
On A Capacitated Multivehicle Routing Problem

Thesis by

Xiaojie Gao

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended August 3, 2007)

ii

c© 2008

Xiaojie Gao

All Rights Reserved

iii

Acknowledgements

First and foremost, it is my great pleasure to thank my advisor Professor Leonard J.

Schulman. This thesis would never have existed without his help, support, inspiration,

and guidance. To him, I offer my most sincere gratitude.

I wish to thank my fellow members of the theory group for their valuable discus-

sions and helpful suggestions for my work.

In addition, my thanks go to Professor K. Mani Chandy, Professor Richard M.

Murray, and Professor Chris Umans for helpful discussions. They provided me an

education, formally or informally, that will be an invaluable resource in my future

career.

I am particularly indebted to my whole family for their love, encouragement, and

support, especially my parents who have always been there to offer guidance for me.

I owe a lot to my dear husband Chih-Kai Ko, who have helped me in writing on this

work and providing constructive suggestions.

I offer my deep thanks to all of my friends, both in the United States and in China,

who have helped me in many aspects of daily life and study.

iv

Abstract

The Vehicle Routing Problem (VRP) is a discrete optimization problem with high

industrial relevance and high computational complexity. The problem has been exten-

sively studied since it was introduced by Dantzig and Ramser. In a VRP, we are given

a number of customers with known delivery requirements and locations (assumed to

be vertices in a network). A fleet of vehicles with limited capacity is available. The

objective is to design routes and customer assignments to minimize the total time

or distance traveled to serve the demands. Because of its practical significance, this

problem has been widely studied.

In this thesis, we present a version of the VRP motivated by mobile sensor net-

works which we call the Capacitated Multivehicle Routing Problem (CMVRP). In our

framework, there are multiple geographically disperse vehicles each equipped with a

limited energy supply. The vehicle consumes energy as it moves around and it also

consumes energy while serving jobs. This situation models a network of mobile sensors

where locomotion and computation all drain the limited capacity battery onboard.

Our objective is to determine the minimum amount of energy required to serve all

jobs, which takes into account both the service requirement and the travel overhead.

We present a constant factor approximation algorithm. Furthermore, we study the

on-line problem where job demands arrive sequentially and present a distributed al-

gorithm that serves all jobs using only a constant factor more energy than the off-line

solution.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Review . 2

1.2 Motivation . 3

1.3 Problem Statement . 4

1.4 Main Contributions . 5

2 Off-line Case 7

2.1 Examples . 7

2.1.1 Example 1: All Demands Are in a Square 8

2.1.2 Example 2: All Demands Are on a Line 8

2.1.3 Example 3: All Demands Are in a Single Point 8

2.2 Characterization of Optimal Off-line Performance 9

2.3 Approximation Algorithm to Compute Woff 19

3 On-line case 22

3.1 Diffusing Computations . 22

3.2 On-line Strategy . 23

3.2.1 Vehicle State . 25

3.2.2 The Overall Structure . 26

3.2.3 Phase I Computation . 27

vi

3.2.3.1 Messages Used in Phase I 27

3.2.3.2 Local Data Used By a Vehicle During Phase I 27

3.2.3.3 Phase I Algorithm Description 28

3.2.4 Phase II Computation . 29

3.2.5 Discussion . 29

3.3 Proof of Theorem 1.4.2 . 31

4 Different Case Study: Broken Vehicles 33

4.1 Lower Bound on Woff-b . 34

4.2 An Example of a Large Woff-b . 36

5 Inter-Vehicle Energy Transfers 38

5.1 Wtrans-off = Θ(Woff) . 39

5.2 High Capacity Tanks . 41

5.2.1 An example of Wtrans−off with C =∞ 41

6 Conclusions and Future Works 43

Bibliography 45

1

Chapter 1

Introduction

First introduced by Dantzig and Ramser [5], the Vehicle Routing Problem (VRP)

is a combinatorial optimization problem with applications to diverse areas such as

resource allocation, load balancing, and sensor networks. In a VRP, we are given a

number of customers with known delivery requirements and locations (assumed to

be vertices in a network). A fleet of vehicles with limited capacity is available. The

objective is to design routes and customer assignments to minimize the total time

or distance traveled to serve the demands. Because of its practical significance, this

problem has been widely studied [12, 17]. Unfortunately, like many combinatorial

optimization problems, exact solutions of VRPs are often computationally intensive

[7]. For the sake of efficiency, one must resort to approximation methods and heuristics

which work well in practice [4, 19, 20, 9, 12, 8, 21].

In this thesis, we present a version on the VRP motivated by mobile sensor net-

works which we call the Capacitated Multivehicle Routing Problem (CMVRP). In our

framework, there are multiple vehicles each equipped with a limited energy supply.

The vehicle consumes energy as it moves around and it also consumes energy while

serving jobs. This situation models a network of mobile sensors where locomotion

and computation both drain the limited capacity battery onboard. Our objective is

to determine the minimum amount of energy required to serve all jobs. We present

a constant factor approximation algorithm. Furthermore, we also study the on-line

problem where job demands arrive sequentially and present a distributed algorithm

that serves all jobs using only a constant factor more energy than the off-line solution.

2

Before we present our formal problem definition, a review is in order.

1.1 Review

Let G = (V, E) be an undirected weighted graph where vertices in V represent cities

and edges in E represent roadways between pairs of cities. Associated with each road

e ∈ E is a non-negative weight a(e) that denotes the distance between the cities (or

sometimes the road toll). Let Ω ⊆ V denote the set of depots. Each depot x ∈ Ω

initially contains m(x) vehicles. Let C ⊆ V denote the set of customers, each x ∈ C

has demand d(x) ≥ 0. One can imagine the demand as the number of units of a

good that a customer requires. The general goal is to design an optimal set of routes

and/or schedules for each vehicle in order to satisfy all customer demands.

There are numerous variations on this VRP model. We shall briefly discuss a few

of them and refer the reader to excellent surveys of Bodin and Golden [1] and Laporte

[12] for further details.

