
Improved Multithreading Techniques for Hiding

Communication Latency in Multiprocessors

Bob Boothe* Abhiram Ranade*

Computer Science Division

University of California, Berkeley, CA 94720

Abstract

Shared memory multiprocessors are considered among the
easiest parallel computers to program. However building
shared memory machines with thousands of processors has

proved difficult because of the inevitably long memory laten-
ties. Much previous research has focused on cache coherency

techniques, but it remains unclear if caches can obtain suf-
ficiently high hit rates. In this paper we present improved

multithreading techniques that can easily tolerate latencies
of hundreds of cycles, and yet only require a small number

of threads per processor. High performance is achieved by
introducing an explicit context switch instruction that can
be used by a simple optimizing compiler to group together
several shared accesses. This grouping of shared accesses
dramatically reduces the frequency of context switches com-
pared to simpler multithreading models. The combination

of our techniques achieves efficiencies of 80~o or higher on a
broad set of applications.

1 Introduction

Large shared memory multiprocessors will have very long
Iatencies for remote memory accesses. For a 1024 proces-
sor machine, we expect latencies of hundreds of cycles[7, 9].
These long latencies are inevitable because of the size and
complexity of any interconnection network that can con-
nect thousands of processors and memories and support high
bandwidth. Without some means of tolerating memory la-

tency, a 1024 processor shared memory multiprocessor would

spend a large fraction of its time waiting for shared accesses
to complete.

Memory latency has traditionally been hidden by caches,
and many researchers have tried to extend cache coherency
schemes to allow cacheing to be used on scalable shared

●This work is supported by the Air Force Office of Scientific
Research (AFOSR/JSEP) under contract F49620-90-C-O029 and

NSF Grant Number 1-442427-21936. Computing resources were

provided by NSF Infrastructure Grant number CDA-8722788.

Permlsslon to copy without fee all or part of this material is granted

prowded that the copies are not made or distributed for dmect commercial
advantage, the ACM copyright not,.. and the t,tle of the publication and

Its date appear, and notice is given that copying is by permission of the
Assoclatlon for Computmg Machinery. To copy otherwise, or to repubhsh,
requmes a fee and/or speclflc penmsslon,

memory machines. [5, 9, 18]. Caches, however, do not ac-
tually hide memory latency, but instead, they hope to elim-
inate enough of the memory accesses that, the latencies of
the few remaining accesses will have only a small impact on
the execution time. Consider a simple example where a pro-
gram accesses shared memory every tenth cycle and where
the memory latency is 200 cycles. Without any means of hid-

ing latency, the program will execute for ten cycles and then
wait 200 cycles for the result to return. The processor uti-

lization will be only 5%. If we add a cache that can achieve

a 90% hit rate, only every tenth access will have to wait,

but that access will still wait 200 cycles. The efficiency has
risen only to 33~0. Recent simulation results from the DASH
project[9] confirm this simple argument. Tlhey measured hit

rates on shared-read references ranging from 66~o to 80~o,
and processor utilizations ranging from 20% to 28% under
a release consistency model. Other simulation studies have
also reported low processor utilizations[5]. O’Krafka[18] re-
ported more promising hit rates, but overall, cacheing alone

does not appear to be an adequate solution to the latency
problem.

Prefetching of data is another potentiaJ solution. If data
can be prefetched far enough in advance, it will have re-

turned from the memory network by the tilme the processor

needs to use it. For many scientific codes p,refetching works
well[8, 9, 13]. But on less regular codes, sulch as those that
traverse complex linked data structures, the sequence of ref-
erences can not be predicted and prefetching will not be
possible. Prefetching alone is not a general solution to the
latency problem.

Multithreading is an alternative technique for hiding
memory latency. If several threads are assigned to each

processor, memory latency can be hidden by rapidly con-
text switching to a different thread rather than waiting for

a memory access to complete. While previous studies have
shown mixed results when using multithreading as an ad-

junct to cacheing[l, 9, 25], in this paper we study multi-
threading on its own merits and find it to be very effective.

1.1 Overview

First we look at a simple multithreading model that context

switches on every load from shared memory (Section 4). For
a few applications the shared loads are spaced far enough

apart that a small number of threads are able to hide the
memory latency and utilize the available processing power.
However for most applications, shared loads occur too fre-
quently (as often as once every 5 cycles) and too close to-

gether (often in bunches) to allow a small number of threads

@ 1992 ACM 0-89791 -509-7/92/0005/021 4$1.50 214

http://crossmark.crossref.org/dialog/?doi=10.1145%2F139669.139729&domain=pdf&date_stamp=1992-04-01

— reduce swkeh hequency
---....--+. dynsmic switch decisionbssedon csrhe missss

.-. evEEGii)
ordmsryloads split phaselords

Figure 1: Evolution of Multithreading Models

to hide the latency. For these applications we need a better
multithreading model.

For this next model (Section 5), we introduce the idea of
grouping accesses together to eliminate unnecessary context
switches. This grouping lets the processors wait for several
accesses together rather than waiting for each access indi-
vidually. The frequency of context switches decreases by as

much as a factor of 5, and most of the closely spaced ac-
cesses can be grouped together. This one change allows all

of the applications to execute with 7070 or better efficiency
on a multithreading machine with less than ten threads per
processor.

The main problem with the previous model is that it re-
quires a large bandwidth to shared memory. To address
this problem we introduce a third multithreading model that
adds a cache but still maintains the benefits of grouping
(Section 6). For many of the applications this proves effec-
tive in both reducing the memory bandwidth and in further

decreasing the multithreading level needed to achieve good
performance.

Before we present our simulation results, we first present
a structured overview of previous multithreading research

(Section 2), and a description of the multiprocessor model
and applications used in this study (Section 3).

