Trickles transport protocol provides a reliable, high-performance, TCP-
friendly stream abstraction while placing per-connection state on only one side
of the connection. Statelessness makes sense when connection characteristics
are asymmetric; in particular, when a high-degree node in the graph of ses-
sions (typically, a server) is connected to a large number of low-degree nodes
(for example, clients). A stateless high-degree node would not have to store in-
formation about its many neighbors. For this reason we will refer to the stateless
side of the connection as the server and the stateful side as the client, though
this is not the only way to organize such a system.

To make congestion-control decisions, the stateless side needs information
about the state of the connection, such as the current window size and prior
packet loss. Because the server does not keep state about the connection, the
client tracks state on the server’s behalf and attaches it to requests sent to
the server. The updated connection state is attached to response packets and
passed to the client. This piggybacked state is called a continuation because it
provides the necessary information for the server to later resume the processing
of a data stream.

The Trickles protocol simulates the behavior of the TCP congestion control
algorithm by shipping the kernel-level state, namely the TCP control block
(TCB), to the client side in a transport continuation. The client ships the trans-
port continuation back to the server in each packet, enabling the server proto-
col stack to regenerate state required by TCP congestion control [Allman et al.
1999]. The exchange of transport continuations between the client and server is
shown in Figure 2. Trickles also enables stateful user-level server applications
to migrate persistent state to the client by attaching a user continuation to out-
going packets. Applications are amenable to this transformation when changes
to a connection’s state are induced only by data carried by that connection. To
minimize per-request overheads, user continuations should be small and inex-
pensive to update. Applications with large per-connection state requirements
may need to store state on behalf of some connections rather than shipping the
state in a large user continuation.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols . 8:5
Server Client
Transport - Socket Application
_ layer . (I:omparibilityi
eETx) . aver : d('GET X'
GET X Transpgrt [User]: kel !
Transport cont ‘L_cont0 J : recv)
< cont 0 AL (A):. 4L * F
User — —
E (B) cont0 ;;:Po_;y;;o) Recv queue
e Transport (C): data
a cont 1 - [0-1400)
4 Need : .
g (1400 2800) Transport
cont 1 :
Transport D):
= 1 : Need 114603800
(E) inodey T 24002800 | ||
— :
ata [1400-2800) : /
Transport N :
cont 2 Transport
v cont 2

Fig. 2. Continuation processing and client-side compatibility layer. (A) The compatibility layer
translates send (¢ ‘GET X’’) into a Trickles request, which uses continuations received from a pre-
vious request or from connection establishment. (B) Server receives GET request and continuations,
and returns the updated continuations along with the first part of the file. The user continuation
contains the inode of the requested object. (C) Client saves new continuations, and enqueues data
for delivery to the application. (D) The client uses the new continuations to request the next piece
of the file. (E) Server receives request for a range of data along with the previous continuations,
and returns the requested data and updated transport continuation. (F) Client reads data using
standard recv() call.

During the normal operation of the Trickles protocol, the client maintains a
set of user and transport continuations. When the client is ready to transmit
or request data, it generates a packet containing a transport continuation, any
packet loss information not yet known to the server, a user continuation, and
any user-specified data. On processing the request, the server protocol stack
uses the transport continuation and loss information to compute a new trans-
port continuation. The user data and user continuation are passed to the server
application, along with the allowed response size. The user continuation and
data are used by the application to compute the response.

As in TCP, the Trickles client-side networking stack is stateful, and pro-
vides reliable delivery within the transport layer for data sent to the server. In
contrast, the Trickles server-side networking stack is stateless, and does not
provide reliable delivery, since doing so would hold state in a send buffer until it
is acknowledged. A Trickles server application must be able to reconstruct old
data, either by supporting (stateless) reconstruction of previously transmitted
data, or by providing its own (stateful) buffering. This design enables applica-
tions to control the amount of state devoted to each connection, and to share
buffer space among connections.

2.1 Transport and User Continuations

The Trickles transport continuation encodes the part of the TCB needed to
simulate the congestion control mechanisms of the TCP state machine. For

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:6 . A. Shieh et al.

1 2 3 4 5 6 7 8

0

8 TCP header

16 | Trickles header
c 24 | ContType | Sequence number
2 32 [First child | Client State [Parent
S 40 | Client Timestamp |
£ 48
S 56 MAC [Server timestamp
; 64 | RTT | state
g 72 First loss seq # First bootstrap seq #
a 80 Start CWND ssthresh
© 88 TCPBase NonceCounterBase
= 96

User continuation
Data

Fig. 3. Transport continuation wire format, in bytes. The transport continuation, user continua-
tion, and data are encapsulated within a TCP packet. The transport continuation variables cwnd,
RTT, ssthresh, and TCPBase encode the TCP-derived congestion control state.

example, the continuation includes the packet number, the round trip time
(RTT), and the slow-start threshold (ssthresh). In addition, the client attaches
a compact representation of the losses it has incurred. This information enables
the server to recreate an appropriate TCB. Transport continuations (Figure 3)
are 75+ 12 m bytes, where m is the number of loss events being reported to the
server (usually m = 1). Our implementation uses delayed acknowledgments,
matching common practice for TCP [Allman et al. 1999].

The user continuation enables a stateless server application to resume pro-
cessing in an application-dependent manner. Typically, the application will
need information about what data object is being delivered to the client, along
with the current position in the data stream. For a web server, this might in-
clude the URL of the requested page (or a lower-level representation such as
an inode number) and a file offset. Of course, nothing prevents the server ap-
plication from maintaining state where necessary.

2.2 Security

Migrating state to the client exposes the server to new attacks. It is important
to prevent a malicious user or third party from tampering with server state in
order to extract an unfair share of the service, to waste bandwidth, to launch
a DDoS attack, or to force the server to execute an invalid state [Aura and
Nikander 1997]. Such attacks might employ two mechanisms: modifying the
server state—because it is no longer secured on the server, and performing
replay attacks—because statelessness inherently admits replay of old packets.
Furthermore, an attacker might issue requests that trigger computationally
expensive code paths to exhaust server-side CPU resources.

Maintaining state integrity. Trickles protects transport continuations
against tampering with a message authentication code (MAC), signed with
a secret key known only to the server and its replicas. The MAC allows only
the server to modify protected state, such as RTT, ssthresh, and window size.
Similarly, a server application should protect its state by using a MAC over the

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols . 8:7

user continuation. Malicious changes to the transport or user continuation are
detected by the server kernel or application, respectively.

Since MACs employ secret keys, their security properties are independent of
the input size. To find a collision, the attacker has two options: it can perform
brute-force search for the key, or search for a collision in the input space by
generating and sending continuations to the server. In the general case, the
keyspace search is necessary. If the space of inputs is smaller than the space
of hashes, then searching the input space rather than the key space might be
faster. However, this is not guaranteed to find a collision, since there are not
enough unique possible inputs to force a collision.

Hiding losses [Savage et al. 1999; Ely et al. 2001] is a well known attack on
TCP that can be used to gain better service or trigger a DDoS attack. Trickles
avoids these attacks by attaching unique nonces to each packet. Because clients
cannot predict nonce values, if a packet is lost, clients cannot substitute the
nonce value for that packet.

Trickles servers associate each transmitted packet with a packet number i,
and a nonce p;. Trickles clients indicate which packets they have received, and
thereby identify lost packets, by using selective acknowledgment (SACK) proofs,
computed from the packet nonces, that securely describe the set of packets re-
ceived by the client. Clients group all received nonces into g contiguous ranges
by packet number. Any group [m, n] is representable in O(1) space by m, n, and
a range nonce, that is the p;’s in the range combined by XOR. Thus a SACK
nonce is encoded in O(g) space.

Imposing additional structure on the nonces enables Trickles servers to gen-
erate per-packet nonces and to verify the receipt of arbitrarily long ranges of
packets in O(1) time. We add this additional structure by defining a sequence of
pseudorandom numbers, r, = f(K, x), where f is a cryptographic hash function
keyed by K. If p; =r; ®ri;1, then p,, & pmi1 ® ... ® pp = 'y @ rpy1. Thus the
server can generate and verify any group of contiguous nonces compressed with
XOR with two r, computations. Trickles distinguishes retransmitted packets
from the original by using a different server key K’ to derive retransmitted
nonces. This suffices to keep an attacker from using the nonce from the re-
transmitted packet to forge a SACK proof that masks the loss of the original
packet.

In Appendix A, we show that the SACK proof'is secure, given the assumption
that the underlying sequence r; is drawn from a uniform random distribution.

Note that this nonce mechanism protects against omission of losses but not
against insertion of losses; as in TCP, a client that pretends not to receive data
is self-limiting because its window size shrinks.

Protection against replay. Stateless servers are inherently vulnerable to
replay attacks. Since the behavior of a stateless system is independent of his-
tory, two identical packets will elicit the same response. Therefore, protection
against replay requires some state. For scalability, this extra state should be
small and independent of the number of connections. Trickles protects against
replay attacks using a simple hash table keyed on the transport continuation
MAC.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:8 . A. Shieh et al.

The replay protection system is designed to prevent attackers from using re-
play attacks to subvert the congestion control algorithm. However, it also should
not degrade well-behaved connections. During normal operation, the replay
protection system guarantees at-most-once semantics, in which each transport
continuation can only be presented once to the server. However, strictly en-
forcing at-most-once semantics complicates recovery. Suppose a client sends all
of its transport continuations to the server, but packet loss prevents any new
continuations from reaching the client. A¢-most-once semantics would prevent
the client from making forward progress. Trickles supports retransmit timeout
requests, exempt from the at-most-once rule, that provides the client with fresh
continuations. A client deprived of unused continuations issues such requests
to acquire the new continuations it needs to continue sending requests. The
server rate limits retransmit timeout requests, and resets the congestion pa-
rameters upon receiving them, to prevent clients from abusing them to gain an
unfair share of bandwidth.

Trickles provides replay protection for the transport protocol. It is the respon-
sibility of server applications to implement stronger protection mechanisms,
should they be needed.

Abstractly, this hash table records all continuations seen since the server was
started, and thus prevents any continuation from ever being replayed. A naive
implementation that achieves this property would store every continuation seen
by the system, and so requires state proportional to server uptime. To limit the
amount of space needed, Trickles attaches timestamps to each continuation,
and discards packets with older continuations. Thus, the hash tables need only
record continuations generated within a finite interval of time. The timeout is
configured on a per-application basis such that it exceeds the RTT of the vast
majority of connections. This RTT can in turn be managed by geographically
distributing servers.

Replay detection can be implemented efficiently using a Bloom filter [Bloom
1970]. Bloom filters provide space-efficient, probabilistic membership tests in
constant time: storage requirements are greatly reduced in exchange for a tun-
able degree of lookup inaccuracy. Previously seen continuations are hashed into
the Bloom filter, and each newly arrived continuation is checked against the
contents of the Bloom filter. The Bloom filter will always detect when a con-
tinuation is replayed. However, it may also return a false positive, resulting
in the server misclassifying an unused continuation as one that has already
been used. Thus false positives increase the effective packet loss rate seen for
request packets sent to the server. Trickles uses a Bloom filter of modest size
that results in a low false positive rate, ensuring that unused continuations
are classified correctly with high probability (1 - false positive rate). Devoting
512 KB to Bloom filters results in a 0.0091% false positive rate on a Gigabit
connection. False positives require no special processing: since the client cannot
distinguish a missing packet due to network loss from one due to a false posi-
tive during server-side processing, both cases will trigger the Trickles recovery
protocol.

The use of the Bloom filter might cause a request to be dropped due to a false
positive. If the retransmitted requests were identical to the originals, then they

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols . 8:9

Pass Recent Not found
Cont Validate Timestamp Hashtable Hashtable
_MAC: X . MAC(Cont,X) check(T) lookup(X) msert(X)
timestamp: T
Fa|I OId Found
(A)
Before transition After transition
Bloom filter A Bloom filter B Bloom filter B Bloom filter A
MAC x
(inserted at T=2) MAC 2 (cleared) MAC 2
(inserted at T=6) (insertions (inserted at T=6)
MACy : ; occur here)
(mserted at T=4) grcrgS;t;]oenrse)
T=8 T=10
Current interval = [5,10) Current interval = [10,15)
(B)

Fig. 4. (A) Bloom filter processing path. MAC filtering occurs first to prevent malicious attackers
from inserting arbitrary values into Bloom filters. The timestamp check bounds the amount of
state needed to store the history of previously seen continuations. (B) Bloom filter management.
For illustrative purposes, the interval length is 5 seconds. At T' = 8, the entry for continuation y
is still needed, since it was encountered more recently than 5 seconds ago. Insertions always occur
in the Bloom filter labeled B. Upon changing to a new epoch, Bloom filter A now contains only
obsolete entries, and is emptied. A can now accept new entries, and swaps labels with B.

too would be dropped. Trickles instead tags each retransmitted request with
a retransmission counter. We call all such requests with retransmission count
greater than one, recovery requests. These tags distinguish each retransmis-
sion of a continuation in two important ways. The tag is incorporated into the
continuation hash, so that the subsequent requests are unlikely to hash to the
same bits, hence persistent false positives are unlikely to occur. The server uses
the nonzero tags as a congestion indicator, and applies exponential backoff to
the amount of data that each retransmission can cause the server to generate.
This backoff limits the amount of extra service that an attacker can extract
by exploiting the retransmit counter. Figure 4 summarizes the Bloom filter
processing pipeline for incoming continuations.

A client that only possesses continuations older than the time horizon or has
no unused continuations can explicitly send initiation requests for a retransmit
timeout to restore the connection. These initiation requests are nearly identical
to a normal request, except for a flag indicating that it is a retransmit timeout
request. This flag instructs the server to adjust the congestion parameters as

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:10 o A. Shieh et al.

appropriate, and to hash the request consistently on the server such that at
most one recovery request can occur per connection, per horizon. This design is
consistent with recommended TCP behavior, where old congestion control state
is disregarded if the connection has been idle, since it is likely out of date. If an
initiation request is lost on the way to the server, the client could potentially
immediately send another request. However, if the response is lost on the way
back to the client, then the client must wait until the next time horizon to
transmit another initiation request.

Since the timestamp generation and freshness check are both performed on
the server, clock synchronization between the client and server is not necessary.
The growth of the hash table is capped by periodically purging and rebuilding
it to capture only the packets within the time horizon T'.