• (Original) Vehicle Routing Problem: Multiple vehicles are dispatched from a

central depot to serve customers. Each vehicle travels with unit speed. The

goal is to minimize the time required to reach all customers. See [5]. If we

replace the time requirement with a minimum total distance requirement, then

we have the classic Traveling Salesman Problem (TSP).

• Capacitated Vehicle Routing Problem (CVRP): Multiple vehicles, which are la-

beled 1, 2, 3, · · · , m, are dispatched from a central depot to serve customers.

Vehicle i ∈ {1, . . . , m} has service capacity w(i) and each customer x ∈ C has

demand d(x). The objective is to find the shortest vehicle routes (minimizing

the total length of all vehicle routes) so that all customer demands are satisfied.

See [14]. One can also consider finding the fastest routes (minimizing the longest

route over all vehicle routes). See [13]. Sometimes, vehicles are re-stocked at

depot locations and the problem becomes a pickup and delivery problem [11].

3

• Vehicle Routing Problem with Time Windows (VRPTW): Same basic frame-

work as CVRP with the additional requirement that each customer must have

all her jobs served within a given time window. See [2, 3, 16].

In most of the existing VRP literature, all vehicles originate from a central depot.

In our version, we have many geographically disperse depots as well as customers.

Our energy objective takes into account both the customer service requirement and

the travel overhead, i.e., the vehicle capacity need be at least customer service cost

plus travel overhead.

1.2 Motivation

One motivation of our work stems from the Smart Dust project [18].

Smart Dust is a hypothetical network of tiny wireless micro-electromechanical

systems (MEMS) sensors, robots, or devices, installed with wireless communication

capabilities, that can detect anything from light and temperature to vibrations. A

typical application scenario is the scattering of hundreds of these sensors around

a building to monitor temperature or humidity; or around the seabed to monitor

seismic activity. In a military setting, they can act as remote sensors to track enemy

movements, detect poisonous gas or radioactivity.

In our model, in which the sensors (robots or vehicles) have modest mobility, we

not only provide coverage, like in Smart Dust, but also increase the robustness and

longevity of the network. If one micro-robot dies, the rest of them can shift and cover

for the missing micro-robot, and the task can still be completed.

Although our work is entirely at the theoretical level, it has foreseeable applica-

tions as current robotics researchers are already working on such tiny mobile sensors.

For instance, Pister’s “Smart Dust with Legs”:

“It’s a startling idea: Swarms of ant-size robots burrowing through the

rubble of a building after an earthquake searching for survivors or crawling

onto the hull of a spacecraft to repair damage in-flight. But perhaps the

4

most amazing thing about Pister’s dream is that it’s not as far off as one

might think. Already Pister and his graduate students have built simple

solar-powered microrobots just 8.5 millimeters long and less than 4 mil-

limeters wide.”

(Quoted from http://www.coe.berkeley.edu/labnotes/0903/pister.html.)

The development of networking protocols for mobile Smart Dust represents a signifi-

cant challenge [10].

1.3 Problem Statement

Let G = (V, E) be the ℓ-dimensional grid Zℓ (assume ℓ is a constant), let C = Ω = V .

That is, at each city x ∈ V , there is one customer and one depot. Inside each depot

is a vehicle with capacity W . The traveling cost between any two adjacent points in

V is 1 unit of energy.

Consider a sequence of k service requests (jobs) arriving at positions (cities)

x1, x2, · · · , xk ∈ Zℓ at times t1, t2, · · · , tk where t1 < t2 < · · · < tk. Assume that

each service request requires 1 unit of energy to process and denote by d(x) the total

service demand at position x ∈ Zℓ:

d(x) =

k∑

i=1

I(x, xi),

where the indicator function I(x, y) is 1 if x = y and 0 otherwise.

We further distinguish between these two different scenarios:

• Off-line: The demand function d(·) and arrival sequence are known to all vehi-

cles at the beginning.

• On-line: The demand function d(·) and arrival sequence are not known to all

vehicles at the beginning. Since we need to process the request immediately (or

with a small constant delay), we impose the additional requirement that for all

5

i ∈ {1, . . . , k} and for all x ∈ Zℓ, there exists a vehicle with non-zero energy

within a constant distance of x at time ti.

Our objective is to determine the minimal W such that all service requests can

be satisfied. We let Woff and Won denote the minimal W in the off-line and on-line

cases respectively.

1.4 Main Contributions

Define Nr(T) to be the neighborhood of radius r around T , where T ⊆ Zℓ and Nr(x)

to be the neighborhood of radius r around x, where x ∈ Z
ℓ

. In symbols,

Nr(T) = {y : ∃ x ∈ T such that ‖x− y‖ ≤ r}

and

Nr(x) = {y : ‖x− y‖ ≤ r} ,

where ‖x− y‖ is the Manhattan distance1 between x and y.

Given a nonempty subset T ⊆ Z
ℓ

, let ωT denote the solution of the equation:

ωT · |Nω
T
(T)| =

∑

x∈T

d(x), (1.1)

where |Nω
T
(T)| is the cardinality of set Nω

T
(T). Since the left hand side is strictly

increasing in ωT , a solution of (1.1) always exists and is unique.

Theorem 1.4.1 Woff = Θ

(

max
T :T⊆Z

ℓ
ωT

)

.

Theorem 1.4.2 Won = Θ (Woff) = Θ

(

max
T :T⊆Z

ℓ
ωT

)

.

We design an algorithm to achieve (up to a constant factor) the optimal Woff. We

also present a strategy for moving vehicles for the on-line case that fulfills the job

requirements.

1Some authors refer to this as the rectilinear distance, L1 distance, or city block distance.

6

The rest of the thesis is organized as follows: Chapters 2 and 3 will discuss the

off-line and on-line cases respectively. In Chapter 4, we extend the problem to allow a

number of vehicles breaking down. In Chapter 5, we explore the possibility of energy

transfers between vehicles. Finally, we conclude with some future research directions

in Chapter 6.

7

Chapter 2

Off-line Case

In this chapter, we focus on the off-line case of our Capacitated Multivehicle Routing

Problem (CMVRP). As illustration, three special examples are given in Section 2.1.