2 Previous Work

Previous multithreading research has been motivated by
four concerns: tolerating memory latency, buildlng a fast
pipeline, supporting a threaded execution model, and as an

adjunct to cacheing. Figure 1 shows the evolution of mul-
tithreading models and some of the motivations for moving

from one model to another. Some of these models have not
been studied previously but can be predicted based on the
motivations.

The costs of multithreading are the larger number of
threads needed, the larger register file, the increased schedul-
ing complexity, and the cycles lost to context switching over-
head. These costs are influenced by when and how often
context switching is performed.

The oldest model switch-every-cycle was used in the

Denelcor HEP [14] and in MASA [11]. After each instruc-
tion, the processor switches to a different thread. This allows

a fast CPU pipeline to be built because it eliminates data

dependencies between instructions in the pipeline by inter-
leaving different threads. It also allows memory latencies to
be tolerated by not scheduling a thread until its references

have completed. Unfortunately this model requires a com-
plex scheduling mechanism and a large number of threads.

By interleaving the instructions from many threads, a single
thread is limited to a small fraction of the processing power.

The Monsoon[20], P-RISC[17], and TERA[2] projects also
switch every cycle, but have changed the scheduling policy
so that scheduling decisions are made at a coarser granular-
ity than every instruction.

With a normal RISC CPU pipeline, there is no need to
context switch every cycle. The compiler can schedule in-
structions so as to hide the small pipeline delays. Context

switches are needed only to hide the long memory latency

of remote accesses.

The switch-on-load model switches on load instructions

which access shared memory. Loads from local memory and

other instructions all complete quickly, and can be scheduled
by the compiler. Shared stores don’t wait for their comple-
tion and therefore don’t cause context switches either. The
advantage of this model over switch-every-cycle is that
a single thread can execute at full speed until it context

switches. Fewer threads are needed to cover the latency
since threads aren’t being used to schedule individual in-
structions in the pipeline. Simpler hardware is needed since
context switches are less frequent.

The switch-on-load model sometimes context switches
sooner than it needs to. If a compiler can order instructions

so that a load is issued several cycles before the value is used,
the context switch does not have to occur until the actual

use of the value. This allows a thread to hide some of its
own memory latency by prefetching data. This mechanism
is facilitated by using split phase instructions. The first in-
struction, load, issues the reference into the network, and a
second instruction, use, waits for the result. The switch-
on-use multithreading model context switches on the use
instructions rather than the load instructions.

A benefit of the switch-on-use model is that several load
instructions can be grouped together so that all of the loads
in the group, can be issued into the memory network before

any of the results are used. This allows a single context

switch (on the first of the uses) to wait for all of the loads in. /
the group. For example, a simple computation may load two

values from shared memory and then compute their average.

Both loads should be issued into the memory network and
then a single context switch performed upon the use of the
first value. This allows waiting for both loads together rather
than individually. The cost of this model is the addition of a

use instruction for each shared memory load and hardware
to count the results as they are returned.

An alternative method for grouping shared loads together
is to add an explicit context switch instruction between the
group of loads and their subsequent uses. This explicit-
switch model is studied in this paper and is shown to elim-
inate from .51)~o to 80~0 of the context switches needed by
the switch-on-load model. With fewer context switches, a
smaller number of threads can be used to cover the latency.
The most recent data flow research[6, 16] has adopted the
explicit-switch model. Short threads execute until their
completion at which point they cause a context switch to a
new thread.

By adding caches to the previous models, the cache can
satisfy many of the shared loads without going to shared

memory. Only the shared loads that miss in the cache will

have long latencies and cause context switches.

215

The switch-on-miss model switches at points where load

instructions miss in the cache, An early study of this by

Weber & Gupta[25] suggested substantial performance ben-

efits were available, but a later study as part of the DASH

project [9] had less optimistic results. Both of these studies

restricted multithreading to at most 4 threads per processor.
Switch-on-miss multithreading was also studied as part of
the ALEWIFE project [1] and achieved good results with a
few simple applications. One draw back of context-switching
on cache misses is that the context switch is detected after
a number of subsequent instructions have started down the

CPU pipeline. These instructions must be canceled, and
thus there will be a context switch cost of several cycles be-

cause of the wasted pipeline slots.

The switch-on-use-miss model context switches when

a use instruction tries to use the value from a shared load
that missed in the cache. The split phase instructions es-

sentially provide a mechanism for prefetching data. The
switch-on-use-miss model was studied (approximately) by
the DASH project[9] when they looked at the combkation
of prefetching and multithreading. They found little benefit
from prefetching when combined with multithreading, how-
ever they state that their prefetching method was meant for

a single threaded processor and should be done differently
for a multithreaded processor.

The conditional-switch model adds cacheing to the
explicit-switch model. The code appears the same as that
for the explicit-switch model: there is a group of load in-

structions, followed by a context switch instruction, followed
by the instructions that use the loaded data. The difference
is that the context switch instruction is treated aa a condi-
tional switch instruction. If any of the loads preceding the

switch instruction missed in the cache, a context switch is
performed as expected. But if all of the preceding loads hit,

the context switch instruction is ignored and the thread con-
tinues executing. This model provides the same benefits of

grouping and cacheing that were possible in the switch-on-

use-miss model, but it may be simpler to implement.

In this paper we concentrate on the switch-on-load,
explicit-switch, and conditional-switch models. This al-

lows us to demonstrate the effectiveness of grouping in im-
proving the performance of multithreading and in reducing

the number of threads needed by each processor.

3 Multiprocessor Model

We have targeted this research at shared memory applica-

tions that use a fixed set of processes. This is typical for

applications written in C or FORTRAN. The applications
fork a set of processes and use that set for the entire com-

putation by either statically or dynamically scheduling the
work to be done.

For benchmarks, we use parallel programs written for the

Sequent[19]. The Sequent allows shared storage to be allo-
cated both statically (using a shared declaration) and dy-
namically (using shmalloc ()). A potential problem arises
because a pointer can point to either local or shared data.
This would reauire dvnamic address testine to determine. .
whether or not an address is in shared memory. We avoid
this difficulty by assuming that all memory references can be

statically classified by the compiler aa either local or shared.