Two Bloom filters of identical size and using the same family of hash func-
tions are used to simplify the periodic purge operation. Trickles divides time
into intervals of length T'. Let the current interval end at I. Filter A stores
continuations seen between [I — 2T, I —T'), and filter B those seen since I — T,
that is, A captures those in the previous interval, and B those in the current
interval. As the current time ¢ crosses into a new interval, filter A is cleared and
becomes the B for the new interval, while the previous B takes on the role of A.
At all times, all continuations from at least ¢ — T' seconds ago are hashed into
one of the Bloom filters. To check whether a continuation has been seen within
the past ¢ — T seconds, the server need only check the continuation against both
Bloom filters.

A Trickles server can tune its Bloom filter parameters to trade offthe increase
in the false positive rate and horizon length against memory and computational
constraints. The false positive rate p of a Bloom filter with £ hash functions, m
bits of storage, and containing n objects is [Fan et al. 1998]:

R

The insertion and lookup time increases with O (% log(m)), the number of hash
bits necessary to update or query the Bloom filter. The memory requirements
increase linearly with m. For Trickles replay detection, n corresponds to the
number of continuations that are hashed per interval. Under steady state, with
each request packet resulting in one full-length data packet, this relationship is

Bandwidth
MTU

For instance, consider a server with a Gigabit connection, MTU = 1500,
and 7' = 1. n = 83333 continuations are received each second in steady state.
Choosing £ = 6, m = 2097152 results in tables of size 256 KB each and compu-
tational cost of 6 x 21 = 126 hash bits. For the total space cost of 512 KB, the
Bloom filters increase the effective loss rate by 0.0091%. Based on the band-
width/loss rate dependency of % for a TCP-friendly flow [Floyd 1991], and
assuming a median packet loss rate of 0.7% [National Internet Measurement
Infrastructure 2005], this loss rate will decrease the bandwidth of connections

n~T

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:11

by less than 1%. Should the actual distribution of response packet sizes differ
from this assumption, a Trickles stack can adaptively resize the Bloom filter
to accommodate the increased number of outstanding continuations, or it can
throttle the rate of continuations that each connection can acquire.

Transport-level replay defense can be implemented in the server kernel or in
the server application. The advantage of detecting replay in the kernel is that
duplicate packets can be flagged early in processing, reducing the strain on the
kernel-to-application signaling mechanism. Placing the replay defense mecha-
nism in the application is more flexible, because application-specific knowledge
can be applied. In either case, Trickles is more robust against state consumption
attacks than TCP.

Protection against CPU consumption attacks. The processing resources on
a server are another potential target for denial of service attacks. An attacker
might attempt to consume server-side CPU resources by sending expensive re-
quests. The Trickles transport layer is resilient against such attacks. As shown
in our results section, transport layer overheads at gigabit speeds are not a bot-
tleneck. The replay detection and MAC mechanisms restrict the continuation
set that an attacker can send to a server to only those that are available to
legitimate users. Invalid continuations would only result in processing of addi-
tional network packets and MAC computations, after which the continuations
are rejected. These overheads are present in any protocol that computes and
verifies per-packet MACs.

User-level processing is another source of overhead. An attacker might craft
requests for expensive objects, which a fully stateless server would recompute.
Our Bloom filter replay detection mechanism can be extended to prevent an
attacker from submitting a request for an object, or for a piece of an object,
multiple times within a given interval. The server would insert hashes of the
object identifier, salted by some connection identifier to enable different con-
nections to request the same object without interference, into the hash table.
If the link between the server and client is lossy, the server application can
allow % retransmission requests per time interval by supporting £ independent
hash functions over the object. Replay detection can be extended with stateless
cryptographic puzzles [Juels 1999] to rate-limit access to each object. Note that
replay detection is essential to the success of puzzles: otherwise, an attacker
can solve a puzzle once but replay the correct answer multiple times, expending
CPU resources on each request.

2.3 The Trickle Abstraction

At any given time during a single Trickles connection, there are typically mul-
tiple continuations, encoding different server-side states. The existence of mul-
tiple parallel states in the stateless processing model is the main source of
complexity in designing the Trickles protocol.

Figure 5 depicts the exchange of packets between the two ends of a typical
TCP or Trickles connection. For simplicity, the depicted network conditions
incur no packet losses and deliver packets in order; the flow does not use delayed

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:12 o A. Shieh et al.

cwnd =3 cwnd =4 cwnd =5 R
Server = IR
NN
Client 1444

Time —»

Fig. 5. A sample TCP or Trickles connection. Each line pattern corresponds to a different trickle.
Initially, there are cwnd trickles. At points where cwnd increases (A, B), trickles are split.

acknowledgments. Except where the current window size (cwnd) increases (at
times A and B), the receipt of one packet from the client enables the server to
send one packet in response, which in turn triggers another packet from the
client, and so on. This sequence of related packets that trace a series of state
transitions forms a trickle.

A trickle captures the essential control and data flow properties of a stateless
server. If the server does not remember state between packets, information can
only flow forward along individual trickles, and so the response of the server
to a packet is solely determined by the incoming trickle. A stream of packets,
each associated with a unique packet number, is decomposed into multiple
disjoint trickles: each packet is a member of exactly one trickle. These trickles
can be thought of as independent, concurrent state machines: a server processes
the continuations capturing the state of one state machine independently of the
continuations from a different state machine. Two trickles can only exchange
information on the client side.

In the Trickles protocol, the congestion control algorithm at the server oper-
ates on each trickle independently. These independent instances cooperate to
mimic the congestion control behavior of TCP. At a given time there are cwnd
simultaneous trickles. When a packet arrives at the server, there are three pos-
sible outcomes. In the common case, Trickles permits the server application
to send one packet in response, continuing the current trickle. If packets were
lost, the server may terminate the current trickle by not permitting a response
packet; trickle termination reduces the current window size (cwnd) by 1. The
server may also increase cwnd by splitting the current trickle into 2 > 1 re-
sponse packets, and hence begin £ — 1 new trickles. The transport continuations
of the newly-generated trickles differ in their packet numbers. By design, this
initial difference in continuation state causes each trickle to trace out a disjoint
subsequence of the packet number space.

Split and terminate change the number of trickles and hence the number of
possible in-flight packets. Congestion control at the server consists of using the
client-supplied SACK proof to decide whether to continue, terminate, or split
the current trickle. Making Trickles match TCP’s window size therefore reduces
to splitting or terminating trickles whenever the TCP window size changes.
When processing a given packet, Trickles simulates the behavior of TCP at the
corresponding acknowledgment number based on the SACK proof, and then
splits or terminates trickles to generate the same number of response packets.
The subsequent sections describe how to statelessly perform these decisions to
match the behavior of TCP as closely as possible.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:13

(A) (B) Resultfrom (A) (D) Trickles server receives
¥ knownto TCP ¥ results from both (A) and (B)
AN AN e >

Server

A “a

4 Trickles fuses and sends
(©) knowledge of (A), (B)

Client

Fig. 6. Difference in state/result availability between TCP and Trickles. TCP server knows the
result of processing (A) earlier than Trickles server.

2.4 Trickle Dataflow Constraints

Statelessness complicates matching TCP behavior, because it fundamentally
restricts the possible data flow between the processing of different trickles.
Because Trickles servers are stateless, the server forgets all the information
for a trickle after processing the given packet, whereas TCP servers retain this
state persistently in the TCB. Consequently, the only information available to
a Trickles server when processing a request is that which was available to the
client when the request was sent out. Figure 6 illustrates what happens when
two packets from the same connection are received in succession. For Trickles,
the state update from processing the first packet is not available when the
second packet is processed at point (B), because that information was not yet
available to the client when that packet was sent by the client. At the earliest,
this state update can be made available at point (D) in the figure, after being
processed by the client, during which the client fuses packet loss information
from the two server responses and sends that information back with the second
trickle. This example illustrates that server state cannot propagate directly
between the processing of consecutive packets, but is available to server-side
processing, a round-trip-later.

A key principle in designing Trickles is to provide each trickle with infor-
mation similar to that in TCP, and then use this information to match TCP
behavior. Client-side state fusion is used to provide each trickle with knowl-
edge about other trickles. Since the client is stateful, it holds information about
multiple trickles that the server may need in processing a subsequent trickle.
The information from the other trickles is attached to this trickle. For instance,
state fusion captures the dataflow of SACK proofs, which are dependent on the
actions of multiple trickles.

However, the round-trip delay in state updates induced by statelessness pre-
vents the server from knowing recent information that had not yet been avail-
able to the client. State inference circumvents this delay constraint. When a
packet arrives at the server, the server can only know about packet losses that
happened one full window earlier. It optimistically assumes that all request
packets since that point have arrived successfully, and accordingly makes the
decision to continue, split, or terminate. Optimism makes the common case of
infrequent packet loss work well. The optimism in Trickles does not allow the
server to send more packets than TCP. Under TCP, if any ACKs were reordered
or lost, an ACK will be treated as a cumulative ACK, and send the packets that
would have been sent had all ACK packets arrived. Generally, a cumulative
ACK of a longer range clocks out more packets than that of a shorter range.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:14 o A. Shieh et al.

A(1-2)
Client P1 P2 P3 P4 P6 > Client P1 P2 P3 P4 Pb;
(A) (B)

Fig. 7. Equivalence of reverse and forward path loss in Trickles. Due to dataflow constraints, the
packet following a lost packet does not compensate for the loss immediately. Neither the server
nor the client can distinguish between (A) and (B). The loss will be discovered through subsequent
SACK proofs.

Since Trickles does not interpret the first request after one or more missing re-
quests as a potentially long cumulative ACK, it cannot send out more packets
than the corresponding TCP connection.

Concurrent trickles must respond consistently and quickly to loss events. By
providing each trickle with the information needed to infer the actions of other
trickles, redundant operations are avoided. Since the client-provided SACK
proofs control trickle behavior, we impose an invariant on SACK proofs to allow
a later trickle to infer the SACK proof of a previous trickle: given a SACK proof
L, any proof L’ sent subsequently contains L as a prefix. This prefix property
allows the server to infer SACK proofs prior to L by simply computing a prefix.
Conceptually, SACK proofs cover the complete loss history, starting from the
beginning of the connection. As an optimization to limit the proof size, a Trickles
server allows the client to omit initial portions of the SACK proof once the
TCB state encoded within the transport continuation fully reflects the server’s
response to those losses. Trickles guarantees that this property holds after all
loss events: each type of recovery action commits the updated congestion control
parameters to the TCB within a finite number of steps.

It is possible that newly available information invalidates the original in-
ference, thus requiring some recovery action. Suppose a packet is lost before
it reaches the server. Then the server does not generate the corresponding re-
sponse packet. This situation is indistinguishable from a loss of the response on
the server to client path: in both cases, the client receives no response (Figure 7).
Consequently, a recovery mechanism for response losses also suffices to recover
from request packet losses, simplifying the protocol. Note, however, that Trick-
les is more sensitive to loss than TCP. While TCP can elide some ACK losses
with implicit acknowledgments, such losses in Trickles require retransmission
of the corresponding request and data.

2.5 Congestion Control Algorithm

We are now equipped to define the per-trickle congestion control algorithm.
The algorithm operates in three modes that correspond to the congestion control
mechanisms in TCP Reno [Allman et al. 1999]: slow start/congestion avoidance,
fast recovery, and retransmit timeout. Trickles strives to emulate the congestion
control behavior of TCP Reno as closely as possible by computing the target
cwnd of TCP Reno, and performing split or terminate operations as needed to
match the number of trickles with this target. Between modes, the set of valid
trickles changes to reflect the increase or decrease in cwnd. In general, the

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:15

TCPCwnd(k) =
startCwnd + (k — TCPBase) if k < A
ssthresh if A < k < A + ssthresh
F(k— A) if A+ ssthresh <k
where

A = ssthresh — startCwnd + TCPBase
and F(N) is the largest integer less than the positive value of x that is a zero of

(z — 1)z — (ssthresh — 1)ssthresh N
2

Fig. 8. Closed-form solution of TCP simulation.

number of trickles will decrease in a mode transition; the valid trickles in the
new mode are known as survivors. As in most TCP implementations, Trickles
acknowledges every other packet to reduce overhead. For clarity, all examples
in this article use acknowledgments on every packet.

Slow start and congestion avoidance. In TCP Reno, slow start increases
cwnd by one per packet acknowledgment, and congestion avoidance increases
cwnd by one for every window of acknowledgments. Trickles must determine
when TCP would have increased cwnd so that it can properly split the cor-
responding trickle. To do so, Trickles associates each request packet with a
request number %, and uses the function TCPCwnd(k) to map from request num-
ber £ to TCP cwnd, specified as a number of packets. Abstractly, TCPCwnd(%)
executes a TCP state machine using acknowledgments 1 through %, and re-
turns the resulting cwnd. Given the assumption that no packets are lost, and
no ACK reordering occurs, the request number of a packet fully determines the
congestion response of a TCP Reno server.

Upon receiving request packet k&, the server performs the following trickle
update:

(1) CwndDelta := TCPCwnd(k) — TCPCwnd(k — 1)

(2) Generate CwndDelta + 1 responses: continue the original trickle, and split
CwndDelta times. Assuming in-order delivery, there are TCPCwnd(k — 1) pack-
ets in-flight when % is received, thus the next unused packet number is
s = k + TCPCwnd(k — 1). The response trickles are assigned packet numbers
starting from s.

Assuming TCPCwnd(k) is a monotonically increasing function, which is indeed
the case with TCP Reno, this algorithm maintains cwnd trickles per RTT,
precisely matching TCP’s behavior. If TCPCwnd(k) were implemented with direct
simulation as described above, it would require O(n) time per packet, where
n is the number of packets since connection establishment. Fortunately, for
TCP Reno, a straightforward strength reduction yields the closed-form solution
shown in Figure 8 and derived in Appendix B. This formula can be computed
in O(1) time. The extended example in Figure 9 illustrates the correspondence
between Trickles and TCP under no loss.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:16 o A. Shieh et al.