The characterization of optimal off-line performance (i.e. proof of Theorem 1.4.1) is

provided in Section 2.2. A linear-time approximation algorithm to compute Woff is

given in Section 2.3.

2.1 Examples

In this section, we will use three simple but practical 2-dimensional examples to give

some intuition for the problem we are going to solve.

dd

dd…………dddd

dddd

dd…………dddd

W W

W

W

…
…

…
…

…
…

…
…

(a) Square

dddd………………dddd

W

W

(b) Line

dd

W

W

W W

(c) Point

Figure 2.1: Examples of three special cases. (a) The demand is d at any point in a
square and 0 at any point outside the square. (b) The demand is d at any point on
a line and 0 at any other point. (c) The demand is d at a single point and 0 at any
other point.

8

2.1.1 Example 1: All Demands Are in a Square

In this example, the demand is d at any point in a square T of size a × a and 0 at

any point outside the square, which is shown in Figure 2.1(a).

Since the traveling cost between any two adjacent points is 1 unit of energy, only

those vehicles within distance W could get into the area T . Therefore, W × (2W +

a)2 ≥ d × a2. Let W1 be the solution to W × (2W + a)2 = d × a2, where W is the

variable. Then W ≥W1. When a approaches infinity, W approaches d.

2.1.2 Example 2: All Demands Are on a Line

In this example, the demand is d at any point on a line L and 0 at any other point,

which is shown in Figure 2.1(b). It is a reasonable and practical model when using

the mobile vehicles to detect the traffic flow on the highway.

Since the traveling cost between any two adjacent points is 1 unit of energy and

only those vehicles within distance W could get onto the line L, we have W × (2W +

1) ≥ d. Let W2 be the solution to W × (2W + 1) = d, where W is the variable,

then W ≥ W2. If each vehicle has a capacity W = 2W2, there is a way to serve all

the demands: Any vehicle in the neighborhood of radius W2 around L, i.e. NW2(L),

moves to its nearest point on the line L. The traveling cost for each vehicle is at most

W2 units of energy and the remaining energy could be used to serve the demands.

This is shown in Figure 2.2. Therefore, W 2 ∼ d.

2.1.3 Example 3: All Demands Are in a Single Point

In this example, the demand is d at a single point p and 0 at any other point, which

is shown in Figure 2.1(c). It is a reasonable model when using the mobile vehicles to

detect the earthquake.

Only those vehicles within distance W could get into p. We have W×(2W +1)2 ≥

d. Let W3 be the solution to W × (2W + 1)2 = d, where W is the variable, then

W ≥ W3. If each vehicle has a capacity W = 3W3, there is a way to serve all the

demands: Any vehicle in the square of size (2W3 + 1) × (2W3 + 1), whose center is

9

dddd………………dddd

…… …… ……

…… …… ……

W2

W2

Figure 2.2: Any vehicle in the neighborhood of radius W2 around the line L, i.e.
NW2(L), moves to its nearest point on the line.

at point p, moves to p. The traveling cost for each vehicle is at most 2W3 units of

energy and the remaining energy is enough to serve the demands. This is shown in

Figure 2.3. Therefore, W 3 ∼ d.

dd

W3

W3

W3 W3

Figure 2.3: Any vehicle in the square of size (2W3 + 1)× (2W3 + 1), whose center is
at point p, moves to p.

2.2 Characterization of Optimal Off-line Performance

Before diving into the proof of Theorem 1.4.1, it is instructive to first study a sim-

pler problem: Let us ignore the energy expenditure due to locomotion. That is, we

shall only take into account the customer service requirement and neglect the travel

10

overhead. But we confine each vehicle to within a local neighborhood of a specified

radius r > 0 around its starting point. Later in the section, we will set the radius r

to be the same as the vehicle capacity.

The minimal capacity required for resolving the supply-demand transports with

a specified radius parameter r is the solution of the following linear program (LP):

minimize ω

s.t.







∑

j∈Nr(i)

fij ≤ ω, ∀ i ∈ Z
ℓ

∑

i∈Nr(j)

fij ≥ d(j), ∀ j ∈ Z
ℓ

fij ≥ 0, ∀ i, j ∈ Z
ℓ

and ‖i− j‖ ≤ r,

(2.1)

where F = {fij} denotes the set of “flows.” Each flow fij represents the amount of

energy transported by the vehicle at position i to position j.

Notice that (2.1) is not the classical LP used in the classical “Transportation

Problem” [15] in two important aspects:

• In the Transportation Problem, both the supply distribution (how much energy

is in each vehicle) and demand distribution (how much energy is needed at

each position) are known a priori. The goal is to find the minimal cost (i.e.

the Earthmover Distance [15]) to transform one distribution into the other. In

(2.1), the supply distribution is part of the linear program, which is to be solved.

The method we use here is different from those methods used in the classical

Transportation Problem.

• In the Transportation Problem, there is either no distance constraint or fixed

distance constraint. In our case, the transport distance is bounded by a param-

eter r and later by the supply (vehicle capacity), which is to be solved.

Before trying to solve (2.1), we first give a lemma as follows.

11

Lemma 2.2.1 Given d(j) ≥ 0 for all j ∈ Z
ℓ

, the linear programming

maximize
∑

j∈Z
ℓ

(

d(j)× min
i:‖i−j‖≤r

αi

)

s.t.







∑

i∈Z
ℓ

αi ≤ 1,

αi ≥ 0, ∀ i ∈ Z
ℓ

(2.2)

is equivalent to

maximize
∑

j

d(j)
∑

T :Nr(j)⊆T

h(T)

s.t.







∑

T⊆Z
ℓ

h(T)|T | ≤ 1

h(T) ≥ 0, ∀ T ⊆ Z
ℓ

. (2.3)

where h denotes a mapping from the set of subsets of Z
ℓ

to R.

Proof : We will prove the lemma by two steps:

1. The solution of (2.2) is at most the solution of (2.3).

For any (αi)i∈Z
ℓ that solves (2.2), we can define a mapping h from the set of

subsets of Z
ℓ

to R, that is, for any T ⊆ Z
ℓ

,

h(T) =







max

{

0, min
i∈T

αi − max
i∈N1(T)\T

αi

}

if T is simply connected

0 otherwise

.