After looking at many programs, it is clear that this assump-
tion is valid. Programmers write programs where they know
which data is in shared memory. There are several tech-

niques which could be used to determine this information.

The simplest is to augment variable declarations to allow

specifying which variables point to shared data. In our sim-

ulator we use trace analysis to determine this information.

For the CPU we assume a typical pipelined RISC proces-
sor, except that each thread has its own set of 32 integer and

32 floating-point registers. We use the instruction set and
timings of the MIPS R3000[12], but we have supplemented
it with a few additional instructions which are needed on a
multiprocessor. We added Load-Double and Store-Double

instructions to reduce the number of network messages, and
we provided both local and shared versions of all load and

store instructions. We added a Fetch-and-Add instruction
as the synchronization primative and built higher level syn-

chronization primitives such ae locks and barriers out of
Fetch-end-Add’s and spinning.

We assume that there is no overhead (in lost cycles) for
context switching. This is consistent with switch-every-cycle

machines[2, 11, 14, 17, 20] but in conflict with switch-on-miss
machines[l, 9, 23, 25] which assume a cost of several cycles
for clearing the processor pipeline. The key difference is the
ability to recognize that an instruction will cause a context
switch as that instruction enters the pipeline. This is possi-
ble for the switch-on-load and explicit-switch models studied

in this paper since the context switch is implied by the op
code alone, and thus the context switch is identified while

the instruction is in the decode stage of the CPU pipeline.
At this point, the first instruction from the next thread to
be executed should have already been prefetched. It can
then be decoded on the next cycle and thus no cycles will
be wasted.

We assume that remote accesses are returned in the same
order in which they are sent, and, as a result, we use round-
robin scheduling of the threads on a processor. Round-robin
scheduling is optimal under ordered delivery since whenever

the next thread in round-robin order must wait for an ac-
cess to return, all other t breads will be waiting for the re-

turn of accesses that were issued later. While some networks
support ordered delivery of messages[22], most other large

scale networks do not. Even on these networks round-robin

scheduling may still be a good choice since it provides fair-
ness in scheduling. Fairness is important for programs that
use static load balancing since if one thread~ is scheduled less

often than the others, that thread will finish later and delay
the entire computation.

We expect that large shared memory multiprocessors will
be built with multi-stage packed-switched networks such as
the butterfly network used in the NYU Ultracomputer[8] and
the IBM RP3[21], and that the network will support com-

bining of messages. If hardware combining, is not available,
soft ware combining techniques could be used for barriers[26].

We do not simulate the network, but instead assume that it

has a constant 200 cycle round trip latenc:y. We expect the

average latency of a 1024 processor machine will fall in this
range. Other researchers also expect latencies in the hun-
dreds of cycles. The DASH project [9] has latencies of 90 cy-
cles for a 16 processor machine when ignoring network con-
gestion. With congestion, latencies will increase. Dally [7]

found average round trip latencies of 144 c!ycles on a 64 pro-
cessor butterfly when running at 5070 utihzation.

In a real network, access Iatencies depend on network
loading, which is a function of both the network bandwidth

and the bandwidth requirements of the application. There
can also be a large variance in latency [7] because of con-
gestion within the network. We have purposely chosen not

to model a specific network because it would obscure the
main focus of this research which is to evaluate the ability

216

Application Lines Cycles Description & Problem size

sieve 242 106 M counts primes <4,000,000

blkmat 409 87 M blocked matrix multiply — 200 x 200 matrices

sor 332 258 M S.O.R. solver for Laplace’s equation — 192 x 192 grid

ugray 10784 1353 M ray tracing graphics renderer — gears (7169 faces), 20 x 512 slice of image

water 1368 1082 M simulate a system of water molecules — 343 molecules, 2 iterations

locus 6347 665 M route wires in a standard cell circuit — Primary2 (1290 cells x 20 channels)

mp3d 1510 192 M simulate rarefied hypersonic flow — 100,000 particles, 10 iterations

Table 1: Parallel Applications

of multithreading to hide long memory latencies.
Caches are assumed for both instructions and local mem-

ory, but the effects of misses in these caches has been ignored.

The instruction cache and local data cache are expected to
have high hit rates just as on uniprocessors. Local data

misses are serviced locally and would not cause a context

switch. However instruction cache misses are serviced over
the network and in a real machine, should cause a context
switch. We believe these assumptions will not qualitatively
affect the results.

3.1 Simulator

Simulating a 1024 processor machine requires enormous
amounts of both time and memory. Far too much, in fact,

to ever allow simulating large enough computations to keep

such a machine busy. Since we are interested in the ability
of multithreadhg to hide long memory latencies, we have

reduced the number of processors simulated, but not the la-
tency. We feel that this makes our latency tolerance results
more directly applicable to a 1024 processor machine.

We have built a very fast simulator based on augmenting
the object code of applications in a similar fashion to the

pixie[15] profiling system for MIPS machines. With this
code augmentation technique we are able to use optimized
code as would be used on the actual machine. All appli-

cations were compiled at optimization level “-02”. Most

instructions are directly executed by the host machine in

a single cycle, A few additional cycles are used for loading
and storing relevant registers, and counting execution cycles.

On average, two instructions are added for each original in-
st ruction. Shared accesses are handled by the simulator,
and require scheduling and context switching among many
threads. These shared accesses take from 300 to 1000 cycles
to simulate, but overall, the simulator is very fast since only
a small fraction of instructions are shared accesses. Appli-
cations are typically simulated at speeds that range from 20

to 70 times slower than direct execution.