TCP server state w bz % 40
TCP T8, §
update ServerState £ 35 5 &
Slow start (cwnd < ssthresh) 20 2 <
On each RX ack ‘ ~ o
cwnd++ 3 043 ~ 2 E
41 44
Congestion avoidance | 40 45 = -
(cwnd >= ssthresh) = _>~43
On each RX ack ol 42 46 -
cnt++ 7] 5 0 47 - =
= 43 a8 <
If cnt == cwnd: g | 43
cnt=0 = __60
cwnd++ w0 [44
Slow start and cong. avoid. I 7.0
Send 45
cwnd (new) - InFlight (old) 8.0 E
packets 46/ 81]
On each TX packet _ 47 8 2 U
snd_nxt++ - | 4883
InFlight+-+ -] [498 4
ws 50 8 5
On each RX ack e
InFlight-- g_'g [5186
Trickles continuation 58 52 .8 7 _— / > 56
update (SR >3 61 <
4 of ol 9.0 62 =
of splits = -
TCPCwnd(Trickle#) - 549163 A \8\
TCPCwnd(Trickle# - 1) (35312164 > \\)
KT 3
Foriin [0, # of splits): Trickles § v% E ;-% " \61
Output Trickle # (i) = Continuation 2 555385 N
Ack# +i + State [= g‘sz b 5 3
TCPCwnd(TrickIe# - 1) = V . V

Fig. 9. Correspondence between TCP server-side state and Trickles transport continuation state,
TCPCwnd() for Trickles initial conditions of TCPBase = 40, startCwnd = 3, ssthresh = 8. Arrows
towards client are data packets, and arrows toward server are TCP ACKs or Trickles requests. For
TCP, the state variable columns report the values of the server state after the server processes
the acknowledgment and transmits the next data packet. For Trickles, the values correspond to
the transport continuation variables. Note the correspondence between cwnd and TCPCwnd(), and
between snd_nxt and output trickle #.

The TCPCwnd(k) formula is directly valid only for connections where no losses
occur. A connection with losses can be partitioned at the loss positions into
multiple loss-free epochs; TCPCwnd(k) is valid within each individual epoch. The
free parameters in TCPCwnd(k) are used to adapt the formula for each epoch:
startCwnd and ssthresh are initial conditions at the point of the loss, and
TCPBase corresponds to the last loss location. The Trickles recovery algorithm
computes new values for these parameters upon recovering from a loss.

Fast retransmit/recovery. Figure 10 compares Trickles and TCP recovery.
In fast retransmit/recovery, TCP Reno uses duplicate acknowledgments to in-
fer the position of a lost packet. The lost packet is retransmitted, the cwnd
is halved, ssthresh is set to the new value of cwnd, and transmission of
new data temporarily suppressed to decrease the number of in-flight pack-
ets to newCwnd . Likewise, Trickles uses its SACK proof to infer the location
of lost packets, retransmits these packets, halves the cwnd, and terminates
a sufficient number of trickles to deflate the number of in-flight packets to
newCwnd.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:17

TCP fast TCP %-% cx 3 Tricléles initial
: % xcglD 8 & conditions,
retransmit / Server State 3 §§ §iC E¥ss before loss &
recovery v = [ARoa s AR, recovery
U 46 46 8 8 54 TCPBase = 4
After 3 dupacks c LSIT SR I B CPBase = 40
cwnd = ssthresh < L4747 8 8 55 |, startCwnd = 3
= InFlight / 2 S 48 48 8 8 56 ssthresh =8
Retransmit packet g [49 49 8 8 57
Enter fast recovery © 50 50 8 8 58)
Fast recovery g E; E; E*B:é 9:7 : ;I:{(l)clélg)s Sack
On each ack received: = 52 52 8 8 60 ! Loss
InFlight-- g 53 53 8 61 Trickles Sack
. 9.9 62 —40,55),57) ()
On each packet sent: =] 8
InFlight++ s 54 54 9 9 63
55 55 9 9 64
If InFlight < cwnd O\ 2222200
Is?:rll'd r?ackets ugtil
clon 1gnt==cwn Divergence -
Don't send packets at start of 5
recovery O
by
v
>
(=]
(Y]
&
Trickles Sack
«— (40,55),(56"),
(57-68)
(D")[68 68 472 Trickles initial
55 73 cgnditions,
Trickles 2 *Ee§ 59 4 after recovery
Continuation _ & ﬁ?; g2 %@ 3 g TCPBase = 68
State 3§ 5= 3% EE°" 5 startCwnd = 4
=3= Y Y ssthresh =4
Start of recovery for TCP Start of recovery for Trickles
. = 0
- 5 g3 $£585g 2 60| =
[= EEZQZTO° L <
2 || E@ ~61| @
55 58 4 7 56 O E (@]
-
9
-
< 5
= Y Y

Fig. 10. TCP recovery. Duplicate ACKs signal a loss, and trigger fast retransmission (A). Sub-
sequent ACKs do not trigger data transmission until number of in-flight packets drops to the
new cwnd (B). Recovery ends when the client acknowledges all packets sent since time of loss
(D). Trickles recovery: The client determines when loss occurs. This client deems a packet lost when
three out-of-order data packets are received (A’), and begins transmitting deferred requests; the
corresponding SACK reports the loss (¥). The request acknowledging the packet after a loss trig-
gers a retransmission (B’). Trickles are subsequently terminated to deflate the number of packets
in flight to the new cwnd (C’). Once the target is reached, new survivors are generated, and data
is transmitted. Recovery ends when cwnd survivors are generated; cwnd has dropped from the
original value of 9 to 4 (D). The split of trickle #68 is due to normal congestion avoidance. After
recovery, the Trickles initial conditions are updated in accordance with piecewise simulation of
TCP (E’). Implicit state is generated during processing, but not stored in the continuation.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:18 o A. Shieh et al.

Fast retransmit/recovery is entered when the SACK proof contains a loss. A
successful fast retransmit/recovery phase is followed by a congestion avoidance
phase. Abstractly, the Trickles protocol constructs a global plan from a given
loss pattern, with each Trickle executing its part of the recovery plan. The
SACK prefix property is critical to proper operation, since it allows each trickle
to infer the loss pattern reported to previous trickles, and thus their input and
recovery actions. A client that violates the prefix property in packets it sends
to the server will cause inconsistent computations on the server side, and may
receive data and transport continuations redundantly or not receive them at
all.

For a request packet with packet number £ during fast retransmit/recovery
mode, Trickles performs the following operations:

(1) firstLoss := packet number of
first loss in input

cwndAtLoss := TCPCwnd(firstLoss - 1)
lossOffset := k - firstLoss
newCwnd := numInFlight / 2.
The protocol variable firstLoss is derived from the SACK proof. The SACK
proofs for the trickle immediately after a loss, as well as all subsequent trick-
les before recovery, will report a gap. The SACK prefix invariant ensures
that each trickle will compute consistent values for the protocol variables
shown above.

(2) Ifk acknowledges the first packet after a run of losses, Trickles retransmits
the lost packets. This is required to achieve the reliable delivery guarantees
of TCP. A burstLimit parameter, similar to that suggested for TCP [Allman
et al. 1999], limits the number of packets that may be retransmitted in this
manner; losses beyond burstLimit are handled via a timeout and not via
fast retransmit.

(3) Thegoalin fast retransmitistoterminaten = cwndAtLoss - newCwnd trick-
les, and generate newCwnd survivor trickles. We choose to terminate the first
ntrickles, and retain the last newCwnd trickles using the following algorithm:
(a) If cwndAtLoss - lossOffset + 1 <= newCwnd, continue the trickle. The
left hand side is an upper bound on the number of in-flight packets. Oth-
erwise, terminate the trickle. (b) If k immediately follows a run of losses,
generate the trickles for all missing requests that would have satisfied (a).

Test (a) deflates the number of trickles to newCwnd. First, a sufficient
number of trickles are terminated to drop the number of trickles to newCwnd.
Then, all subsequent trickles become survivors that will bootstrap the sub-
sequent slow start/congestion avoidance phase. Iflosses occur while sending
the surviving trickles to the client, then the number of outstanding trickles
will fall below newCwnd. So condition (a) guarantees that the new window
size will not exceed the new target, while condition (b) ensures that the new
window will meet the target. Note that when the server decides to recreate
multiple lost trickles per condition (b), it will not have access to correspond-
ing user continuations for the lost packets. Consequently, the server trans-
port layer cannot invoke the application and generate the corresponding

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:19

data payload. Instead, the server transport layer simply generates the
transport continuations associated with the lost trickles and ships them to
the client as a group. The client then regenerates the trickles by retrans-
mitting these requests to the server with matching user continuations.

Following fast recovery, the simulation initial conditions are updated to re-
flect the conditions at the recovery packet number: TCPBase points to the re-
covery point, and ssthresh = startCwnd = newCwnd, reflecting the new window
size.

Retransmit timeout. During a retransmit timeout, the TCP Reno sender
sets ssthresh = cwnd /2, cwnd = InitialCwnd, and enters slow start. In Trick-
les, the client kernel is responsible for generating the timeout, since the server
is stateless and cannot keep such a timer. Let firstLoss be the first loss seen
by the client since the last retransmit timeout or successful recovery. For a re-
transmission timeout request, the server executes the following steps to initiate
slow start:

(1) a := firstLoss
ssthresh := TCPCwnd(a-1)/2
cwnd := InitialCwnd

(2) Split cwnd — 1 times to generate cwnd survivors. Set TCPCwnd(%) initial
conditions to equivalent TCP post-recovery state.

Trickles prevents malicious clients from suppressing retransmission timeout
events. Unless the client possesses the necessary nonces and continuations to
continue processing without retransmit timeouts, it would soon exhaust the
other available protocol actions, and be forced to issue a timeout request to
continue processing.

2.6 Compatibility with TCP

Trickles is backward compatible with TCP in several important ways, making it
possible to incrementally adopt Trickles into the existing Internet infrastruc-
ture. Compatibility at the network level, due to similar wire format, similar
congestion control algorithm, and TCP-friendly behavior, ensures interoper-
ability with routers, traffic shapers, and NAT boxes.

Some of these boxes may perform repacketization, which impacts Trickles in
the same way that IP fragmentation affects IP stacks. Similar solutions apply:
a Trickles implementation could perform defragmentation on the servers and
clients to piece together the continuations. An increased loss rate might occur,
since the server must enforce reasonable bounds on state consumption, and
hence time bounds, on how long it holds continuation fragments. Our current
implementation does not implement these extensions.

The client side of Trickles provides the client application with a standard
Berkeley socket interface (Figure 2), so the client application need not be aware
of the existence of Trickles: only the client kernel needs modification.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:20 o A. Shieh et al.

Trickles-enabled clients are compatible with existing TCP servers. The initial
SYN packet from a Trickles client carries a TCP option to signal the ability to
support Trickles. Servers that are able to support Trickles respond to the client
with a Trickles response packet, and a Trickles connection proceeds. Servers
that understand only TCP respond with a standard TCP SYN-ACK, causing
the client to enter standard TCP mode.

One way in which the Trickles client API extends the Berkeley socket API is
that clients are allowed to include data in the very first packet sent to the server.
Clients may perform a write() call before the connect () call; any enqueued
data accompanies the SYN packet. A TCP server that is not equipped to handle
Trickles clients will simply ignore the data; a Trickles server will recognize and
process it.

A Trickles server can also be compatible with standard TCP clients, by han-
dling standard TCP requests according to the TCP protocol. Of course, the
server cannot be stateless for those clients, so some servers may elect to sup-
port only Trickles.

3. TRICKLES SERVER API

The network transport protocol described in Section 2 makes it possible to
maintain a reliable communications channel between a client and server with
no per-connection state in the server kernel. However, the real benefit of state-
lessness is obtained when the entire server is stateless. The Trickles server
API allows servers to offload user-level state to the client, so that the server
machine maintains no state at any layer of the network stack.

3.1 The Event Queue

In the Trickles server API, the server application does not communicate using
per-connection file descriptors, since these would entail per-connection state.
Instead, the API exports a queue of transport-level events to the application.
For example, client data packets and ACKs appear as events. Since Trickles
is stateless, events only occur in response to client packets. Events are gen-
erated in the order that they are received. Thus, both stateful and stateless
server applications must handle potential reordering of requests from a single
connection.

Upon processing a client request packet, the Trickles transport layer may
either terminate the trickle, or continue the associated trickle and split off
zero or more trickles. If the transport generates a response, a single event
is passed to the application, describing the incoming packet and instructing
the application on what response trickles to generate. The event includes all
the data from the request and also the user continuation from the request to the
application. API state is linear in the number of unprocessed requests, which
is bounded by the ingress bandwidth. The event queue eliminates a layer of
multiplexing and demultiplexing found in the traditional socket API that can
cause excess processing overhead [Banga et al. 1999].

To avoid copying of events, the event queue is a linked list, mapped in both
the application and kernel. It is mapped read-only in the application, and is

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:21

synchronization-free in that it can be walked by a single application thread
without coordination with the kernel. While processing requests, the kernel
allocates all per-request data structures in the shared region.

The server application is solely responsible for controlling when response
data and continuations are sent: the kernel sends packets to the client only once
the server application specifies the new data. Thus the minisocket processing
time is an integral part of the total processing time, and is explicitly included
in the RTT measurement encoded within each transport continuation. Hence
the RTT estimate in Trickles is more sensitive to server implementations than
in TCP.

3.2 Minisockets

The Trickles API object that represents a remote endpoint is called a min-
isocket. Minisockets are transient descriptors that are created when an event
is received, and destroyed after being processed. Like standard sockets, each
minisocket is associated with one client, and can send and receive data. Op-
erationally, a minisocket acts as a transient TCP control block, created from
the transport continuation in the associated packet. Because the minisocket is
associated with a specific event, the extent of each operation is more limited.
Receive operations on the minisocket can only return input data from the as-
sociated event, and send operations may not send more data than is allowed
by congestion control. Trickles delivers OPEN, REQUEST, and CLOSE events
when connections are created, client packets are received, and clients discon-
nect, respectively.

Stateful Trickles servers periodically deallocate per-connection state. As in
TCP, application-level timeouts might be used to recover the state of an inactive
connection. A TCP stack generally aborts a connection and notifies the applica-
tion if a given segment is retransmitted many times, since this indicates that
the peer has failed silently. This has no analog in Trickles: since a failed client
cannot send requests, the Trickles server will not send any data.