Given the value of (αi)i∈Z
ℓ as seen in Figure 2.4(a), h (in Figure 2.4(b)) can be

deduced by finding the maximal αi’s first and setting the value of those subsets

to be the difference between the maximal value and the smaller value on the

boundary; then reducing the value of (αi)i∈Z
ℓ on those subsets and repeating

the first step. Figure 2.5 gives an example of the first a few steps of the process.

Look at any two simply connected subsets T1, T2 of Z
ℓ

, which are related as

follows:

T1 ∩ T2 6= ∅, T1\T2 6= ∅, and T1\T2 6= ∅.

12

i

i

(a) (αi)i∈Z
ℓ

ji

h({i, · · · , j})

(b) h

Figure 2.4: An illustration of the relationship between (αi)i∈Z
ℓ and h in 1-dimensional

space.

Suppose h(T1) 6= 0, i.e., min
i∈T1

αi > max
i∈N1(T1)\T1

αi. Let x be a vertex in set T1 ∩

N1(T2)\T2 and y be a vertex in set T2 ∩N1(T1)\T1. Then

max
i∈N1(T2)\T2

αi ≥ αx ≥ min
i∈T1

αi ≥ max
i∈N1(T1)\T1

αi ≥ αy ≥ min
i∈T2

αi.

So h(T2) = 0. Therefore, for any two simply connected subsets T1, T2 of Z
ℓ

, if

h(T1) 6= 0 and h(T2) 6= 0, then

T1 ⊂ T2 or T1 ⊇ T2 or T1 ∩ T2 = ∅.

For any i ∈ Z
ℓ

, there exist a sequence of sets T1, T2, · · · , Tκ such that

– i ∈ T1 ⊂ T2 ⊂ · · · ⊂ Tκ ⊆ Z
ℓ

,

– h(Tj) 6= 0 for any j ∈ {1, 2, · · · , κ},

– and for any other T such that T /∈ {T1, T2, · · · , Tκ} and i ∈ T , h(T) = 0.

13

(a) (b) (c)

(d) (e) (f)

Figure 2.5: An example showing the first a few steps to deduce h from (αi)i∈Z
ℓ .

14

From the definition of h, there exists an xj ∈ Tj\Tj−1 for each j ∈ {2, 3, · · · , κ}

such that

h(Tj) =







αi − αx2 , j = 1

αxj
− αxj+1

, j ∈ {2, · · · , κ− 1}

αxκ
, j = κ

.

Thus,

αi =

κ∑

j=1

h(Tj) =
∑

T :i∈T

h(T),

and

∑

T⊆Z
ℓ

h(T)|T | =
∑

T⊆Z
ℓ

h(T)
∑

i:i∈T

1 =
∑

i:i∈Z
ℓ

∑

T :i∈T

h(T) =
∑

i:i∈Z
ℓ

αi ≤ 1.

Given j ∈ Z
ℓ

, let x = arg min
i:‖i−j‖≤r

αi. For any T such that x ∈ T and h(T) 6= 0, if

Nr(j) * T , then αx > αy for any y ∈ Nr(j) ∩ N1(T)\T , a contradiction with

αx = min
i:‖i−j‖≤r

αi ≤ αy. Therefore,

min
i:‖i−j‖≤r

αi =
∑

T :Nr(j)⊆T

h(T) for any j ∈ Z
ℓ

.

2. The solution of (2.3) is at most the solution of (2.2).

For any h that solves (2.3), we can define αi =
∑

T :i∈T

h(T) for all i ∈ Z
ℓ

. From

the definition, min
i:‖i−j‖≤r

αi ≥
∑

T :Nr(i)⊆T

h(T) for any j ∈ Z
ℓ

, and

∑

i∈Z
ℓ

αi =
∑

i∈Z
ℓ

∑

T :i∈T

h(T) =
∑

T⊆Z
ℓ

h(T)
∑

i:i∈T

1 =
∑

T⊆Z
ℓ

h(T)|T | ≤ 1.

2

We are now ready to solve (2.1):

Lemma 2.2.2 Given d(x) ≥ 0 for all x ∈ Z
ℓ

and r > 0. The value of LP (2.1) is

max
T :T⊆Z

ℓ

∑

x∈T d(x)

|Nr(T)|
.

15

Table 1 Linear programming Primal and Dual

Primal Dual

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi (i = 1, · · · , m)

xj ≥ 0 (j = 1, · · · , n)

min
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≥ cj (j = 1, · · · , n)

yi ≥ 0 (i = 1, · · · , m)

Proof : The dual of (2.1) is the following.

maximize
∑

j∈Z
ℓ

βjd(j)

s.t.







∑

i∈Z
ℓ

αi ≤ 1,

αi ≥ 0, ∀ i ∈ Z
ℓ

βj ≥ 0, ∀ j ∈ Z
ℓ

βj ≤ αi, ∀ i, j ∈ Z
ℓ

and ‖i− j‖ ≤ r

.

(2.4)

Since βj ≤ αi for all ‖i − j‖ ≤ r, we know that βi ≤ min
j:‖i−j‖≤r

αj. We want to

maximize
∑

j∈Z
ℓ

βjd(j) with d(j) ≥ 0, which implies that βi = min
j:‖i−j‖≤r

αj and (2.4)

becomes the following LP:

maximize
∑

j∈Z
ℓ

(

d(j)× min
i:‖i−j‖≤r

αi

)

s.t.







∑

i∈Z
ℓ

αi ≤ 1,

αi ≥ 0, ∀ i ∈ Z
ℓ

.

(2.5)

Let h denote a mapping from the set of subsets of Z
ℓ

to R. By Lemma 2.2.1, the

16

LP (2.5) is equivalent to

maximize
∑

j

d(j)
∑

T :Nr(j)⊆T

h(T)

s.t.