3.2 Applications

Table 1 lists the applications used in this study. Sieve,
blkmat, and sor are toy applications developed by the au-
thors. Ugray is from Berkeley[3]. And uat er, locus, and

rnp3d are from the Stanford SPLASH [24] benchmark set. We
show the problem sizes and the number of cycles (in millions)
that the applications would require on a single (O latency)
processor. It should be noted that these are much smaller
than problems that would be solved on a real parallel ma-
chine. For example, a 100 mips workstation could solve the

largest of these problems in under 14 seconds. Even at these
small sizes, many of the applications already have sufficient

parallelism for 1024 threads. Problems large enough for a

1024 processor parallel machine will likely have enough par-
allelism for hundreds of thousands of threads. More than

enough for multithreading.

Figure 2 shows the performance of the seven applica-
tions on an ideal shared memory machine. This ideal ma-

chine has no contention and zero latency to shared mem-

ory. Such a machine would be impossible to build, but it

corresponds to an upper bound on achievable performance.
Rather than show the standard speedup curves, we have
plotted the efficiency vs. the number of processors (efficiency
= speedup / number of processors). For example, the mp3d

program achieves a speedup of 778 when using 1024 proces-
sors, and thus has an efficiency of .76 = (778 / 1024). These

curves are all computed with a fixed size problem. As the
number of processors increases, the work is divided more

finely and the efficiency drops. This lower efficiency at finer
granularities results from uneven load balancing, synchro-

nization overhead, and parallelization overhead. If, on the
other hand, the problem sizes were increased, there would be

more parallelism and thus more processors could be utilized.

Four of the applications (sieve, blkmat, sor and rnp3d)
have speedups of 700 or better with 1024 processors. Sim-
ulation time was too large for the other programs to allow
simulating large enough problems to achieve these speedups.
The uat er application stands out in the graph because of its

erratic behavior. With 256 processors the efficiency is only
.56, but with 343 processors the efficiency rises to .79. This

rise in performance results from the static load balancing

used in the application. The load balancing works best when

the number of processors divides evenly into the number of
molecules (which is 343).

All programs studied in this paper have a single forked
phase during which the parallel computation is performed.
Any work done outside this forked phase has been excluded
from the results presented in this paper. This excluded work
typically consists of reading input files, performing initial-
ization, and writing result files. There are a number of rea-
sons for excluding this serial computation. First, aa problem

sizes are increased, the startup code becomes a smaller and
smaller fraction of the total comput ation[l O]. Second, many

of these applications were written for today’s small shared
memory machines. Often much of the initialization could

have been parallelized, but this waan’t deemed necessary for
a small machine. Third, we expect that large parallel ma-
chines will do their input and output in parallel.

4 Switch-On-Load

In this section we evaluate the switch-on-load multithread-
ing model. This is a simple model that works well for some

applications but poorly for others. It serves as a baseline
for comparison and helps motivate more sophisticated mul-

tithreading models.

217

Efficiency

I I I
1.00- L

-
I

●

I I I ~~i

sieve
. . ~-:-r::-,,-m -- m- -_

%lkrnat
.

0,90- -
...........- - “-- -id...........L;.-..... ** w----

0.80 - -
. . .

●

Sor
n.... e.-

.. -% *---

0.70- -
‘., \ ugray

..
●.* \ u

water
0,60- -

●.* \
‘0

i&G---
0.50 - -

*m@3 -

0.40 - -

0.30- -

0.20- -

0.10 - -

0.00- r
Processors

1 2 4 8 16 32 64 128 256 512 1024

Figure 2: Efficiency on ideal (O latency) machine,

II Distribution

&-lI-=
blkmat —

sor 79%

ugray 65%

water 83~0

locus 93%

10–19

m
31%

19%

10%

8%

470

6~o

~O_29

m

170
—

3%

6~o

2%

5%

30-39
—

2%

170

1170
—

1%

570

!0-49 ! 50+
. .

3% 63~o

2?70 —

7% 4%
— 4% 1

mean

19
137

6

18

44

7

9

Table 2: Switch-On-Load: Run-Lengths Between Shared

Loads

4.1 Run-Lengths Between Shared Loads

Table 2 shows the average run-lengths for the applications

studied. Run-length is defined as the number of cycles be-

tween context switches. For example, if a shared load in-

struction occurs every 10 cycles, the run-length would be 10
since a context switch is done on every shared load. The

mean run-length can be used to estimate the number of
threads that will be need to hide the memory latency. For

example, with a mean run-length of 10 cycles, 20 t breads
could hide the 200 cycle latency. Counting the thread whose

latency is being hidden, a multithreading level of 21 would
be sufficient. We would prefer to have a small multithread-
ing level because it requires less total threads and allows
small problems to be solved more efficiently.

Using the mean run-length to estimate the multithreading
performance fails when there is variation in the run-length

distribution. Sometimes all of the threads will execute run-

lengths longer than the mean, and the latency will be covered

easily. But at other times, threads will execute run-lengths
shorter than the mean, and the full latency will not be cov-

ered. In this situation, either a higher mult it breading level
should be used or else some cycles will be wasted waiting for

memory.

For the seven applications studied, only sieve has a fairly
constant run-length distribution. (It runs through a large ar-
ray marking numbers as non-prime at a constant rate.) The
other applications, have more complex behavior. There are

usually many different calculations being performed. Some
require only a few cycles, while others require hundreds.

This leads to large variations in run-lengths. The blkraat ap-
plication stands out because of the exceptionally high mean

run-length. This occurs because it makes private copies of
data to reduce the number of shared accesses. The applica-

tions sor, locus and mp3d have very short run-lengths and
will need large multithreading levels to hide their latency.

4.2 Performance

Figure 3 shows the performance of the sieve application un-
der different levels of multithreading. The top curve shows
the performance on an ideal (O latency) shared memory mul-

tiprocessor. The other curves shown are with 200 cycle la-

tency. Without multithreading, the processors are busy only

970 of the time. As extra threads are adcled, more of the
latency is covered, and the efficiency rises, until at a multi-

threading level of 12, nearly 100~0 efficiency is achieved.