The server application responds with new user continuations and data. To
detect new events, applications can use the standard poll() system call, or
simply read from the event queue. When an event arrives on a socket, any
application waiting on that socket will be signaled.

3.3 Minisocket Operations

The minisocket API is shown in Figure 11. Minisockets are represented by the
structure minisock *. All minisockets share the same file descriptor (£d), that
of their listen (server) socket. To send data with a minisocket, applications use
msk_send (). It copies packet data to the kernel, constructs and sends Trickles
response packets, then deallocates the minisocket. msk_setucont () allows the
application to install user continuations on a per-packet basis. Trickles also
provides scatter-gather, zero copy, and packet batch processing interfaces.
Allowing servers to directly manipulate the minisocket queue enables new
functionality not possible with sockets. Requests sent to a node in a cluster
can be redirected to a different node holding a cached copy, without breaking

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:22 o A. Shieh et al.

msk_send(int fd, minisock *, char *, size_t);
msk_sendv(int fd, minisock *, tiovec *, int);
msk_sendfilev(int fd, minisock *, fiovec *, int);
msk_setucont (int fd, minisock *, int pkt,
char* buf, size_t);

msk_sendbulk(int fd, mskdesc *, int len);
msk_drop(int fd, minisock *);
msk_detach(int fd, minisock *);
msk_extract_events(int fd, extract_mskdesc_in *,

int inlen, msk_collection *, int *outlen);
msk_install_events(int fd, msk_collection *, int);
msk_request(int fd, char *req, int reqlen,

int reservelen);

Fig. 11. The minisocket API.

the connection. During a denial of service attack, a server may elect to ignore
events altogether. The event management interface enables such manipula-
tions of the event queue. While these capabilities are similar to those proposed
in Mogul et al. [2004] for TCP, Trickles can redistribute events at a packet-level
granularity.

Because the queue is mapped read-only to the user application, the user
application cannot perform such operations by itself, so the API provides queue
manipulation downcalls. The detach () call removes the specified event from the
queue, but does not deallocate it, so the corresponding minisocket is still valid
for all operations. The drop() operation removes and deallocates a minisocket.

The msk_extractEvents() and msk_insertEvents() operations manipulate
the event queue to extract or insert minisockets, respectively. The extracted
minisockets are protected against tampering by MACs. Extracted minisockets
can be migrated safely to other sockets, including those on other machines.

4. CLIENT-SIDE PROCESSING

The structure of Trickles allows client kernels to use a straightforward algo-
rithm to maintain the transport protocol. The client kernel generates requests
using the transport continuations received from the server, while ensuring that
the prefix property holds on the sequence of SACK proofs reported to the server.
Should the protocol stall, the client times out and requests a retransmission
and slow start.

In addition to maintaining the transport protocol, a client kernel manages
user continuations, storing new continuations and attaching them to requests
as appropriate. For instance, the client must provide all continuations needed
to generate a particular data request.

4.1 Standardized User Continuations

To facilitate client-side management of continuations, and to simplify server
programming, Trickles defines standard user continuation formats under-
stood by servers and clients. These formats encode the mapping between
continuations and data requests, and provide a standard mechanism for boot-
strapping and generating new continuations.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:23

Y i
Server (GET findexchtm? Client

4_ Cont Cont
(A) — Enode: 3]

(" “Accept-) Inode: 3
Language: en"

<4 .
®

Need horae)
Need bytes:
0-1400

Inode: 3
© Lang: en
N———
Content-type:
©+ data

Fig. 12. Input and output continuations. Initially, the client has a continuation describing the
server state after processing the preceding object. (A) Server receives first part of HTTP request
and previous continuation, and returns a summary of this in an input continuation. (B) Server
receives the second part of the HTTP request and input continuation. This part completes the
request, and the server returns an output continuation describing the object. (C) Client uses this
output continuation to request the data of the object.

Oi0

Lang: en Inode: 3
Lang: en

Two kinds of continuations can be communicated between the client and
server: output continuations that the server application uses to resume gener-
ating output to the client at the correct point in the server’s output stream, and
input continuations that the server application uses to help it resume correctly
accepting client input. Having separate continuations allows the server to de-
couple input and output processing. Figure 12 contains a typical exchange of
input and output continuations.

4.2 Input Continuations

When a client sends data to the server, it accompanies the data with an ap-
propriate input continuation, except for the very first packet when no input
continuation is needed. For single-packet client requests, an input continuation
is not needed. For requests that span multiple packets, an input continuation
contains a digest of the data seen thus far. Of course, if the server needs lengthy
input from the client yet cannot encode it compactly into an input continuation,
the server application will not be able to remain stateless.

If, after receiving a packet from the client, the server application is unable
to generate response packets, it sends an updated input continuation back to
the client kernel, which will respond with more client data accompanied by
the input continuation. The server need not consume all of the client data; the
returned input continuation indicates how much input was consumed, allow-
ing the client’s transmit queue to be advanced correspondingly. The capability
to not read all client data is important because the server may not be able
to compactly encode arbitrarily truncated client packets in an input continua-
tion. In degenerate cases, repeated truncation of a byte stream might result in
multiple transmissions of the same packet, reducing the efficiency of client-to-
server transfers.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:24 o A. Shieh et al.

One way to improve performance is to modify the client to partition requests
that are difficult to parse into smaller, more readily parsable pieces. Many
Web applications already change the client to improve performance. Such ap-
plications typically ship JavaScript code to execute on the client [Crane et al.
2005]. Rather than fetch a large, complex webpage anew on each user action,
this client-side code converts data returned from the Web server into locally-
computed updates to the Web page, reducing the size of the network transfer
and improving response time.

Similarly, a Trickles webserver could send JavaScript code to the client to
simplify both parsing and result generation. The code sends requests that are
efficient to parse, and the server-side code sends responses in a format that is
convenient to generate statelessly. The client-side code uses these responses
to update the web page in an application-specific manner. This optimization
requires modifications to the JavaScript implementation so that the framing
of Trickles requests is properly retained from the JavaScript code down to the
network stack.

Servers might also use a hybrid approach to process difficult to parse input. If
the server temporarily enters a state during parsing that is expensive to trans-
mit or reconstitute, then the server might elect to retain state until the session
proceeds to a point where stateless operation once again becomes efficient.

4.3 Output Continuations

When the server has received sufficient client data to begin processing a re-
quest, it provides the client with an output continuation for the response. The
client can then use the output continuation to request the response data. For
a Web server, the output continuation might contain an identifier for the data
object being delivered, along with an offset into that data object.

In general, the client kernel will have a number of output continuations
available that have arrived in various packets from the server. Client requests
include the requested ranges of data, along with the corresponding output con-
tinuations. To allow the client to select the correct output continuation, an
output continuation includes, in addition to opaque application-defined data,
two standard fields, validStart and validEnd, indicating the range of bytes
for which the output continuation can be used to generate data.

The congestion control algorithm restricts the amount of data that may be
returned for each request. Generally, this amount is smaller than the total size
of data covered by a single output continuation. Thus the client will need to split
the range between validStart and validEnd into multiple requests. To compute
the proper byte range size for a given request, the client simulates the server’s
congestion control action for a given transport continuation and SACK proof.

5. OPTIMIZATIONS

The preceding sections described the operation of the basic Trickles protocol.
The performance of the basic protocol is improved significantly by three
optimizations.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:25

Receive
Not
EW Cach found Vaiid b Unmarshall and
eqNum: ache alidate
MAC:Y | > Lookupto) MAC(Cont) —>< Reconstruct (Cont)
Data: D Found J Fail

Drop packet Unmarshalled
Unmarshalled continuation
continuation
Compute
(Cache delete(X) > —

..Cont]
Send SegNum: X'
and cache

MAC:Y'
Data: D'

Fig. 13. Socket caching processing path. A hit in the continuation cache provides the server with
a continuation state that is known to be good and already in a usable format, obviating the need
for MAC validation and continuation update. The new continuation is added to the cache so that
it may be available in subsequent requests.

5.1 Socket Caching

While the basic Trickles protocol is designed to be entirely stateless, and thereby
consume little memory, it can be easily extended to take advantage of server
memory when available. In particular, the server host need not discard min-
isockets and reconstitute the server-side TCB from scratch based on the client
continuation. Instead, it can keep minisockets for frequently used connections
in a server-side cache, and match incoming packets to this pool via a hash ta-
ble. A cache hit will obviate the need to reconstruct the server-side state or to
validate the MAC hash on the client-supplied continuation (Figure 13). When
pressed for memory, entries in the minisocket cache can simply be dropped,
as minisockets can be recreated at any time. Fundamentally, the cache acts as
soft state that enables the server to operate in a stateful manner whenever re-
sources permit, reducing the processing burden, while the underlying stateless
protocol provides a safety net in case the state needs to be reconstructed from
scratch.

5.2 Parallel Requests and Sparse Sequence Numbers

The concurrent nature of Trickles enables a second optimization for parallel
downloads. Standard TCP operates serially, transmitting streams mostly in-
order, and immediately filling any gaps stemming from losses. However, many
applications, including web browsers, need to download multiple files concur-
rently. With standard TCP, such concurrent transactions either require mul-
tiple connections, leading to well-documented inefficiencies [Krishnamurthy
et al. 1999], or complex application-level protocols, such as HTTP 1.1
[Fielding et al. 1999], for framing. Opening multiple connections also changes
the congestion control behavior: though multiple connections result in higher
throughput, this comes at the expense of applications that use only a single

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:26 o A. Shieh et al.

Object 1 Object 2 Object 3
(A) 20000 60000 30000
bytes bytes bytes
(B)
| : I : | : |
80000 bytes 80000 bytes 80000 bytes
©) Skip 60000 Skip 20000 Skip 50000

Fig. 14. Preallocating sequence number space for objects of unknown length. (A) Objects 1-3 have
variable lengths, initially unknown to either the server or the client. (B) Each object is assigned
80,000 bytes in the sequence number space. (C) Once the length of the object is known, the server
informs the client of the actual length of the object by specifying how much of this reserved space
to skip over.

connection [Hacker et al. 2002]. By contrast, trickles are inherently concurrent.
Concurrency can improve the performance of both fetching from and sending
data to the server.

The Trickles protocol allows a client to concurrently request multiple ob-
jects on a single connection. Each object is assigned a different portion of the
sequence number space (Figure 14). In some cases, the sizes of the objects
may not be known in advance. Trickles could extend the sequence number
space with an additional object identifier, or conservatively dedicate large re-
gions of the sequence number space to each object. Any unused sequence num-
ber space is collapsed using the SKIP mechanism. The server sends a SKIP
notification to indicate that the object ended before the end of its assigned
range. A client receiving a SKIP logically elides the remainder of the object
region, without reserving physical buffer space, passing it to applications, or
waiting for additional packets from the server. This sparse allocation scheme
is simpler to implement, at the expense of consuming the sequence number
space at a faster rate. The response packets from the server, which will carry
data belonging to different objects distributed through the sequence number
space, will be subject to a single TCP-friendly flow equation, acting in effect
like a single, HTTP/1.1-like flow. This higher-level optimization exploits the in-
herent low-level parallelism between Trickles, to multiplex logically separate
transmissions on a given connection, while subjecting them to the same flow
equation.

Occasionally, an object may exceed the preallocated space. To recover from
this condition, Trickles allocates additional sequence number space to complete
the object. The remainder of the object is treated as if it were a request for a new
object: the server informs the client of this exceptional condition, and provides
a special input continuation. Using this input continuation, the client requests
an output continuation corresponding to the rest of the object.

Trickles clients can also send multiple streams of data to the server using the
same connection. A stateless server is oblivious to the number of different input
sequences on a connection. By performing multiple server input operations in

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:27

Server
MAC: X

Client
MAC: X

MAC: X

Seqgno:Q

Timestamp: T
RTT:

Seqgno:Q TT:R Segno:Q
Timestamp: T ssthresh: S Timestamp: T
TT:R cwnd: C TT:R
ssthresh:S ssthresh:S

cwnd: C cwnd: C

lCompute

Compute

partial MAC: X' update
update — Timestamp: T' MAC: X'
3 RTT:R' Seqno: Q'

MAC: ?
Segno: Q'
Timestamp: ?
RTT: ?

Timestamp: T'
RTT:R'
ssthresh:S'

cwnd: C'

ssthresh:S'
cwnd:C'

Merge server-
provided fields:

MAC:X'
Segno: Q'
Timestamp: T'

RTT:R'
ssthresh:S'
cwnd: C'

Fig. 15. Delta encoding processing path. The client computes most of the continuation update,
and the server only sends those fields that the client cannot compute.

parallel, a client can reduce the total latency of a sequence of such operations.
For instance, it can send multiple fetch requests in parallel, without incurring
the RT T-dependent overhead of processing each input sequentially.

5.3 Delta Encoding

While continuations add extra space overhead to each packet, predictive header
compression and delta encoding can be used to drastically reduce the size of the
continuations transmitted by the server. Since the Trickles client implementa-
tion simulates the congestion control algorithm used by the server, it can predict
the server’s response. Consequently, the server need only transmit those fields
in the transport continuation that the client mispredicts (e.g., a change due to
an unanticipated loss), or cannot generate (e.g., timestamps). Of course, the
server MAC still needs to be computed and transmitted on every continuation,
since the client cannot compute the secure server hash (Figure 15). Presenting
a delta to the server is not by itself sufficient to recreate the continuation, since
the server has discarded the original packet. In principle, the client sends to
the server the original continuation, the sequence of deltas, and the MACs for
each continuation and delta. In practice, we employ an optimization that elimi-
nates the overhead of sending and checking these deltas and MACs. The server
MAC is computed on the full continuation, not the delta values. This MAC is

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:28 o A. Shieh et al.

sent to the client along with the delta. The client updates its local copy of the
continuation using its local predictions and this delta, and sends only the up-
dated continuation along with the new MAC. Thus the server-side processing
for verifying a delta-encoded continuation is identical to the non-delta-encoded
case: the server computes the MAC over the continuation that had been re-
constructed by the client from predictions and delta-values, and compares this
value to the MAC sent from the client.

6. EVALUATION

In this section, we evaluate the quantitative performance of Trickles through
microbenchmarks, and show that it scales well with the number of clients,
performs well compared to TCP, consumes few resources, and interacts well
with other TCP flows. We also illustrate, through macrobenchmarks, the types
of new services that the Trickles approach enables.