∑

T⊆Z
ℓ

h(T)|T | ≤ 1

h(T) ≥ 0, ∀ T ⊆ Z
ℓ

. (2.6)

Since
∑

i

d(i)
∑

T :Nr(i)⊆T

h(T) =
∑

T⊆Z
ℓ

h(T)
∑

i:Nr(i)⊆T

d(i), the dual of (2.6) is

minimize ω

s.t. ω · |T | ≥
∑

i:Nr(i)⊆T

d(i), ∀ T ⊆ Z
ℓ

.
(2.7)

Therefore, the solution of (2.1) is

ω = max
T :T⊆Z

ℓ

∑

i:Nr(i)⊆T

d(i)

|T |
= max

T :T⊆Z
ℓ

∑

x∈T

d(x)

|Nr(T)|
.

2

If we set the radius r to be ω, LP (2.1) becomes

minimize ω

s.t.







∑

j∈Nω(i)

fij ≤ ω, ∀ i ∈ Z
ℓ

∑

i∈Nω(j)

fij ≥ d(j), ∀ j ∈ Z
ℓ

fij ≥ 0, ∀ i, j ∈ Z
ℓ

& ‖i− j‖ ≤ ω

(2.8)

and the solution is as follows:

Lemma 2.2.3 Given d(x) ≥ 0 for all x ∈ Z
ℓ

, the solution to program (2.8) is

max
T :T⊆Z

ℓ
ωT ,

where ωT is the solution of ωT · |NωT
(T)| =

∑

x∈T d(x).

17

Proof : Let ω(r) = max
T⊆Z

ℓ

∑

x∈T

d(x)

|Nr(T)|
. For any r1 > r2, define

T1 = arg max
T⊆Z

ℓ

∑

x∈T

d(x)

|Nr1(T)|
, and T2 = arg max

T⊆Z
ℓ

∑

x∈T

d(x)

|Nr2(T)|
.

We see that ω(r) is a non-increasing function of r because

ω(r1)− ω(r2) = max
T⊆Z

ℓ

∑

x∈T d(x)

|Nr1(T)|
−max

T⊆Z
ℓ

∑

x∈T d(x)

|Nr2(T)|

=

∑

x∈T1
d(x)

|Nr1(T1)|
−

∑

x∈T2
d(x)

|Nr2(T2)|

≤

∑

x∈T1
d(x)

|Nr1(T1)|
−

∑

x∈T1
d(x)

|Nr2(T1)|

≤ 0.

Together with Lemma 2.2.2, the solution to program (2.8) is equal to the unique

solution of the equation

ω = max
T⊆Z

ℓ

∑

x∈T

d(x)

|Nω(T)|
, (2.9)

where ω is the variable. Let ω∗ be the solution of (2.8) and (2.9).

For any T ′ ⊆ Z
ℓ

,

ω∗ = max
T⊆Z

ℓ

∑

x∈T

d(x)

|Nω∗(T)|
≥

∑

x∈T ′

d(x)

|Nω∗(T ′)|
. (2.10)

Let ω′ be the solution to the equation ω =

∑

x∈T ′

d(x)

|Nω(T ′)|
. If ω′ > ω∗, then

∑

x∈T ′

d(x)

|Nω∗(T ′)|
≥

∑

x∈T ′

d(x)

|Nω′(T ′)|
= ω′. (2.11)

Combining (2.10) with (2.11), we have ω∗ ≥ ω′, a contradiction with the assumption.

Hence, ω∗ ≥ ω′. Therefore, ω∗ = max
T :T⊆Z

ℓ
ωT , where ωT is the solution of ωT ·|NωT

(T)| =
∑

x∈T d(x). 2

As used in the proof of Lemma 2.2.3, let ω∗ = max
T :T⊆Z

ℓ
ωT . Clearly, ω∗ is a lower

bound on Woff, because ω∗ is the solution of program (2.8) which does not take into

18

account the cost of motion.

Corollary 2.2.4 Woff ≥ ω∗ = max
T :T⊆Z

ℓ
ωT .

We are now ready for the upper bound on Woff.

Lemma 2.2.5 Woff ≤ (2 · 3ℓ + ℓ) · ω∗ = (2 · 3ℓ + ℓ) · max
T :T⊆Z

ℓ
ωT .

Remark: The primary interest in many applications is the plane (ℓ = 2). In the

plane, the upper bound is only a modest (and probably pessimistic) factor over the

lower bound. However, for generality, we perform the analysis for general ℓ.

Proof : In LP (2.8), for any position x ∈ Z
ℓ

, only those vehicles within distance ω

could move to x. According to Lemma 2.2.3, the amount of energy needed in any

⌈ω∗⌉ × ⌈ω∗⌉ × · · · × ⌈ω∗⌉
︸ ︷︷ ︸

ℓ

ℓ-cube is at most ω∗·(3⌈ω∗⌉)ℓ, excluding the travel overhead.

We partition the grid Zℓ into ⌈ω∗⌉×⌈ω∗⌉×· · ·×⌈ω∗⌉ ℓ-cubes and provide each vehicle

with 2 · 3ℓ · ω∗ units of energy to serve customer demands. Thus, every vehicle only

needs to move and deliver energy inside its own ⌈ω∗⌉ × ⌈ω∗⌉ × · · · × ⌈ω∗⌉ ℓ-cube. In

every such ℓ-cube H, we have

∑

x∈H

⌈
d(x)− 3ℓ · ω∗

3ℓ · ω∗

⌉

≤
∑

x∈H

d(x)

3ℓ · ω∗
≤ ⌈ω∗⌉ℓ.

Let each vehicle use (leave) at most 3ℓ ·ω∗ energy first at its original position, and then

move to a particular position and serve the requests there. The traveling overhead

for any vehicle is at most ℓ · ω∗. Therefore, at most (2 · 3ℓ + ℓ) · ω∗ energy is needed

for each vehicle. 2

Theorem 1.4.1 follows from Corollary 2.2.4 and Lemma 2.2.5. We also have the

following two corollaries:

Corollary 2.2.6 Let Γ be the set of all ℓ-cubes in Z
ℓ

and ωT denote the solution of

ωT · |NωT
(T)| =

∑

x∈T d(x), then

max
T :T∈Γ

ωT ≤ Woff ≤ (2 · 3ℓ + ℓ) · max
T :T∈Γ

ωT .