On the ideal machine, the efficiency of this application
starts to drop when more than 100 processors are used.

This drop in performance arises because c~f imperfect load
balancing and the overheads of parallelization and synchro-
nization. Under multithreading, the drop in performance
occurs at the same point (100 threads), but because there
are several threads assigned to each processor, the drop off

in performance occurs at a proportionately lower number of

processors. With larger problem sizes we expect that the re-
gion of linear speedup will extend further to the right. And

thus with large enough problems for a 1024 processor ma-
chine, we expect to see the same multithreading behavior at
1024 processors that is observed here using, a lesser number
of processors.

The performance of the other applications is summarized

218

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

1 I I I I I I I I I I_
i- -0, M=l

---------*- -. .*---
- - ;.ya,.Mz3..

X---- *---* --- *---=
=Xb~fi~ii”

E7G,%:IZ “
. .

“-.....-.*. ~200, M=9
* -----* -----* -- . -..-.-.-+ ----+-

..-+ E-TG,-ti=~--”
W- .-*.--W ---m---~- -- b---

- E5&;G:7 -.

- ~3@,%~6- “~.******&...

“.- . .-. *.....--
-.. K ~200, M=5

- - EYG,”G:4””.

+-----+-----+- --- 4----+--- - * ---- *----* ---- 4--.--+-- ..* - - =ZXti=i -.

0.00 + I I I I I I I I I I I +
Processors

1 2 4 8 16 32 64 128 2S6 512 1024

Figure 3: Multithreading Efficiency for sieve (L = Latency, M = Multithreading level)

Application

(processors)

sieve (16)

blkmat (32)

sor (8)

ugray (8)

water (10)

locus (2)

XX_@_

Desired Efficiency

50%

6

1

28

9

5

17

13

60%
T

2

40

12

7

21

15—

7070

T

2
—

—

10

25

19

30%
-m

4
—

—

12

32

22

90%

-ii
—

—

—

—

—

28

Table 3: Switch-On-Load: Multithreading needed to achieve

% efficiency.

in table 3. The multithreading levels needed to achieve 50,

60, 70, 80 and 9070 efficiency are shown. Most of the ap-

plications could not achieve all of these efficiency levels. As
the multithreading is increased, more total threads are used
and the applications enter the domain where the problem
sizes are too small for the number of threads. For the sieve
application table 3 shows the results when using 16 proces-
sors. With a multithreading level of 11, the program uses
176 threads and runs at 90% efficiency. Note that in figure 3

we could have chosen any point from 1 to 16 processors and
the multithreading level needed to achieve 90% efficiency

would have remained the same. Similarly for each of the
applications, we have reported the performance at a point
just before the performance drops off.

While some of the applications achieve high efficiencies,
other applications such as sor and ugray reach an upper
bound around 60% efficiency. The reason for this bound
involves the run-length distributions presented in table 2.
With the sor application, for example, 39% of the run-

lengths are 1 cycle and another 39% are 2 cycles. These short

run-lengths contribute little towards hiding latency and it is

inevitable that cycles are lost waiting for memory.

5 Explicit-Switch

We can do better than the switch-on-load model by looking
at the data dependency structure of the applications. Most
programs do not load a single value and then perform a cal-
culation with it. Instead, they usually load several vrdues
and compare or combhre them in a calculation. The proces-
sor should issue the group of loads together and then context
switch only once, rather than context switching after every
load.

5.1 Cowpiler Optimization

The grouping together of loads improves the performance

of multithreading in two ways. First, by eliminating con-
text switches, it increases the run-length (number of cycles)
between context switches. With a longer run-length, less
threads are needed to cover the memory latency. Second,

it improves the distribution of run-lengths by eliminating
many of the small run-lengths that result from back to back
loads.

The inner loop of the sor application is shown in fig-
ure 4(a) as an example. Without grouping, the 5 loads are

issued one at a time, with a context switch after each one.
In figure 4(b) the code has been reorganized so that all 5

loads are grouped together and are then followed by a single
context switch instruction. Rather than having four short
run-lengths followed by one long run-length, there is now
just a single long run-length.

A compiler designed for a multithreaded architecture will
group shared loads whenever possible. Since the compil-
ers we have today don’t do this grouping, we wrote a post-
processor which finds the basic blocks in an object file, does
dependency analysis within the basic blocks, and then re-

organizes the instructions so as to group shared loads to-

gether. It then inserts a single context switch instruction
after each group of independent shared loads. Because we

do this analysis at the assembly language level, we must

219

Distribution loads /

Application 1-9 10-19 20-29 30-39 40-49 50+ mean switch

sieve — 63% 37% — — —
blkmat

19 1.0
— 23% 9% 2% 3% 63% 138 1.0

sor — . 80% 2% 17% — 30 4.7
ugray 50% 17% 5% 15% 2% 11% 23 1.3
water — 36% 9% 22% 13% 19%
locus

210 4.8
93% 3% 2% 1% 1% 8 1.05

mp3d 23% 23% 28% 19% — 7% 23 2.3

Table4: Explicit-Switch: Run-Lengths Between Context Switches

d
load load

‘--- ‘i6Xd------”-. .

k?

load.
“T;YY”-”.””-

3

load.
add Context load

d

load Switch load.
add Points . . .~gz!... .

.

~:! ~ ~;?

Dependencies
branch SNr>

branch

(a) switch-on_load (b) explicit-switch

Figure 4: Inner loop of ser.

make pessimistic assumptions which restrict our ability to

reorganize the code. Nevertheless our code reorganization
works very well for baaic blocks. Compiler based optimiza-
tion could do even better by looking beyond the scope of a
single basic block.