We have implemented the Trickles protocol stack in the Linux 2.4.26 kernel.
Our Linux protocol stack implements the full transport protocol, the interface,
and the SKIP and parallel request mechanisms described earlier. The imple-
mentation consists of 15,000 total lines of code, structured as a loadable kernel
module, with minimal hooks added to the base kernel. We use AES [Daemen
and Rijmen 1999] for the keyed cryptographic hash function. All results include
at least six data points; error bars indicate the 95% confidence interval. Replay
detection is implemented and has negligible impact on performance. Thus it is
not used during most experiments.

6.1 Microbenchmarks

Unless otherwise stated, all microbenchmarks in this section were performed
on an isolated Gigabit Ethernet using 1.7 GHz Pentium 4 processors, with
512 MB RAM, and Intel e1000 gigabit network cards. To test the network layer
in isolation, we served all content from memory rather than disk.

Scalability. We compared the scalability and throughput of Trickles and
TCP using a topology with a single server node and two client nodes, with
a single 100 Mb/s bottleneck link connecting the server and the clients. The
bottleneck consisted of a single Linux machine with a 1 Gb/s NIC facing the
server and a single 100 Mb/s NIC facing the clients. Varying numbers of simul-
taneous client instances, distributed across two machines, repeatedly fetched
a 500 KB file from the server. A fresh connection was established for each
request.

Trickles achieves throughput that is within 10% of TCP. As expected, Trickles
consistently achieves better memory utilization than TCP (Figure 16). TCP
memory utilization increases linearly with the number of clients, while state-
lessness enables Trickles to uses a constant, small amount of memory. TCP
consumes memory separately for each connection to buffer outgoing data.

At 5000 clients, the Linux TCP stack begins moderating its memory usage,
as its global memory utilization has reached the default limit. This is reflected
in a change in slope of the TCP line, corresponding to the amount of memory

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:29

100 T T T T T

" TeP —

+—
T Trickles ---%-- g GO K T H K KKK KK KK
s 300 - 4 £
= 2
kel 2. 60} -
@ So
8 200 |- 1 =2
2 2= 40 -
uE> 100 1 S
= g 20r TCP —+—]
< Trickles ---%--
0 PEEEE THES TR TR AT EEE LEEY TEEE TEEE TTe e 0 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Number of clients Number of clients

Fig. 16. Server-side memory utilization and aggregate throughput. Memory utilization includes
socket structures, socket buffers, and shared event queue. TCP fails for tests with more than 6000
clients due to memory exhaustion.

needed to provide each new connection with a socket structure and minimal
length transmit buffer. Beyond 6000 clients, TCP exhausts memory, forcing the
kernel to kill the server process. In contrast, the Trickles kernel does not re-
tain outgoing data, and recomputes lost packets as necessary from the original
source. Consequently, it does not suffer from a memory bottleneck.

Reduced memory consumption in the network layer can improve system per-
formance for a variety of applications. In Web server installations, persistent,
pipelined HTTP connections are known to reduce download latencies. However,
many Web sites disable persistent connections because increased connection
duration can increase the number of simultaneous connections. Trickles can
achieve the benefits of persistent connections without suffering from scalability
problems. The low memory requirement of Trickles also enables small devices
with restricted amounts of memory to support large numbers of connections. In
such contexts, CPU power may also be a limited resource. Cryptographic oper-
ations such as nonce and MAC generation may be omitted to significantly re-
duce computational overhead if such devices are connected to a secure network.
Finally, Trickles’ smaller memory footprint provides more space for caching,
benefiting all connections.

With Trickles, a client fetching small objects will achieve significant perfor-
mance improvements because of the reduction in the number of control packets
(Figure 17). Trickles requires fewer packets for connection setup than TCP.
Trickles processes data piggybacked in SYN packets into output continuations
without holding state, and can send an immediate response. In contrast, TCP
must save or reject SYN data; because holding state increases vulnerability to
SYN flooding, most TCP stacks reject SYN data. Care should be taken when
piggybacking is enabled to avoid creating a DoS amplification vulnerability: if
an attacker can spoof the source IP address of a victim, and if the server sends
more data than is received, then the attacker can use the server to amplify the
amount of traffic that it can send to the victim. The piggyback optimization
can be used when spoofing can be ruled out, for instance, in a trusted private
network or if egress filtering is widely deployed. Alternatively, the server could
enforce reverse routability to a client by negotiating a session nonce with the
client, valid for multiple requests. Subsequent Trickles SYN packets would in-
clude this nonce, which would not be available to an attacker. This technique

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:30 o A. Shieh et al.

c g Trickles piggyback 8-
4 TCP ——

. Triclldes - -[* -

0] 1 1]
0 2 4 6 8 10 12 14 16

Object size (KB)

Fig. 17. Trickles and TCP throughput for a single, isolated client at various object sizes. Trickles
can piggyback data on SYN packets while retaining good resilience against DoS attacks.

Number of clients
1 2 3
TCP 83.1 | 91.0 | 92.9
Trickles | 68.3 | 76.9 | 78.5

Fig. 18. Aggregate transfer rate, in Mb/s, with SpecWeb’99 request distribution, piggybacking
disabled. At as few as three simultaneous clients, Trickles aggregate transfer rate is within 5% of
the large file performance of Figure 16 (right hand side).

is orthogonal to the Trickles protocol, and can be applied to protocols such as
T/TCP.

Unlike TCP, Trickles does not require FIN packets to clean up server-side
transport layer state, as all state induced by this connection will be purged au-
tomatically during the recycling of the replay-prevention Bloom filters. Trickles
clients still send FIN packets as a hint for the server to deallocate server-side
application-level state; these FIN packets generate CLOSE events that are
passed to the server application. The combination of SYN data and lower con-
nection overhead improves small file transfer throughput for Trickles, with a
corresponding improvement in transfer latency.

Trickles is particularly well-suited for Web servers, since they typically serve
a large number of clients in a stateless fashion. To evaluate the suitability of
Trickles in this environment, we subjected our implementation to a workload
with the request size distribution based on SpecWeb’99 [Standard Performance
Evaluation Corporation 1999]. To isolate the effects of the network stack, we
served all files from memory. Piggybacking requests on SYN packets is disabled.

Each client issues a single request at a time, and establishes a new connec-
tion for each request. To establish a lower bound on performance, we employed
a small number of simultaneous clients, as per-request latency due to protocol
overheads are more apparent at low degrees of parallelism. Trickles perfor-
mance tracks the trend of TCP performance (Figure 18), and at three simul-
taneous connections is already within 5% of its throughput in lower overhead
experiments, such as those with large objects or a high degree of parallelism.
Thus we expect Trickles to perform well on Web workloads that contain small
objects.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:31

100 T T
TCP : TCP —+—
@ 80 Trickles : Trickles :--%--! |
I}
=3
o 60
8
& 40
@ ~
& e
= 20+ T S
ol I I I

0510 25 50 100
RTT (ms)

Fig. 19. Single client throughput versus RTT. Trickles achieves similar throughput to TCP under
all RTTs.

100 T T T

TCP ——
80 L Trickles +--%--! |

Transfer rate (Mb/s)

1 1 1
0.001 0.0025 0.005 0.01
Loss rate

Fig. 20. Single client throughput versus packet loss rate. RTT is set to 10 ms to emphasize effects
of loss. Trickles achieves similar throughput to TCP under all loss rates.

Sensitivity to RTT, packet loss, and reordering. We next consider the per-
formance of a single Trickles client under different delay, packet loss, and re-
ordering scenarios. In all of these experiments, the client transfers a sequence
of 100 MB objects from the servers over a 100 Mb/s link.

Trickles closely matches TCP under different delay (Figure 19) and forward
(server to client) loss rate conditions (Figure 20). As expected, TCP’s cumulative
acknowledgments enable it to maintain performance in the presence of reverse
path (client to server) loss (Figure 21). To Trickles, reverse path losses are in-
distinguishable from forward path losses, so it achieves similar performance in
both cases.

We used trace-driven emulation to characterize the effect of reordering on the
throughput of Trickles connections. We collected reordering data for bursts, sent
at one-minute intervals, consisting of 10 back-to-back, 1500 byte UDP packets,
from 29 geographically diverse PlanetLab nodes to a node at Cornell. Over a
33-hour experiment, all but two nodes exhibited one or fewer reordering events.

We emulate the behavior of the nodes exhibiting a nontrivial degree of re-
ordering in a 100 Mb/s LAN testbed as follows. Each reordered burst is con-
verted to a potential pattern of reordering. Each pattern is associated with a
given probability, based on the number of times the pattern occurs in the trace,
over the event space of packets. On processing each packet, the network emula-
tor will select a reordering pattern for subsequent packets using this probability
distribution. The emulator introduces the measured RTT, but does not emulate
the bottleneck bandwidth.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:32 o A. Shieh et al.

100 T T T T

- B e b

..
80 | '® TCP (reverse) ----! g
" TCP (forward) —+—
@ R Trickles (reverse) -
r] N m Trickles (forward) :--%--!
= 60 o i
o "
[
T 40 i
2 ¥\,
20 - i
....._jﬁ.l::. _
0 1 1 e
0 0.02 0.04 0.06 0.08 0.1

Loss rate

Fig. 21. Single client throughput versus forward and reverse path packet loss rate for RTT = Oms.
TCP cumulative acknowledgments make it robust against reverse path loss.

Figure 22 summarizes the parameters and results from transferring a 1 GB
object over the two traces. The reordering performance is compared to two ex-
trema: when no loss or reordering occurs, and when all reordering events are
replaced by loss. The maximum achievable transfer rate for this RTT occurs
under no losses, and is denoted by the top pair of horizontal lines. The bottom
pair of horizontal lines denote the performance achieved when all reordering
events are replaced by losses. On a sufficiently small timescale, reordering is
indistinguishable from loss. Both TCP and Trickles attempt to improve per-
formance by distinguishing between path reordering and loss. The difference
in performance between the reordering and the loss experiments indicates the
effectiveness of these optimizations.

Both TCP and Trickles achieve better performance under reordering than
under loss. TCP’s high performance is partly due to more sophisticated opti-
mizations for reordering conditions. Reordering can trigger an erroneous back-
off due to fast recovery/retransmit. After such an event, the Linux TCP stack
will monitor the ACK stream for evidence that the back-off was triggered by a
reordering and not a loss. If it determines that the back-off was due to reorder-
ing, any window size changes are rolled back. The Trickles protocol does not
currently support rollback.

These scenarios cover a wide range of WAN conditions, and indicate how
Trickles will perform on the Internet. Trickles and TCP exhibit similar behavior
under delay and forward loss conditions. Reverse path loss and the occasional
path with high reordering, can adversely impact Trickles performance. Client-
side optimizations can potentially mitigate both. Since the client is stateful,
it can record path statistics to infer reverse path loss or reordering. If reverse
path loss is significant, the client can send redundant Trickles requests to the
server. This will enhance performance with no changes to the server, as replay
detection on the server will automatically drop the redundant requests. A client
can adjust its fast recovery threshold in response to reordering, independent
of help from the server; this is analogous to tuning a TCP sender’s reordering
threshold for the reordering/loss characteristics of a link. As seen in Figure 22,

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols . 8:33

planetlabone.ccs.neu.edu, RTT=12ms

100 : :
——+— TCP loss=0%
No loss i L=~ Trickles loss=0%
+ . --%--1 TGP loss=0.24%
B4 Trickles loss=0.24%
#-- - -4 TGP reorder
Q) +--@--i Trickles reorder
el H H H H
Seof || P .
= . i
Q
=
E3
340 - .
<
=
20 Loss rate = reorder rate . -
rrrrrrrrrrrrrrrrr Kool
0 H A I
10 50
Reorder threshold
host-198-7-255-162.0shean.org, RTT=14ms
100 T T
——+— TCP loss=0%
=->--t Trickles loss=0%
. No loss t--%--: TCP loss=0.60%
80 [~ A - A =+~ Trickles loss=0.60%
Vi 5 P r--&--4 TCP reorder
« [x a— +--@--i Trickles reorder
o) [HE.
260 . 7
5 - Pl
(o}
=
4
3 40 - -
=
=
20 —
Loss rate = reorder rate !
................. E 2R
0 1 1

10 50
Reorder threshold

Fig. 22. Impact of reordering on TCP and Trickles on transferring 1 GB objects over a 100 Mb/s
link. Trickles achieves higher performance under reordering than under an equivalent loss rate.
Trickles performance can be improved purely by tuning the client to use a higher reordering thresh-
old. TCP adapts to reordering by rolling back changes to congestion control state.

adjusting the reordering threshold can improve performance for links where
reordering dominates loss, although this does not achieve the same performance
as TCP. One can also extend the Trickles protocol to support rollback, at the
expense of modifying both the client and the server.

Replay detection. Bloom filter-based replay detection prohibits all replays
with a small amount of state, at the cost of potential false positives. We im-
plemented the Bloom filter design using six hash functions of 21 bits in width
to index a 2,097,152-entry table, and a one second horizon for swapping and
flushing the two Bloom filters. As an optimization, the Bloom filter hash bits
were extracted from the transport continuation MAC, thus amortizing the cost
of MAC computation between integrity and replay prevention.

The performance impact of this Bloom filter is minimal. It imposed a 512 KB
memory overhead, negligible CPU overhead (Figure 24), and minimal decrease
in throughput. At 1 Gb/s interface speeds, the highest observed false positive
rate was 0.00696%, lower than the theoretical rate of 0.0091%, and reduced
throughput from 881 Mb/s to 876 Mb/s.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:34 o A. Shieh et al.

Replay detection parameter selection is determined by the expense of hash
computations, the acceptable false positive rate, and the number of continu-
ations hashed per time interval. These parameters provide the lowest false
positive rate, given the 128 bits of free hash bits available from the MAC. Dou-
bling the number of available hash bits enables 1,583,327-entry Bloom filters
to achieve a similar false positive rate with 12 hash functions, for an overhead
of 387 KB.

False positives increase the effective loss rate, which can degrade perfor-
mance. For a given bound on performance degradation, the acceptable false
positive rate depends on the loss rate of the underlying network. Higher loss
rates or looser bounds on degradation both increase the acceptable false positive
rate. Relaxing the degradation bound to 5% for a median Internet loss rate of
0.7% allows the use of 1,333,328-entry Bloom filter with seven hash functions,
for an overhead of 323 KB.