19

Proof : Since Γ ⊆ {T : T ⊆ Z
ℓ

},

max
T :T∈Γ

ωT ≤ max
T :T⊆Z

ℓ
ωT ≤Woff.

Woff ≤ (2 · 3ℓ + ℓ) · max
T :T∈Γ

ωT follows as in the proof of Lemma 2.2.5. 2

Corollary 2.2.7 Let Γω be the set of all ⌈ω⌉× ⌈ω⌉× · · ·× ⌈ω⌉ ℓ-cubes in Z
ℓ

. Define

ωc = min

{

ω : ω · (3⌈ω⌉)ℓ = max
T∈Γω

∑

x∈T d(x)

}

.

ωc ≤ Woff ≤ (2 · 3ℓ + ℓ) · ωc.

Proof : Assume that ωc is achieved when T = Tc. Then,

ωc · (3⌈ωc⌉)
ℓ =

∑

x∈Tc

d(x) = ωTc
· |NωTc

(Tc)|.

So we must have ωc ≤ ωTc
because otherwise ωc ·(3⌈ωc⌉)

ℓ > ωTc
·|NωTc

(Tc)|. Therefore,

ωc ≤ max
T :T⊆Z

ℓ
ωT and ωc ≤ Woff. Finally, Woff ≤ (2 · 3ℓ + ℓ) · ωc follows as in the proof

of Lemma 2.2.5. 2

The characterization using cubes is much simpler than T ranging over all subsets

of Z
ℓ

. The fact that we only need to examine cubes in Z
ℓ

is key to being able to

provide an algorithm.

2.3 Approximation Algorithm to Compute Woff

For simplicity, we shall restrict our analysis to 2-dimensions (ℓ = 2). The derivation

for higher dimensions are straightforward extensions. We further assume that the

graph is the n× n grid Zn × Zn where n is a power of 2 and the demand function is

d(x) ≥ 0 for every x ∈ Z2
n. Define

• The maximal demand is D = maxx∈Z2
n
d(x).

• The average demand is D̂ =
∑

x∈Z2
n

d(x)

n2 .

20

Algorithm 1 Approximation algorithm to compute Woff, running in linear time

1 if n ≤ D̂

2 return min{D, 2 · D̂ + ℓ · n};
3 if D ≤ 1
4 return D;
5 w ← 2, n′ ← n/w, d1(i, j)← d(i, j);
6 if w = n

7 return min{D, 2 · D̂ + ℓ · n};
8 for 1 ≤ i ≤ n′, 1 ≤ j ≤ n′

9 dw(i, j)← dw/2(2i− 1, 2j − 1) + dw/2(2i− 1, 2j) + dw/2(2i, 2j − 1)
+ dw/2(2i, 2j);

10 if there exists a dw(i, j) > w · (3w)ℓ

11 w ← 2w, n′ ← n′/2;
12 goto 6;
13 else

14 return (2 · 3ℓ + ℓ) · w.

Notice that Woff has the following properties:

Property 2.3.1 D̂ ≤Woff ≤ D.

Proof : This is straightforward from the definition of D̂ and D. 2

Property 2.3.2 If D ≤ 1, then Woff = D.

Proof : From 2.3.1, Woff ≤ D, so Woff ≤ 1, which means that the vehicles don’t have

enough energy to move. Therefore, Woff = D. 2

Property 2.3.3 If n ≤ D̂, then Woff ≤ 2 · D̂ + ℓ · n.

Proof : Since n ≤ D̂ ≤ Woff, the whole grid does not need to be partitioned into

small cubes and any vehicle can walk to any other point in the grid. The traveling

overhead is upper bounded by ℓ ·n. Following the same reason as in Lemma 2.2.5, at

most 2 · D̂ + ℓ · n energy is needed for each vehicle. 2

Using Corollary 2.2.7, together with Properties 2.3.1, 2.3.2, and 2.3.3, a 2(2·3ℓ+ℓ)-

approximation linear-time algorithm to compute Woff is given in Algorithm 1.

Analysis of Algorithm 1: Steps 1 to 5 will be visited only once and need time

O(nℓ); Steps 6 and 7 will be visited at most log2 n times and need time O(1) for each

21

visiting; Steps 8 and 9 will be visited at most nℓ

2ℓ + nℓ

4ℓ + nℓ

8ℓ + · · · + 1 ≤ nℓ

2ℓ−1
times

and need processing time O(2ℓ) for each visiting; Steps 10 to 12 need processing time

O(nℓ

2ℓ + nℓ

4ℓ + nℓ

8ℓ + · · ·+ 1) = O(nℓ

2ℓ−1
). Therefore, the time complexity of Algorithm 1

is O(nℓ). In terms of memory requirement, each dw is an ℓ-dimensional array of size

(n
w
)ℓ.

22

Chapter 3

On-line case

In this chapter, we examine the on-line case of our Capacitated Multivehicle Routing

Problem (CMVRP). In Section 3.1, we review the concept of diffusing computation, a

technique used in our on-line algorithm. We give a decentralized on-line strategy for

vehicles to serve jobs in Section 3.2. Finally, the characterization of optimal on-line

performance (i.e. proof of Theorem 1.4.2) is provided in Section 3.3.

3.1 Diffusing Computations

In the seminal work [6], Dijkstra and Scholten first introduced the concept of diffusing

computations in a distributed system of processes. A computation is diffusing when

nodes receive information from another node (predecessor), and send it to all or a

subset of their neighbors (successors). In such computations, a single active initial

node awakens other nodes to perform some computation. These awoken nodes can

spread the computation to other nodes, which then spread the computation further,

and so on.

Dijkstra and Scholten [6] also suggested an elegant algorithm for detecting the

termination of an arbitrary diffusing computation in any network. That is, the process

starting the computation is informed when it is completed. In their algorithm, a

spanning tree of active nodes is constructed by starting with a single active node (the

root of the tree and initiator of the diffusing computation) that gradually broadcasts

queries to other nodes in the network, awakening idle nodes as queries are passed

23

along. Upon activation, a node becomes the child of the activating node, causing a

transition from idle to active status. The active node is always part of the tree. If a

node that is already in the tree receives a request for activation, it notifies the sender

that the tree’s topology need not change. A node can be removed from the tree by

replying its parent when it is an idle leaf node (when replies have been received for

all queries sent). Termination is detected when the tree contains only one idle node

— the root node.