Table 4 shows the new run-length distributions for the
applications. The last column shows the level of group-
ing achieved. The sor and water applications benefited the

most. In the inner loop of sor, for example, 5 loads were
grouped together between context switches. Where previ-
ously their run-length distributions were dominated by short

run-lengths (of 1 or 2 cycles), now those short run-lengths
have been completely eliminated. In contrast, the locus and

ugray applications did not have much improvement. These

applications have very short basic blocks, and grouping is
needed beyond the scope of a single block. Two of the ap-

plications, sieve and blkrnat, did not benefit at all from
grouping, but this is unimportant since they access shared
memory one item at a time and already have good run-length
behavior.

Table 5 shows the improved performance results with the
explicit-switch multithreading model. The applications now
achieve higher performance and use fewer threads. For locus
the mean run-length of 8 cycles is still too short to allow a
small number of threads to cover the latency, but for the
other applications, 14 or fewer t breads are now sufficient to

maximize performance.
One penalty of having explicit switch instructions is that

1We assnme that every shared store might have a conflict with
every shared load because of address rdiasing.

Application Desired Efficiency grouping

(procs) 50% 60% 70% 80% 90% overhead

sieve (16) 6 7 9 10 11 2%
blkmat (32) 1 2 2 4 — o%
sor (16) 5 6 8 9 — 10%

ugray (8) 6 8 11 — — 2%
water (20) 1 2 3 4 6 o%
locus (2) 16 20 26 — — 11%

mp3d (16) 6 7 8 10 14 4%

Table 5: Explicit-Switch: Multithreading needed to achieve

% efficiency. (Efficiency measurements account for grouping

overhead.)

they take a cycle that might have otherwise been used for
computation. A further penalty arises from the code reorga-
nization. The original code is optimized so that the execu-
tion of floating point instructions is overlapped with that of
the load instructions. When we reoptimize the code to group
loads together, we often add a few cycles to the execution

time because operations are no longer overlapped as tightly.
The laat column of table 5 shows the performance penalty

due to the code reorganization and added context switch in-
st ructions. This penalty is often just a few percent, and in

all cases it is overshadowed by the benefits of groupiug.

5.2 Grouping Beyond Basic Blocks

For the locus and ugray applications we were disappointed
that grouping did not perform better. After examing these
programs, we found that both programs could benefit from

inter-block grouping. We observed that the inter-block
grouping opportunities often involved accesses to several

fields in a small structure. These accesses were split among
several basic blocks because of condition tests, but in fact

could have all been issued before the condition tests were
done.

Since we don’t have a compiler which does inter-block
grouping, we designed a simple experiment to estimate the

potential grouping available. We simulate a very small cache
associated with each thread. The cache haa a line size of 32
words, but only one line. We assume that any loads which

hit in this cache are in the same structure or array aa the

preceding reference and thus could have been grouped.

For ugray 42~o of the loads hit in this cache, and the
grouping factor increaaed from 1.3 to 1.9 . For locus the

hit rate is 84%, and the grouping factor increased from 1.05
to 6.6 . This dramatically shows the potential for compiler

based grouping. Table 6 shows the revised multithreading
figures based on the additional grouping predicted by this
experiment.

220

explicit-switch conditional-switch
cycles / bandwidth hit cycles / bandwidth

Application access bits/cycle rate access bits/cycle

sieve 13.7 9.3 99% 3333 0.1

blkmat 114 1.4 65% 326 1.2

Sor 5.3 30.2 98% 246 2.3

ugray 24.1 5.8 92% 228 1.3

water 44.1 3.4 93% 518 0.7

locus 8.3 15.4 91% 146 2.6

mp3d 6.4 20.2 72% 23 18.7

Table 7: Comparison of bandwidth requirement under explicit-switch and conditional-switch multithreading models.

Application Desired Efficiency loads /

(procs) 50% 60% 70% 80% 90% switch

sieve 64 2 2 3 5 — 11.3

blkmat (64) 1 1 2 3 — 1.4

sor (16) 5 6 8 9 — 5.0

ugray (12) 5 6 8 — — 1.9

water (20) 1 2 2 3 5 8.1

10CUS (8) 4 5 6 7 — 6.6

mp3d (32) 4 5 6 8 11 3.3

Table 6: Explicit-Switch: estimated performance with inter-

lock grouping.

This experiment is only a means to estimate the available

grouping opportunities. To verify the results, we examined
the code of ugray and locus to see where the cache hits were

comming from. In ugray we found that 47% of the identified
grouping opportunities were valid. These were cases where
one field in a structure was examined, and if it met some
condition, a second field was loaded and used in a computa-
tion. A smart compiler could group these two loads together
by speculatively loading the second value in the expectation
that the test would succeed and thus the second load would
be needed. The other 53% of the grouping opportunities

identified by the cache experiment turned out to be cases

of coincidental memory allocation such as when two struc-

tures were allocated in the same cache line. While examing

the code, however, we also found many interlock group-
ing opportunities that were missed by the cache. Overall, it

remains unclear whether this experiment overestimated or
underestimated the interlock grouping potential for ugray.

For the locus application, a single instruction was found
to be responsible for gs~o of the cache hits. This turned
out to be in a loop that was stepping horizontally though a

large two dimensional array. A compiler could easily group
these loads by unrolling the loop. In addition, we found

similar loops that stepped vertically through the array. The
same compiler unrolling technique could group these loads

as well, but they were missed by the cache. Thus for locus
our experiment underestimated the potential for interlock
grouping.

Research in compiler optimization is needed to fully ex-
plore the idea of grouping accesses. We have shown that
grouping within basic blocks is simple and effective for many
application, and that further grouping is available by looking
beyond basic blocks. Much of this interlock grouping will
come from compiler techniques such as unrolling loops and

speculative loads. The speculative loads will need careful
consideration since they will increase grouping at the cost of

increased network bandwidth.

6 Conditional-Switch

The biggest problem with the explicit-switch model is that it

requires a large bandwidth to shared memory. In this section
we present preliminary results on the effects of adding a
cache to a multithreaded processor. The cache is able to

reduce the memory bandwidth requirement by filtering out a

large fraction of the accesses. To be cost effective, however,
the increased cost and complexity of adding caches must
be more than compensated for by the reduced cost of the
network.