For a given false positive rate, replay-detection Bloom filter size scales lin-
early with the number of continuations per time interval, which depends on the
data rate of the connection and on the number of data packets generated per
continuation. Our earlier analysis assumes that one data packet is generated
per transport continuation check. Implementations that generate multiple data
packets per continuation will encounter fewer continuations per time interval.
Using one continuation per two packets halves the size of the Bloom filters,
resulting in an overhead of 256 KB to achieve our original performance targets.

Optimizations. Delta encoding enables Trickles to transmit continuations
with less space, reducing the overhead on each packet. We implemented delta
encoding for transport continuations. In generating each request packet, each
Trickles client computes the server’s response transport continuation using
the same algorithm as the server. Rather than sending a full transport con-
tinuation, the server sends only the differences between the client-computed
continuation and the actual continuation. These differences are simply those
fields that the client cannot predict: the timestamp, updated RTT, and MAC.
This optimization increased throughput on the 100 Mb/s LAN bandwidth by
1.2 Mb/s, or 1.4%.

The SKIP and parallel-continuation request mechanisms allow Trickles to ef-
ficiently support pipelined transfers, enhancing protocol performance over wide
area networks. We verified their effectiveness over WAN conditions by using
nistnet [Carson and Santay 2005] to introduce artificial delays on a point-to-
point, 100 Mb/s link. The single client maintained 10 outstanding pipelined
requests, and the server sent SKIP notifications when 50% of the file was
transmitted.

We compared the performance of TCP and Trickles for pipelined connections
over a point-to-point link with 10 ms RTT. The object size was 250 KB. This
object size ensures that the link can be filled, independent of the continuation
request mechanism. Trickles achieves 86 Mb/s, and TCP 91 Mb/s. Thus with
SKIP hints, Trickles achieves performance similar to that of TCP.

We also verified that issuing continuation requests in parallel improves per-
formance. We added to the client-side API the msk_request () system call, which

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols . 8:35

70 - . ,
N TCP —+—i
60 - =, Trickles SKIP +--%--! |
Trickles SKIP + Request i
@50 i
= x
©40 | H |
g &
B30 | i
«
g
=20 i
10)
8
R
0 . m L

10

100

RTT (ms)

Fig. 23. Throughput comparison of pipelined transfers with 20 KB objects, smaller than
the bandwidth-delay product. Trickles pipelining with Skip + Request significantly improves
performance.

takes application-specified data and reliably transmits the data to the server
for conversion into an output continuation. These requests immediately re-
turn control to the application, and multiple requests can be pending at any
time. The msk_request () interface informs the client-side stack of the framing
between requests. In the preceding experiments, which issued sequential re-
quests, the compatibility layer cooperates with the server’s input continuation
processing to automatically translate socket send() on behalf of the applica-
tion without this information. In Figure 23, object sizes are small, so a Trickles
client using only SKIP with the sockets interface, cannot receive output contin-
uations quickly enough to fill the link. A Trickles client using parallel requests
can receive continuations more frequently, resulting in performance compara-
ble to TCP, while still retaining the congestion control properties of a single
connection.

CPU utilization. We compare the CPU overhead of Trickles with TCP under
a highly stressful configuration. In this experiment, the server does not employ
any soft-state caching, and verifies the state for every received continuation.
In steady state, this corresponds to a continuation every two packets. A ma-
chine employing a 2.2GHz AMD Opteron CPU operating in 32-bit mode, acts
as the server, with the MTU set to 1500 bytes. Six client machines connected to
the server over a 1 Gb/s switch, simultaneously download a sequence of 1 GB
objects.

Trickles achieves an average transfer rate of 881 Mb/s, while TCP achieves
an average transfer rate of 947 Mb/s. Figure 24 shows a breakdown of the
CPU overhead for Trickles and TCP. Not surprisingly, Trickles has higher CPU
utilization than TCP, since it verifies and recomputes state that it does not
keep locally. The overhead is evenly split between the cryptographic operations
required for verification, and the packet processing required to simulate the
TCP engine. While the Trickles CPU overhead is higher, it does not pose a server
bottleneck, even at gigabit speeds. The higher overhead of Copy+Checksum for
TCP is an artifact of the API differences. TCP’s packetization is determined by
the MTU and the amount of data specified in the send () system call. Maximum
throughput is achieved with a large send buffer. However, a large send buffer

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:36 o A. Shieh et al.

CPU utilization

Copy+C'hecksum —
Crypto &sCxn
Bloom filter &

TCP [Other
Trickles e] 7

1 L L !
0.2 0.4 0.6 0.8 1
CPU utilization (%)

o

Fig. 24. Server-side CPU overhead on a 1 Gb/s link while transferring 1 GB objects to six simul-
taneous clients.

60
— TCP :TCP +—+—
R4 Trickles : TCP :--%--:
g 50 TCP : Trickles -->--1
= Trickles : Trickles 8-
a 40 [_
< R
[+)) NI
=1 O
o =y
£ 30 (ki 7
] i
S e
o 20 f|fui * -
> E
s i
10 [ﬂ* -
o LLE i R i meE e
1:1 1:4 1:9 1:49 1:99

Connection ratio (#Foreground : #Background)

Fig. 25. Interaction of Trickles and TCP. Trickles has a similar impact on the foreground connec-
tion to TCP.

pollutes the processor cache. By contrast, we use a smaller, shared send buffer
for Trickles, since we have better control over packetization.

Interaction with TCP flows. New transport protocols must not adversely
affect existing flows on the Internet. Trickles is designed to generate similar
packet-level behavior to TCP, and should therefore be TCP-friendly and achieve
similar performance as TCP under similar conditions. To confirm this, we mea-
sured the bandwidth achieved by Trickles in the presence of background flows.
We constructed a dumbbell topology with two servers on the same side of a
100 Mb/s bottleneck link, and two clients on the other side. The remaining links
from the servers and clients to their respective bottleneck routers operated at
1 Gb/s. Each server was paired with one client, with connections occurring only
within each server/client pair. One pair generated a single foreground TCP or
Trickles flow. The other pair generated a variable number of background TCP
or Trickles flows.

We compared the throughput achieved by the foreground flow for Trickles
and TCP, versus varying numbers of background connections (Figure 25). In all
cases, the foreground throughput of each configuration is comparable. Similarly,
the ratio of slowest to fastest client is generally comparable, suggesting a sim-
ilar degree of fairness for both Trickles and TCP (Figure 26). The anomaly for

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:37

1

;:@ T f
08 | iﬁ %{3@ PE'F

P L. R
04 : i ik*_

02 | L R
: H H [S S
X

Throughput ratio (min/max)

1:1 1:4 1:9 1:49 1:99
Connection ratio (#Foreground : #Background)

Fig. 26. Interaction of Trickles and TCP: ratio of slowest to fastest client. Trickles achieves similar
fairness to TCP in most situations.

TCP:Trickles at ratios of 1:49 and 1:99 is due to the higher throughput achieved
by the TCP foreground connection.

Microbenchmark Summary

Compared to TCP, Trickles achieves similar or better throughput under a vari-
ety of network conditions, and scales asymptotically better in terms of memory.
It is also TCP-friendly. Trickles incurs a significant CPU utilization overhead
compared to baseline TCP, but this additional CPU utilization does not pose a
performance bottleneck, even at gigabit speeds. The continuation management
mechanisms allow Trickles to achieve performance comparable to TCP over a
variety of simulated network delays, and with both pipelined and nonpipelined
connections.

6.2 Macrobenchmarks

The stateless Trickles protocol, and the new event-driven Trickles interface,
enable a new class of stateless services. We examine three such services and
evaluate Trickles under real-world network loss and delay. For multi-server
configurations with % servers, loose clock synchronization between servers is
needed for replay prevention. The choice of the horizon parameter T', the max-
imum age of a fresh packet, depends on §, the maximum drift between server
clocks. In the worst case, a fresh continuation may be misidentified as stale
after only T' — § seconds, and a stale continuation may be misidentified as fresh
after more than 7' seconds. Globally, each fresh continuation can be replayed
at most k£ times, once at each server.

PlanetLab measurements. We validated Trickles under real Internet condi-
tions using PlanetLab [Bavier et al. 2004]. We ran a variant of the throughput
experiment in which both the server and the client were located in our local
cluster, but with all traffic between the two nodes redirected (bounced) through
a single PlanetLab node m. Packets are first sent from the source node to m,
then from m to the destination node. Thus packets incur twice the underlying
RTT to PlanetLab.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:38 o A. Shieh et al.

Nodes with RTT < 50 ms Nodes grouped by 50 ms RTT bins
10 3 T T T T T T T
0 TCP —— 3 Top
%ﬁg Trickles :--%--! o5 | +H Trickles :--%--! |
o Trickles piggyback i : bk Trickles piggyback i

Transfer rate (Mb/s)
Transfer rate (Mb/s)
&

T

; i i
100 150 200 250 300 350
Max RTT of bin (ms)

Different nodes

Fig. 27. Trickles and TCP PlanetLab transfer rate. Trickles achieves comparable transfer rate to
TCP across a wide range of Internet paths.

Figure 27 summarizes the average throughput for a 160 KB file. With the ex-
ception of nodes with latency less than 50 ms, the PlanetLab nodes are grouped
into 50 ms bins by the RTT measured by the endpoints. Due to widely varying
measurements, the nodes with latency less than 50 ms are shown separately.
These results show that Trickles achieves similar performance to TCP under
comparable network conditions.

Geographically-aware anycast. Network redirection enables lower-level
network services to flexibly adapt routing to changing network conditions inde-
pendently of higher-level information. We implemented geographically aware
anycast using this architecture. Since anycast infrastructure is not deployed
on the Internet, we implemented an anycast primitive within the client-side
kernel to create a simulated Internet infrastructure anycast, routing packets
to the closest node associated with some IP address. Each Trickles connection
is associated with a set of candidate servers, which are periodically pinged to
determine the RTT. The kernel sends requests to the node with the shortest
RTT, which is expected to be the geographically closest, and thus generally
more appropriate than a more distant node. The kernel performs this redirec-
tion on a per-packet basis, just as packets are sent down to the IP layer, and
thus interacts minimally with the Trickles stack itself.

To improve performance and reduce excess impact on concurrent flows, the
congestion control parameters should be changed or reset on a routing change.
In our prototype, the servers detect routing changes by attaching a site-specific
identifier to transport continuations. Any received continuation with a non-
matching identifier is from a different site, and should be reset to slow-start at
the server. For simplicity, our prototype uses a slightly less efficient approach:
the servers drop all nonmatching requests except for slow-start requests. The
resulting lack of response packets triggers a timeout request on the client, which
resets the connection parameters.

We verified the performance benefits of performing geographically-aware
network redirection over our PlanetLab bounce infrastructure in two experi-
ments. In each experiment, we compared the unicast performance of TCP from
a single server, with that of Trickles to the same single server, and Trickles with

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols . 8:39

I Trickles / TCP to nea}by node ' 7 ' ' ' ' 77777 T
Anycast / TCP unicast to nearby node ------ /] USSR

c 08+ Anycast / TCP unicast to distant node ------- i

o

5

2

B 0.6

el

3

2

T 04

=]

5

=1

© o2t

0 1 1 1 1 1

2 3 4 5 6 7
Slowdown Speedup

Fig. 28. Geographically-aware anycast: slowdown and speedup of Trickles relative to TCP. The
performance of anycast selection closely matches that of unicast to the closer server, and exceeds
that of unicast to the farther server.

two servers to select from, one nearby, the other distant. In all experiments, a
single client transfers a sequence of 100 MB files. Figure 28 plots the slowdown
and speedup of Trickles relative to TCP unicast. The speedup was computed
using datapoints from experiments that are executed back to back, to increase
the likelihood that the datapoints reflect similar network conditions. Each ex-
periment consisted of 90 total runs, evenly distributed across pairs of nearby
and distant nodes.

The first experiment compared the relative speed of unicast to a nearby node,
with the speedup of server selection between nearby and distant servers. As
expected, the speedups are similar, since the Trickles client will tend to choose
the nearby node. Since Trickles achieves similar performance to TCP on most
Internet links, the median speedup is 1. The wide distribution of slowdown and
speedup is due to load variance on PlanetLab. The second experiment compared
the relative speed of unicast to distant nodes with that of server selection. As
expected, the anycast client performs better, with a median speedup of 1.5,
since it is allowed to redirect to the nearby nodes. This result demonstrates the
potential performance benefits of geographically-aware network redirection for
applications such as content distribution networks.

Instantaneous failover. Trickles enables connections to fail-over from a
failed server to a live backup, simply through a network-level redirection. If
network conditions do not change significantly during the failover to invali-
date the protocol parameters captured in the continuation, a server replica
can resume packet processing transparently and seamlessly. In contrast, TCP
recovery from server failure fundamentally requires several out-of-band oper-
ations. TCP needs to detect the disconnection, reestablish the connection with
another server, and then ramp back up to the original data rate.

We compared Trickles and TCP failover on a 1 Gb/s single-server/single-
client connection. To factor out overheads due to failure detection, we model a
low-latency failure detector by killing and immediately restarting the server
application. This is equivalent to failing-over to a live replica where total fail-
ure detection and route-change latency takes the same time as restarting the
server. Figure 29 contains a trace illustrating the recovery of Trickles and TCP;

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:40 o A. Shieh et al.

1000 T T T T

800 -

600 X

Instantaneous
N
o
o

transfer rate (Mb/s)

200

TCP Oms —+—
Trif:kles OmsI S¥--

5 10 15 20 25 30
Time (seconds)

Fig. 29. Failover behavior. Disconnection occurs at ¢ = 10 seconds.

the server is killed at 10 seconds. Since transient server failures are equivalent
to packet loss at the network level, Trickles flows can recover quickly and trans-
parently using fast recovery or slow-start. The explicit recovery steps needed
by TCP increase its recovery time.

Packet-level load-balancing. Trickles requests are self-describing, and
hence can be processed by any server machine. This allows the network to
freely dispatch request packets to any server. With TCP, network-level redirec-
tion must ensure that packets from a particular flow are always delivered to
the same server. Hence, Trickles allows load-balancing at packet granularity,
whereas TCP allows load-balancing only at connection granularity.