The algorithm assumes very little about the underlying graph which represents

the network. Thus, it is suitable for application to a number of problems arising in

distributed programming.

3.2 On-line Strategy

Unlike the off-line case where the demand distribution is known to all vehicles a

priori, the on-line problem requires communication between the vehicles. Before

proceeding further, we first state our assumptions about the communication model

and the messaging protocol:

• The time interval between any two successive job arrivals is long enough to

finish any computation and movement.

• This is a decentralized model: there is no central controller for the system.

• A vehicle can communicate with other vehicles by sending/receiving messages.

• When two vehicles are within a constant distance1 of each other, they are said

to be neighbors. Neighbors can communicate directly with one another without

having messages relayed through intermediate vehicles.

• The underlying communication topology is connected. That is, any two ve-

hicles can communicate with each other by having messages go through some

intermediate neighboring vehicles.

1This could be any arbitrary constant number. We use 2 here.

24

• The communication links are bidirectional.

• The communication cost is negligible: we assume communication requires no

energy. If a vehicle uses up all its energy, it is still able to communicate with

its neighbors and relay messages.

• A vehicle has only local knowledge: it knows the identities and positions of its

neighbors; it is ignorant of the identities of all other vehicles and of the general

structure of the network.

• Every vehicle has an input buffer of unbounded length. If vehicle P sends

a message to a neighbor vehicle Q, then the message gets appended at the

end of the input buffer of Q after a finite, arbitrary delay. The assumption

of unbounded length buffers is for ease of exposition. It shall be apparent from

the strategy that the input buffer length of Q can be bounded by the number of

neighbors of Q.

• Error free communication: Messages are not lost or altered during transmission.

• Synchronous communication: Messages sent from P to Q arrive at Q’s input

buffer in the order sent.

• Two messages arriving simultaneously at an input buffer are ordered arbitrarily

and appended to the buffer. A process receives a message by removing one from

its input buffer.

We further assume there is enough energy to follow the strategy and process all the

jobs. In Section 3.3, we determine this required amount of energy for each vehicle.

As in Lemma 2.2.5, we partition Zℓ into ⌈ωc⌉ × ⌈ωc⌉ × · · · × ⌈ωc⌉
︸ ︷︷ ︸

ℓ

ℓ-cubes (ωc is

defined in Corollary 2.2.7). The vertices of each cube are colored black or white

according to:

Color(x) =







black if
∑

xi ≡ 0(mod 2)

white otherwise
.

25

So, in 2 dimensions the cubes are colored like a chessboard.

If ⌈ωc⌉ is even, the number of black vertices and the number of white vertices are

equal. If ⌈ωc⌉ is odd, we assume (without loss of generality) there is 1 more black

vertex in any ℓ-cube (if not, switch the colors of vertices in the cube). In this manner,

each ℓ-cube can be further divided into pairs: each pair consists of two adjacent

vertices: one black and one white; for odd ⌈ωc⌉, there may be a single black vertex

left unpaired.

3.2.1 Vehicle State

We characterize the state of each vehicle by the pair: (S1, S2), where S1 represents

the working state of the vehicle and S2 represents the message-transfer state of the

vehicle.

The working state of the vehicle, S1, can be one of the following:

• Idle. Initially, all the vehicles at white vertices are idle. An idle vehicle does

not serve any job but waits for a message to move to the specified vertex. After

such move, the vehicle becomes active.

• Active. Initially, all the vehicles at black vertices are active. An active vehicle

will serve the jobs arriving at vertices that belong to the same pair as the vehicle

belongs to. Because the two vertices belonging to the same pair are adjacent,

the vehicle need walk at most distance 1.

• Done. When an active vehicle uses up its energy, its working state becomes

done.

The message-transfer state of the vehicle, S2, can be one of the following:

• Initiator. When an active vehicle becomes done, there is no vehicle to serve

the jobs arriving at the vertices in the same pair. A replacing candidate — an

idle vehicle in the same ℓ-cube — needs to be found and sent a message with the

done vehicle’s vertex position. We use a diffusing computation [6] to find the

26

candidate idle vehicle. (In a centralized system, the candidate idle vehicle could

be easily found and messaged.) The done vehicle starts a new computation and

is the initiator of the diffusing computation.

• Waiting. Initially, all the vehicles are waiting for signals to partake in a diffus-

ing computation. When the computation finishes, vehicles change back to the

waiting state.

• Searching. When a waiting vehicle receives a signal of a diffusing computation,

its state changes to searching. When it has finished all its computation, its state

returns to waiting again.

The state transition diagram is shown in Figure 3.1. Since an active or idle vehicle

can not be the initiator of a diffusing computation, the states (active, initiator) and

(idle, initiator) are not valid states.

idle, waiting active, waiting done, waiting

idle, searching active, searching done, searching

done, initiator
?

6
?

6
?

6

-
XXXz ���:

Figure 3.1: State Transition Diagram. States (active, initiator) and (idle, initiator)
are not valid states.

3.2.2 The Overall Structure

Our scheme has two parts. The first part is the processing of the jobs. When a job

arrives at a vertex, if there is an active vehicle at the vertex, then it serves the job;

if not, there must be an active vehicle at the other vertex in the same pair and that

vehicle will serve the job.

The second part is the diffusing computation to find a candidate idle vehicle to

replace the done vehicle. The algorithm is based on the Dijkstra-Scholten algorithm

[6] and works in two phases, both of which are initiated by the done vehicle. In

phase I, the done vehicle initializes a diffusing computation. At the end of phase

27

I, the candidate will be found and the path from the initiator (done vehicle) to the

candidate will have been identified. In phase II, a message will be transmitted along

the path, which is identified in phase I, from the done vehicle to the candidate. Upon

receiving the message, the candidate will move to the position of the done vehicle

and become active.

In the remainder of the section, we focus on the algorithm for finding a candidate

by diffusing computation and the algorithm for replacing the done vehicle.