6.1 Bandwidth

For this preliminary study we have chosen to look at small

caches that could be included as part of a single chip pro-
cessor. We experimented with several cache sizes and line

sizes and found that a 64 K-Byte, write back cache, with a
16 byte line size and 4 way set associativity is a reasonable

choice. Selection of an optimal cache configuration is beyond
the scope of this paper.

Coherency is maintained with the Censier and Feautrier[4]
invalidation based cache coherency protocol. This protocol
maintains a full directory of owners for each data line. It

serves as a convenient starting point for comparison with
other resear’ch, however we expect that this may not be

the most cost effective choice because of its large hardware

cost[18].

Table 7 shows the applications’ bandwidth requirements

under the explicit-switch model compared to those under the
conditional-switch model. We have shown both the access

rate, which is shown in terms of the average number of cycles
between accesses, and the bandwidth requirement which is
shown in bits per cycle. The bandwidth figure includes the
overhead of message headers and result, acknowledgement,

and invalidation messages.2 The bandwidth does not de-
crease proportionally to the access rate because of the extra

coherency overhead and the larger message sizes needed to
load a full line of data.

The cache works well for all of the applications except

mp3d. The hit rates are above 90~o and the bandwidth re-
quirements are reduced to well under 4.o bits per cycle. This
bandwidth figure is the sum of both the forward and return
traffic, and thus it suggests that a network with channels
as narrow as 2 bits in each direction would have sufficient
bandwidth to support these application. In reality the chan-

nels might need to be wider than this because traffic will be
bursty and have periods of higher bandwidth requirements.

2We have excluded messages used in spinning on locks and
barriers, since we expect a real machine to provide mechanisms
to perform these operations without spinning.

221

Application Desired Efficiency

(processors) 50% 60% 70% 80% 90%

sieve (256) 1 1 1 1 —

blkmat (64) 1 1 2 3 —

sor (16) 1 1 3 4 —

ugray (32) 1 1 2 2 4
water (29) 1 1 1 2 3

locus (lo) 1 2 2 4 —

mp3d (32) 3 4 5 6 9

Table 8: Conditional-Switch: Multithreading needed

achieve YO efficiency.

to

Simulations using realktic networks are needed to fully ex-

plore this issue.

The rnp3d application has very poor reference locality and
thus benefits little from cacheing. To support this appli-
cation as is, the network will have to supply much higher
bandwidth. We would be interested in seeing if this appli-
cation could be rewritten to improve is locality.

6.2 Multithreading Level

An additional benefit of cacheing is that it can further re-

duce the level of multithreading needed to achieve high per-

formance. Since many context switches are not taken, the

run-lengths between taken context switches increases, and
this aJlows hiding the memory latency using fewer threads.

Skipping too many context switches, however, can causes
problems. In the ugray application, for example, we found
that long sequences of cache hits allowed threads to have
some run-lengths that lasted for thousands of cycles. These

long run-lengths caused problems when another thread on
the same processor was in a criticaJ region. The thread in

the critical region would like to complete and exit the critical
region as quickly as possible, but when the thread context

switched, the other threads on the processor would some-

times execute for a very long time before the first thread

was resumed and allowed to finish. The result was that
locks ended up being held for much longer than they needed
to be, and the increased lock contention hurt performance.

The simplest solution to this problem is to limit the in-
terval between context switches. For this simulation we set

a flag after a thread has executed for 200 cycles. When this
flag is set, the next context switch instruction will cause

a context switch regardless of whether there were any pre-

ceding cache misses. This mechanism is adequate for this
study, but there is room for improvement by using more so-
phisticated scheduling policies such as priority scheduling of

threads inside critical regions.

Table 8 shows the performance of the application under
the conditional-switch multithreading model. Under this
model execution efficiencies of 80% or better can be achieved
with 6 threads or less. This small number of threads is im-
portant because it reduces the size of the register files need
to support multithreading.

The conditional-switch multithreading model cannot al-
ways context switch in a single cycle as the switch-on-load

and explicit-switch models could. The context switch deci-

sion is based on whether or not any of the preceding load
instructions miss in the cache. If a miss occurs several cy-
cles before the context switch instruction enters the CPU
pipeline, the context switch will be correctly predicted, but

if the outcome of a load is not known when the context switch

instruction enters the pipeline, a few cycles may be wasted.

For the applications studied here, this effect was minor.

The results from table 8 show that many of the applica-
tions were able to achieve efficiencies of 50 or 60% with just
a single thread per processor. This is substantially better

than previous results such as those from the Dash project[9]
which reported processor utilizations ranging from 20% to

28% when using just a single thread per processor. The dif-
ference between their mocessor model and ours is that we.
are able to group references together because of the context
switch instruction. This grouping lets us issue multiple ac-

cesses into the memory network before we vvait for them to
return. Our improved performance suggests that the group-

ing of shared accesses is an important capability that extends
beyond multithreaded processors.

7 Conclusions

While previous studies of multithreading have shown mixed
results, we study a broad set of applications and show that
all of them can perform well under rnultithreading. The
key idea introduced is to take advantage of the data depen-

dency structure of the code and group shared loads together

so that processors can avoid unnecessary context switches.

This grouping is facilitated by the introduction of an explicit

context switch instruction and compiler optimization tech-

niques. Grouping increases the average run-length between
context switches and also eliminates most of the troublesome
short run-lengths from the run-length distributions.

It is difficult to compare results with other studies since
different applications are studied, different problems sizes
are used, and different latencies are assumed. One com-
mon point for comparison is possible with the DASH project.
Gupta and Hennessy[9] studied the mp3d application under
the switch-on-miss multithreading model. They reported

an efficiency of 50% with a multithreading level of 4. The

explicit-switch model studied here achieves similar efficiency
at this multithreading level while tolerating, a latency more

than twice that used in the DASH study. The improved

latency tolerance of the explicit-switch model shows the im-
portance of grouping.