Packet-level granularity improves the flexibility of bandwidth allocation. We
used an IP layer packet sprayer to implement a clustered Web server with
two servers and two clients. The IP packet sprayer uses NAT to present a
single external server IP to the clients. In the test topology, the clients, servers,
and packet sprayer are connected to a single Ethernet switch. The servers are
connected to the switch at 100 Mb/s to introduce a single bottleneck on the
server—client path.

TCP and Trickles tests used different load-balancing algorithms. TCP con-
nections were assigned to servers using the popular least connections heuris-
tic, which permanently assigns new TCP connections to the node with the
fewest connections at arrival time. Trickles connections were processed using a
per-packet algorithm that dispatched packets on a round-robin schedule. This
scheme is incompatible with TCP, since packets within the same connection
will be striped across multiple servers.

Figure 30 compares the Jain’s fairness index [Jain 1991] of the total through-
put versus the uniform allocation. For large numbers of connections, Trickles
is fairer that TCP, since it more closely matches the uniform distribution.

Dynamic content. Loss recovery in a stateless system may require the re-
computation of past data; this is more challenging for dynamic content. To
demonstrate the generality of stateless servers, we implemented a water-
marking media server that modifies standard media files to custom versions

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:41

1;(\ T T T T T T
08 - N B *éﬁ -
0.6 - i
x
[0
e}
£
04 | -
0.2 i
TCP —+—
Trickles ---%--
0 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of connections

Fig. 30. Jain’s fairness index in load-balancing cluster with two servers and two clients. Allocation
is fair when each client receives the same number of bytes.

containing a client-specific watermark. Such servers are relevant for DRM
media distribution systems, where content providers may apply client-specific
transforms to digital media before transmission. Client customization inher-
ently prevents multiple simultaneous downloads of the same object from shar-
ing socket buffers, thus increasing the memory footprint of the network stack.

Stateless dynamic processing is possible with transforms that operate on
individual blocks; the user continuation contains the location of the source
file, and any client-specific parameters for driving the transformation, such
as the watermarking client identifier or cryptographic key. Since each output
is dependent on processing only a small window of the input file, reprocessing
due to packet loss does not require rereading the entire prefix of the input file.
Thus the additional overhead is linear in the packet loss rate.

We built a JPEG watermarking application that provides useful insights into
continuation encoding for stateless operation. JPEG relies on Huffman coding
of image data, which requires a nontrivial continuation structure. The exact
bit position of a particular symbol after Huffman coding is not purely stateless,
since it is dependent on the bit position of the previous symbols.

In our Trickles-based implementation of such a server, the output contin-
uation records the bit alignments of encoded JPEG coding units at regular
intervals. When generating output continuations, the server runs the water-
marking algorithm to determine these bit positions, and discards the actual
data. While processing a request, the server consults the bit positions in the
output continuation for the proper bit alignment to use for the response.

An extended SKIP optimization can eliminate the preprocessing step: rather
than requiring the server to provide precise bit alignment, the server would
return unaligned data with SKIP markers that indicate the number of bits to
skip when reassembling the data. Using application-defined sequence numbers
can further improve performance. The watermarking application addresses
images in terms of coding units (MCUs), while the transport layer addresses
the datastream in bytes; the translation between the two is nontrivial. By
specifying the datastream in terms of MCU number, the server could avoid the
translation cost.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:42 o A. Shieh et al.

7. DISCUSSION

Trickles requires both the modification of server applications, and client-side
changes. Here, we discuss the design of Trickles server applications, and pro-
pose ways to simplify Trickles deployment to clients.

7.1 Designing Trickles Server Applications

The primary source of complexity on the server side is in designing appropriate
user continuations, since the congestion control and replay detection compo-
nents are easy to use. We describe here the properties that determine whether
Trickles is appropriate for a given application, and the user continuation struc-
ture used to support such applications. We present these techniques within an
online shopping example.

Trickles is most appropriate for applications with modest server-side state
requirements that can be captured with continuations. Trickles is not applica-
ble to applications where servers hold a large amount of per-connection state.
User continuations for interactive applications typically encode a complex state
machine to capture the client session’s state. In certain cases, such as provid-
ing shell access via TELNET or SSH, the session state space is prohibitively
large for encoding within a user continuation, and must be held on the server. A
stateless transport layer provides little benefit in this scenario, since the large
application-level state dominates the scalability of the system.

Trickles imposes fewer constraints on applications whose server-side state
is independent of the number of connections. Storing such state on the server
does not affect scalability with respect to the number of connections. The con-
tent in content-delivery applications constitutes largely invariant state shared
between many different clients. These generally use simple user continuations
that summarize the name and location of the object.

A mismatch between the idempotency assumed by Trickles, and that of the
server actions triggered by data sent from clients, can constrain the system
design. A deterministic, fully stateless server cannot respond to the original
request differently from the retransmitted requests in that it must execute the
same operations and return the same data. Maintaining some server state is
necessary when operations must not be repeated, for instance, when making
an electronic payment, or posting to a bulletin board.

In some cases, a nonidempotent action can be made idempotent by restructur-
ing where the state transitions occur. For instance, retransmissions should not
cause items to be added to a shopping cart multiple times. This can be achieved
by encoding the shopping cart contents within the user continuation. Suppose
the client retransmits an add to cart request. Each (re)transmission uses the
same user continuation, thus the same previous cart contents. Each time the
server receives such a request, add to cart generates a continuation containing
an updated shopping cart with the same new items. The client selects the first
successfully received new user continuation as the next user continuation to
use for the connection.

Support for multiple in-flight packets enhances performance, especially
for higher RTTs; as seen in transport continuations, supporting this level of

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:43

parallelism increases the complexity of continuations. Simpler user continua-
tions that support a lower level of parallelism are acceptable in certain situa-
tions. Close nodes might be serviced with lower parallelism if the increase in
delay is below the perceptual threshold. With a sufficient number of clients,
the bottleneck might shift from the low user continuation parallelism to the
network link. Under high load or attack, a normally stateful Trickles server
could resort to low parallelism user continuations to shed load, thus providing
degraded service rather than rejecting new requests or failing.

Trickles enables new service optimizations based on partitioning an appli-
cation or workflow into stateless and stateful portions, in a manner analogous
to how different types of content, such as static versus dynamic, are handled
differently by caching systems. Rather than executing a full client/server inter-
action in a stateful fashion, the inherently stateless portions of the interaction
can now benefit from increased scalability, allowing the system to devote more
resources to servicing the stateful operations.

This partitioning principle can be applied in both high level application de-
sign and in state caching. Many operations on a shopping site can operate
statelessly. Browsing and searching for items in the catalog is stateless and
idempotent. Though some sites do change state on browsing, such as in data-
mining client activity for relationships between items in the catalog, this state
change is not inherently per-client, since it grows with the number of items,
rather than the number of clients. Furthermore, the statistical nature of these
updates suggests that Bloom filters are sufficient for preventing retransmis-
sions from skewing the analysis.

The user continuation for browsing simply points to the file that describes an
object or category. Search results are often generated with a database query; the
user continuation would encode the position within the array of query results
from which to begin generating the next packet of data. Trickles can implement
a stateless shopping cart using the technique described earlier. After checkout,
any purchased digital goods would be delivered using a content distribution
model: the checkout returns a continuation to bootstrap a stateless download
of the item. Note that checkout server application is stateful to enforce az-most-
once semantics on operations such as charging the customer’s account.

State caching can improve the performance of the stateless portion. The state
cache might cache the continuation state or the output queue. The replacement
algorithm balances the size of server-side state, the size of the output, and the
cost of recomputing data. The result of an expensive computation should be
considered for long-term retention in the server cache. The smaller between
the expanded state of a continuation and the total generated output should be
inserted into the cache.

7.2 Client-Side Deployment

Several techniques can simplify the deployment of Trickles on the client side.
Our prototype was implemented in the kernel to improve performance and
transparently provide Trickles support to all applications running on a Trick-
les kernel. Implementing Trickles at user-level on the client would enable

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:44 o A. Shieh et al.

incremental deployment, though existing operating systems restrict such a
Trickles stack to operating over UDP. Trickles might be distributed via self-
spreading transport protocols (STP) [Patel et al. 2003]. To fully support Trickles
optimizations such as parallel request, STP should be augmented to support
extensibility via protocol-specific system calls.

The SKIP optimization and support for partial input parsing (Section 4.2) en-
able the standard processing model for user continuations (Section 4.1) to trans-
parently provide a sockets interface to any application where the server can
provide a reasonable bound for the size of the data that a continuation might
generate, that is, a bound for which multiple requests will not exhaust the
sequence number space. Request sequence optimizations can improve the
goodput of a system (Section 4.2), and custom data reconstruction can reduce
the server-side processing of dynamic content generation (Section 6.2). To
fully exploit these opportunities, Trickles and its deployment technology
should provide mechanisms for servers to ship input preprocessing and output
reconstruction code to clients.

8. RELATED WORK

This article builds upon our previous work on Trickles [Shieh et al. 2005], which
introduced our stateless design principles and described our experience with the
prototype implementation. Here, we validate Trickles in a wide range of LAN
and WAN conditions, explore the parameter space for replay detection, discuss
the design space for Trickles applications, and provide a detailed description of
the protocol and algorithms.

Previous work has noted the enhanced scalability and security properties
of stateless protocols and algorithms. Aura and Nikander [1997] describe a
general framework for converting stateful protocols to stateless protocols, and
apply it to authentication protocols. Since this framework assumes that the
underlying communication channel is reliable, it is not directly applicable to a
high-performance transport protocol. Stateless Core Routing (SCORE) [Stoica
2000] redistributes state in routing algorithms to improve scalability. Rather
than placing state at the core routers, where holding state is expensive and often
unfeasible, SCORE moves the state to the edge of the network. In contrast with
these approaches, Trickles deals with the more general problem of streaming
data, and provides a high performance stateless transport protocol.

Continuations are used in several existing network protocols and services.
SYN cookies are a classic modification to TCP that use a simple continuation
to eliminate per-connection state during connection setup [Bernstein 2005;
Zuquete 2002]. NFS directory cookies [Sun Microsystems 1989] are applica-
tion continuations. Continuations for Internet services have been explored at
a coarser granularity than in Trickles. Session-based mobility [Snoeren 2002]
adds continuations at the application layer to support migration and load bal-
ancing. Service Continuations [Sultan et al. 2003; Sultan 2004] record state
snapshots, and move these to new servers during migration. In these systems,
continuations are large and used infrequently in explicit migration operations
controlled by connection endpoints. Trickles provides continuations at packet

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:45

level, enabling new functionality within the network infrastructure.

Receiver-driven protocols [Gupta et al. 2000; Hsieh et al. 2003] provide clients
with more control over congestion control. Since congestion often occurs near
clients, and is consequently more readily detectable by the client, such systems
can adapt to congestion more quickly. Trickles contributes a secure, light-weight
congestion control algorithm that enforces strong guarantees on receiver behav-
ior, and low CPU and memory overhead mechanisms for protecting the server
against denial of service attacks.

Transactional TCP (T/TCP) [Braden 1994] is an extension of TCP to im-
prove the performance of workloads that are dominated by short requests and
responses, each of which fit within a small number of packets. TCP Accelerated
Open (TAO) enhances the performance of TCP by eliminating the three-way
handshake in the common case and enabling SYN data to be delivered directly
to applications in much the same way as Trickles with SYN data piggyback-
ing. The at-most-once semantics of T/TCP constrain servers to allocate state to
store a connection counter for each client. Reordering of SYN packets is likely to
force a TAO failure, which forces the server to queue the data and revert to the
standard three-way handshake. Since attackers can craft a sequence of SYN
packets to trigger the three-way handshake, T/TCP is vulnerable to similar de-
nial of service attacks as TCP [route|daemon9 1998]. Thus Trickles provides
better denial of service protection than T/TCP.

Several kernel interfaces address the memory and event-processing over-
head of network stacks. 10-lite [Pai et al. 1999] reduces memory overhead by
enabling buffer sharing between different connections and the filesystem. Dy-
namic buffer tuning [Semke et al. 1998] allocates socket buffer space to con-
nections where it is most needed. Event interfaces such as epoll(), kqueue(),
and others [Banga et al. 1999; Lemon 2001] provide efficient mechanisms for
multiplexing events from different connections.

The Cyclone shared TCP buffer provides memory footprint reduction by serv-
ing all clients fetching a particular file from a single digital fountain packet
stream [Rost et al. 2001]. Cyclone uses traditional transport protocols, requiring
less pervasive changes to the transport layer, at the expense of incurring per-
connection state. Cyclone is designed for delay-insensitive applications, since
Cyclone can pass data to client applications only when a complete coding block
isreceived and decoded. Trickles is a complementary approach to Cyclone. Since
the Trickles API provides fine-grain control of server-side state and retransmis-
sion in much the same way as the Cyclone server architecture, delay insensitive
applications can layer Cyclone over a Trickles stack entirely with user-space
server code. Also, Trickles enables delay-sensitive applications to achieve mem-
ory savings over TCP.

9. CONCLUSIONS

Trickles demonstrates that it is possible to build a completely stateless net-
work stack that offers many of the desirable properties of TCP: namely, effi-
cient and reliable transmission of data streams between two endpoints. As a
result, the stateless side of a Trickles connection can offer good performance

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:46 o A. Shieh et al.

with a much smaller memory footprint. Statelessness in Trickles extends all the
way into applications: the server-side API enables servers to export their state
to the client through a user continuation mechanism. Cryptographic hashes
prevent untrusted clients from tampering with server state. Trickles is back-
wards compatible with existing TCP clients and servers, and can be adopted
incrementally.

Beyond efficiency and scalability, statelessness enables new functionality
that is awkward or impossible in a stateful system. Trickles enables load-
balancing at packet granularity, instantaneous failover via packet redirection,
and transparent connection migration. Trickles servers can be replicated, ge-
ographically distributed, and contacted through an anycast primitive, yet pro-
vide the same semantics as a single stateful server.

Statelessness is a valuable property in many domains. The techniques used
to convert TCP to a stateless protocol—for example, the methods for working
around the intrinsic information propagation delays—may also have applica-
tions to other network protocols and distributed systems.