We have introduced a classification scheme for multi-
threading models and have started the exploration of this
design space. With the explicit-switch model, 70% or better
efficiency can be achieved without any cacheing of shared

memory, and requiring only a moderate level of multi-

threading. The only difficulty is that the network band-
width requirements are high for some applications. Cacheing

together with the conditional-switch model addresses this

problem and for most applications is able to reduce the band-
width to acceptable levels.

References

[1]

[2]

An ant Agarwrd, Beng-Hong Lim, David Kranz, and
John Kublatowicz. APRIL: A Processor Architecture
for Multiprocessing. In ‘The 17’th Annual Int. Symp. on

Computer Architecture, pages 104-114, 1990<

Robert Alverson, David Callahan, Daniel Cummings,
et al. The TERA Computer System. In 1990 Int. Conf.

on Supercomputing, pages 1–6, 1990.

222

[3] Bob Boothe. Multiprocessor Strategies for Ray-Tracing.
Master’s thesis, U.C. Berkeley, September 1989. Report
No. UCB/CSD 89/534.

[4] L. M. Censier and P. Feautrier. A New Solution to Co-
herence Problems in Multicache Systems. IEEE Trans-
actions on Computers, C-27(12):1112–1118, December
1978.

[5] David Chaiken, Craig Fields, Kiyoshi Kurihara, and

Anant Agarwal. Directory-Based Cache Coherency
in Large-Scale Multiprocessors. IEEE Computer,
23(6):49–59, June 1990.

[6] David E. Culler, Anurag Sah, Klaus Erik Schauser,

Thorsten von Eicken, and John Wawrzynek. Fine-

grain Parallelism with MinimaJ Hardware Support: A

Compiler-Controled Threaded Abstract Machine. In
ASPL OS-IV Proceedings, pages 164-175, 1991.

[7] William J. Dally. Virtual-Channel Flow Control. In

The 17th Annual Int. Symp. on Computer Architecture,

pages 60-68, 1990.

[8] AlIan Gottlieb, Ralph Grishman, Clyde P. Kruskal,
Kevin P. McAuliffe, Larry Rudolph, and Marc Snir. The
NYU Ultracomputer — Designing a MIMD, Shared-
Memory Parallel Machine. In Cont. Proc. of the 9th

Annual Symposium on Computer Architecture, pages

27-42, 1982.

[9] Anoop Gupta, John Hennessy, Kourosh Gharachorloo,

Todd Mowry, and Wolf-Dietrich Weber. Comparative

Evaluation of Latency Reducing and Tolerating Tech-
niques. In The 18th Annual Int. Symp. on Computer

Architecture, pages 254-263, 1991.

[10] J. L. Gustafson. Reevaluating Amdahl’s Law. Commu-
nications of the A CM, pages 532–533, May 1988. Tech-
nical Note.

[11] Robert H. Halstead, Jr. and Tetsuya Fujita. MASA: A

Multithreaded Processor Architecture for Parallel Sym-

bolic Computing. In The 15th Annual Int. Symp. on

Computer Architecture, pages 443-451, 1988.

[12] Gerry Kane. MIPS RISC Architecture. Prentice Hall,

1989.

[13] Alexander C. Klaiber and Henry M. Levy. An Archi-
tecture for Software-Controlled Data Prefetching. In
The 18th Annual Int. Symp. on Computer Architecture,

pages 43-53, 1991.

[14] Janusz S. Kowalik, editor. Parallel MIMD computation

“ the HEP supercomputer and its applications. MIT

Press, 1985.

[15] MIPS Computer Systems. MIPS tanguage program.

mer’s guide, 1986.

[16] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A
Killer Micro for A Brave New World. Technical report,
MIT Lab. for Comp. Sci., 1991. Computation Struc-
tures Group Memo 325.

[17] Rishiyur S. Nikhil and Arvind. Can dataflow subsume
von Neumann computing? In The 16th Annual Int.

Symp. on Computer Architecture, pages 262-272, 1989.

[18] Brian W. O’Krafka and A. Richard Newton. An Em-
pirical Evaluation of Two Memory-Efficient Directory
Methods. In The 17th Annual Int. Symp. on Computer

Architecture, pages 138–147, 1990.

[19] Anita Osterhaug, editor. Guide to Parallel Program-

ming on Sequent Computer Systems. Prentice Hall,
1989.

[20] Gregory M. Papadopoulos and David E. Culler. Mon-
soon: an Explicit Token-Store Architecture. In The

1 %h Annual Int. Symp. on Computer Architecture,

pages 82–91, 1990.

[21] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Har-

vey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton,

V. A. Norton, and J. Weiss. The IBM Research Parallel

Processor Prototype (RP3): Introduction and Architec-
ture. In Proc. 1985 Int. Parallel Processing Conf, pages
764–771, 1985.

[22] Abhiram Gorakhanath Ranade. Fluent Parallel Com-

putation. PhD thesis, Yale University, May 1989.

[23] Rafael H. Saavedra-Barrera, David E. Culler, and
Thorsten von Eicken. Analysis of Multithreaded Archi-
tectures for Parallel Computing. In ACM Symp. Paral.

A/g. Arch., July 1990.

[24] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop

Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. Technical report, Computer Systems

Laboratory, Stanford, 1991. Tech. Rpt. #CSL-TR-91-
469.

[25] Wolf-Dietrich Weber and Anoop Gupta. Exploring the
Benefits of Multiple Hardware Contexts in a Multipro-
cessor Architecture: Preliminary Results. In The 16th
Annual Int. Symp. on Computer Architecture, 1989.

[26] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H.

Lawrie. Distributing Hot-spot Addressing in Large-
Scale Multiprocessors. In Int. Conf. on Parallel Pro-

cessing pages 51–58, 1986.

223