APPENDIX
A. RANGE NONCE SECURITY PROOF

THEOREM A.1. Let p;i...p, be a set of nonces defined on a random se-
quence ri...rnpq1, Where rj and pj are bitstrings of length N, with pp =
r, ®rr.1. Consider the range nonce p1@®pe® ... ® p, = r1®rps1. Then
P(ri®roy1=slp1...pj-1,Pj+1...Pn) = P(r1®ry1 = s), that is, possessing all
but one nonce yields no more information than having none at all.

Proor. Trivially, P(ry ®7ni1 = s) = 5. We first show informally that

1
P(ri=tlp1...pj-1,Pj+1...-Pn) = Plri=¢t|p1...pj1) = oN"

Let w be some arbitrary bitstring of length N. Define a second sequence
Y1 Yntls Vil<i<j¥i =i ®w, Y, j11<i<nt1yi = ri. Consider the nonces pj, de-
fined on this sequence, p, = y. ® Yit1. Viizjp; =i ®WPri1 ®w = p;, and
p; = pj ®@w. This sequence of nonces is indistinguishable from the original
sequence, since the distinguishing nonce p’; is not available. Thus there are 2N
equally valid possibilities for 1, and so the claim follows.

We will extend this intuition to prove the complete theorem. Let Nonce(R)
be the nonce sequence induced by some random sequence R. Let A C B, where
A, and B are each nonce sequences, represent the consistency relation. Each
sequence may be incompletely specified, that is, potentially missing some in-
dices. A C B holds if, for all indices i present in A, that index is present in
B, and V;a; = b;. Now, consider the sample space of the possible sequences.
We wish to characterize those points of this space that are consistent with
P ={p1...pj_1,DPj+1---pn}. This consists of at least the 2 x 2V sequences of
the form R?9, such thatV; ;< ;R”? =r;®@p and V- ;R"! =r; ®q.

We will show that all sequences R, Nonce(R) C P are of the preceding form,
and hence the preceding enumeration of sequences using the parameters p, ¢
is complete. Consider a sequence @ consistent with P, where this property is

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:47

violated for some q; and g;11. pi = ¢; ®qi+1, for otherwise Nonce(Q) 7 P. There
exists some unique / where q; =r; ®1. Suppose q;11 =ri 1 ®!' forl’ #1. Then
qi®q1 =ri®leri 10l = p;dUDl') # p;; a contradiction. Thus I’ = [.
From this result, it can be shown inductively that all ¢; to the left of j must be
of this form, all for the same p, and similarly for all g; to the right of j, for a
possibly different q.

Now, consider the range nonce value induced by the R?Y. Let range be the
range nonce of the actual nonce sequence, range = r; ®r,.1, and range?? be the
range nonce corresponding to that of one of the equivalent worlds, given that
one nonce is unknown. range?? = (r1 ®p)® 1 ®9q) = 1 ®r 1) D (pdq) =
range®(p®q). p and g can be picked independently, and each choice fully
defines a world of probability ﬁ Consider those worlds wherer; ®r, 1 =s.
These result when s = range ® p ® q. There are 2V such points for each s, since
p can be chosen arbitrarily from 2V choices, and once p is chosen, g is uniquely
determined. Thus each s occurs with probability @v%y = 271v This analysis was
conducted given pi1...pj_1, pj41-.. Pn, and so

1
Pri®rp1=slp1...pj-1,Pj+1---Pn) = oN =P(r1®rui1 =5). O

B. CLOSED-FORM TCP SIMULATION

TueEOREM B.1. IfstartCwnd and ssthresh are the initial cwnd and ssthresh,
respectively, at TCPBase, then the TCPCwnd(k) is a closed form solution map-
ping request packet number to TCP Reno’s cwnd after processing that request,
assuming that no requests are reordered, and no losses occur.

Proor. We consider the simplified problem where TCP Reno has just re-
covered from the last loss at lastLossPosition. This is equivalent to the original
problem under a variable substitution: the request packet number of the follow-
ing derivation is relative to the onset of the current loss-free epoch. We denote
this class of relative sequence numbers as epoch-relative.

We will first derive %, the sequence number, as a function of cwnd, and then
invert this function to define cwnd as a function of 2. We first solve congestion
avoidance with sequence numbers relative to the start of congestion avoid-
ance, denoted as loss-relative packet numbers. Let s be the first sequence num-
ber at which congestion avoidance begins (that is, the point of the loss), and
cwnd = avoidanceCwnd at that point. The general case of slow-start followed
by congestion avoidance simply requires a transform from epoch-relative packet
numbers %’ to loss-relative request packet numbers %, that is, taking 2 = &' —s.

Consider the first request sequence number (K, in loss-relative sequence
numbers, s + K, in epoch-relative sequence numbers) for which TCP Reno
uses n as the cwnd. TCP Reno uses cwnd = n for n consecutive requests, and
cwnd = n+1 after the nth request. Then, K,, can be defined with the recurrence:

KavoidanceCwnaH—l = avoidanceCwnd
Kn+1 = K}’L + n.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:48 o A. Shieh et al.

The closed form solution to this standard recurrence is:

— n ’
Kn - z:j:awoidomceCwnd-'r1-] -1

_ n—1 .
- “j=avoidanceCwnd J

(n — 1n — (avoidanceCwnd — 1)avoidanceCwnd
5)

We can consider this expression for K, as a function from cwnd to a loss-
relative sequence number. We can invert this function, yielding a function from
loss-relative sequence number K to cwnd, by finding the zeroes of the following
quadratic with indeterminant n:

(n — n — (avoidanceCwnd — 1)avoidanceCwnd B
2

Denote the positive root of this polynomial by g(K).

While this derivation strictly applies only to the transition points where
cwnd changes, the derivation generalizes to k£, where &k # K, for some n, those
sequence numbers not at transition points. Since the positive root is a monotoni-
cally increasing function of the constant term of the quadratic, and the original
TCP algorithm also monotonically increases cwnd, G(k) = |g(k)] yields the
cwnd for k. //

We are now prepared to prove the correctness of each case of TCPCwnd(k).

In slow-start, cwnd increases by one on every request, until cwnd reaches
ssthresh. This is exactly the behavior captured by the first case of TCPCwnd(%). //

Slow start terminates at @ = A = ssthresh — startCwnd, with
avoidanceCwnd = ssthresh. Substituting into the definition of g(K) yields a
new function f(K) for the points where cwnd changes, which represents the
positive root of

K.

(n — 1)n — (ssthresh — 1)ssthresh
2

As before, this function can be generalized to arbitrary sequence numbers r’
by defining F(r') = | f(r')], where r’ is loss-relative. Applying the substitution
r" = r — A generates an expression in terms of epoch-relative sequence
numbers. So F'(r — A) yields the cwnd for request packet number r. This proves
the third case of TCPCwnd(k). //

The second case of TCPCwnd(k) properly handles relative sequence numbers

prior to A+ Ksgnresh: in this region cwnd has not yet increased from ssthresh. O

- K.

ACKNOWLEDGMENTS

We would like to thank Paul Francis, Larry Peterson, and the anonymous re-
viewers for their feedback.

REFERENCES

Arrman, M., Paxson, V., anp Stevens, W. 1999. RFC 2581: TCP Congestion Control.
Aura, T. AND NIKANDER, P. 1997. Stateless connections. In Proceedings of the International Con-
ference on Information and Communication Security. Beijing, China, 87-97.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

A Stateless Approach to Connection-Oriented Protocols J 8:49

Barrant, H. anp Francis, P. 2004. Towards a deployable IP anycast service. In Proceedings of the
Workshop on Real, Large Distributed Systems. San Francisco, CA.

Banaga, G., Mogut, J. C., AND DRuscHEL, P. 1999. A scalable and explicit event delivery mechanism
for UNIX. In Proceedings of the USENIX Annual Technical Conference. Monterey, CA, 253—
265.

BaVIER, A., Bowman, M., CHUN, B., CULLER, D., KARLIN, S., MUIR, S., PETERSON, L., Roscog, T., SPALINK, T.,
AND WawrzoN1AK, M. 2004. Operating systems support for planetary-scale network services. In
Proceedings of the Symposium on Networked Systems Design and Implementation. San Francisco,
CA.

BernsTEIN, D. 2005. SYN Cookies. http:/cr.yp.to/syncookies.html.

Broom, B.H. 1970. Space/time tradeoffs in hash coding with allowable errors. In Commun. ACM.

Braben, R. 1994. RFC 1644: T/TCP — TCP Extensions for Transactions.

CarsoN, M. anD SanTay, D. 2005. NIST Net. http:/www-x.antd.nist.gov/nistnet.

CHAKRAVORTY, R., BANERJEE, S., RODRIGUEZ, P., CHESTERFIELD, J., AND PrATT, I. 2004. Performance
optimizations for wireless wide-rea networks: comparative study and experimental evaluation. In
Proceedings of the International Conference on Mobile Computing and Networking. Philadelphia,
PA.

CRANE, D., PascareLLo, E., AND JAMES, D. 2005. Ajax in Action. Manning Publications, New York,
NY.

DaeMEN, J. aND RMEN, V. 1999. AES Proposal: Rijndael. http:/csrc.nist.gov/encryption/aes/
rijndael/Rijndael.pdf.

Ewy, D., SpriNG, N., WETHERALL, D., SavAaGE, S., AND ANDERSON, T. 2001. Robust congestion sig-
naling. In Proceedings of the International Conference on Network Protocols. Riverside, CA,
332-341.

Fan, L., Cao, P, AND ALMEIDA, J. 1998. Summary cache: a scalable wide-Area Web cache sharing
protocol. In Proceedings of ACM SIGCOMM. Vancouver, Canada.

FreLpiNg, R., GETTYS, J., Mocut, J., FrRYsTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999.
RFC 2616: Hypertext Transfer Protocol - HTTP / 1.1.

Frovp, S. 1991. Connections with multiple congested gateways in packet-switched networks
part 1: one-way traffic. SIGCOMM Comput. Commun. Rev. 21, 5, 30-47.

Gupra, R., CHEN, M., McCaNNE, S., AND WALRAND, J. 2000. A receiver-driven transport proto-
col for the web. In Proceedings of the INFORMS Telecommunications Conference. San Antonio,
TX.

HAcCkER, T. J., NoBLE, B. D., AND ATHEY, B. D. 2002. The effects of systemic packet loss on aggregate
TCP flows. In Proceedings of IEEE /ACM Supercomputing. Baltimore, MD.

Hsien, H.-Y., Kiv, K.-H., Zuu, Y., AND SIVAKUMAR, R. 2003. A receiver-centric transport proto-
col for mobile hosts with heterogeneous wireless interfaces. In Proceedings of the International
Conference on Mobile Computing and Networking. San Diego, CA.

JaN, R. 1991. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley and Sons, Inc.

JUELS, A. 1999. Client puzzles: a cryptographic countermeasure against connection depletion
attacks. In Proceedings of Networks and Distributed Security Systems. San Diego, CA.

KrisunaMURTHY, B., Mocut, J. C., anp Kristor, D. M. 1999. Key differences between HTTP/1.0
and HTTP/1.1. In Proceedings of the World Wide Web Conference. Toronto, Canada.

Lemon, J. 2001. Kqueue: a generic and scalable event notification facility. In Proceedings of the
USENIX Annual Technical Conference. Boston, MA.

Mogaut, J., Brakmo, L., LowtLL, D. E., SUBHRAVETI, D., AND MoORE, J. 2004. Unveiling the transport.
SIGCOMM Comput. Commun. Rev. 34, 1, 99-106.

NATIONAL INTERNET MEASUREMENT INFRASTRUCTURE. 2005. Distribution of packet drop rates.
http://www.icir.org/models/NIMI-drop-rates.ps.

Pa1, V. S., DruscHEL, P., AND ZWAENEPOEL, W. 1999. IO-Lite: a unified I/O buffering and caching
system. In Proceedings of the Symposium on Operating Systems Design and Implementation.
New Orleans, LA.

Parer, P., WHITAKER, A., WETHERALL, D., LEPREAU, J., AND STACK, T. 2003. Upgrading transport
protocols using untrusted mobile code. In Proceedings of the Symposium on Operating Systems
Principles. Bolton Landing, NY.

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

8:50 o A. Shieh et al.

Rost, S., BYERS, J., AND BEsTavros, A. 2001. Cyclone server architecture: streamlining the delivery
of popular content. In Proceedings of the International Workshop on Web Caching and Content
Distribution. Boston, MA.

ROUTE|DAEMONY. 1998. T/TCP vulnerabilities. Phrack Magazine 8, 53.

SavAGE, S., CARDWELL, N., WETHERALL, D., AND ANDERSON, T. 1999. TCP congestion control with a
misbehaving receiver. SIGCOMM Comput. Commun. Rev. 29, 5, 71-78.

SEMKE, J., MAHDAVI, J., AND Matars, M. 1998. Automatic TCP buffer tuning. In Proceedings of
ACM SIGCOMM. Vancouver, Canada.

SuieH, A., MYERs, A. C., AND SIRER, E. G. 2005. Trickles: a stateless network stack for improved
scalability, resilience, and flexibility. In Proceedings of the Symposium on Networked Systems
Design and Implementation. Boston, MA.

SNOEREN, A. C. 2002. A session-based approach to internet mobility. Ph.D. thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

STANDARD PERFORMANCE EvALUATION CORPORATION. 1999. The SPECweb99 benchmark.

Storca, I. 2000. Stateless core: a scalable approach for quality of service in the internet. Ph.D.
thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University.

Surran, F. 2004. System support for service availability, remote healing and fault tolerance using
lazy state propagation. Ph.D. thesis, Division of Computer and Information Sciences, Rutgers
University.

Surran, F., BoHra, A., AND IFTODE, L. 2003. Service ontinuations: an operating system mechanism
for dynamic migration of Internet service sessions. In Proceedings of the Symposium on Reliable
Distributed Systems. Florence, Italy.

Sun Microsystems. 1989. RFC 1094: NFS: Network File System Protocol Specification.

ZUQUETE, A. 2002. Improving the functionality of SYN cookies. In Proceedings of the IFIP Com-
munications and Multimedia Security Conference. Portoroz, Slovenia.

Received July 2005; revised January 2008; accepted July 2008

ACM Transactions on Computer Systems, Vol. 26, No. 3, Article 8, Publication date: September 2008.