3.2.3 Phase I Computation

3.2.3.1 Messages Used in Phase I

Phase I computation uses two kinds of messages:

• A query message associated with the pair (init, p), where init is the initiator of

the computation and p is the identity of the vehicle sending the message. vehicle

p sends a query message to all its neighbors in the same ℓ-cube. Intuitively, a

query message signals that the vehicle is asking its neighbors if they are idle

vehicles.

• A reply message to a query is a pair (flag, p), where p is the identity of the

vehicle sending the message and flag is a boolean value. A vehicle p sends a

reply message to vehicle q in response to a query message sent by q. Intuitively,

a reply message with flag=true denotes that p has found an idle vehicle; a reply

message with flag=false denotes that p has not found an idle vehicle.

3.2.3.2 Local Data Used By a Vehicle During Phase I

num This is the number of un-responded messages, that is, the number of messages

sent by this vehicle for which no reply message has been received so far.

par The predecessor (parent) identity from which the first query message was re-

ceived.

28

child The successor (child) identity from which the first reply message with flag=true

was received.

init This is the initiator identity of the diffusing computation. Initially it is NULL.

It is used to distinguish diffusing computations initiated by different vehicles

and to avoid joining the same computation more than once. If we tag the

diffusing computation with another sequence number k, we can also keep track

of diffusing computations initiated at different times by the same vertex.

3.2.3.3 Phase I Algorithm Description

• When an active vehicle becomes done, its status changes from (active, waiting)

to (done, initiator). It sends out a query message to all its neighbors. Its par

is NULL. When it receives the first reply message with flag=true, it sets child

to be the sender of the message. When all its messages have been responded,

i.e. num=0, the vehicle changes its status to (done, waiting).

• When a waiting vehicle receives a query message with an init different from its

current initiator identity, it records the sender of the query as its par, updates

its init to be the init associated with the query. If it is an idle vehicle, send

back a reply message with flag=true. If it is not an idle vehicle, change its

status to searching, and send query messages to all its neighbors.

• When a non-waiting vehicle receives a query message, or a waiting vehicle re-

ceives a query message with an init same as its current initiator identity, send

back a reply message with flag=false immediately.

• When a searching vehicle receives the first reply message with flag=true, set its

child to be the sender of the message and send a reply message with flag=true

to its par.

• When a searching vehicle has received replies from each of its neighbors, i.e.

num=0, it changes status to waiting. If its child is NULL, it sends a reply with

flag=false to its par.

29

When the done vehicle’s status changes back to waiting, the diffusing computation

has finished and a path to a candidate idle vehicle has been established. The details

of the algorithm in Phase I are given in Algorithms 2.

3.2.4 Phase II Computation

Phase II employs only one kind of message: Move along with the destination asso-

ciated with it. When the initiator of the diffusing computation changes its status to

waiting, the computation has been finished. Initiator p sends out a move(location of

p) message to its child, its child copies it to the next child, and the process continues

until we reach an idle vehicle. The idle vehicle then moves to the location of p and

changes its state to (active, waiting).

3.2.5 Discussion

In the previous sections, we have described a decentralized on-line strategy for vehicles

to serve jobs. The strategy works under the condition that all the vehicles work well.

But in practice, a done vehicle could fail to initialize a diffusing computation, an

active vehicle could break down and become dead (it can’t process jobs any more).

We distinguish among these four different scenarios:

1. All the vehicles work well and no exception occurs.

2. There are done vehicles failing to initialize a diffusing computation, but no

vehicles breaking down and becoming dead.

3. There are constant number of active vehicles breaking down and becoming dead.

4. There are large (more than constant) number of active vehicles breaking down

and becoming dead.

The scenario 1 is the normal scenario and the protocol works well under this case.

When the second scenario occurs, an alternative initiator of the diffusing com-

putation is needed, which could be one of the neighbors of the done vehicle. This

30

Algorithm 2 Phase I Algorithm.

When a vehicle p uses up its energy :

1. p.s1 ← done, p.s2 ← initiator ;

2. p.par ← NULL;

3. p.init ← p;

4. send query(p, p) to all its neighbors;

5. p.num ← the number of neighbors of p.

For a vehicle p upon receiving an query message (init, q):

1. If p.s2 = waiting & p.init 6= init

2. p.par ← q;

3. p.init ← init;

4. p.child ← NULL;

5. If p.s1 = idle

6. send a reply message (true,p) to q;

7. else

8. p.s2 ← searching ;

9. send query messages (init, p) to all its neighbors;

10. p.num ← the number of neighbors of p;

11. else

12. send a reply message (false,p) to q.

For a vehicle p upon receiving an reply message (flag, q):

1. p.num ← p.num - 1;

2. If flag=true and this is the first reply message with flag=true it receives

3. p.child ← q;

4. send a reply message (true, p) to p.par ;

5. If p.num=0

6. p.s2 ← waiting ;

7. If p.child=NULL

8. send a reply message (false, p) to p.par.

31

could be easily implemented by adding a pointer, “monitoring,” to each active vehicle,

which points to one of its active neighbors. Any active vehicle is pointed by a unique

“monitoring” pointer. All the pointers form a loop.

A vehicle sends out “existing” messages periodically to notify its neighbors that it

is still there. If a vehicle has not received the “existing” messages from the neighbor

its “monitoring” pointer pointing to for a certain time, it decides that the neighbor is

done and initializes a diffusing computation for the neighbor. The replacing vehicle

for the done vehicle needs to update its “monitoring” pointer to maintain the loop.

When the misfortune of scenario 3 occurs, since there are only constant number

of active vehicles breaking down and the overall energy requirement changes very

slightly, the energy constraint is not a concern. We can use the same way used in the

second scenario to initialize a diffusing computation.

The scenario 4 is different from the other scenarios, which will be discussed in

Chapter 4.

3.3 Proof of Theorem 1.4.2

Lemma 3.3.1 Won ≤ (4 · 3ℓ + ℓ) · ωc = (4 · 3ℓ + ℓ) · max
T :T⊆Z

ℓ
ωT , where ωT denotes the

solution of the equation ωT · |NωT
(T)| =

∑

x∈T d(x).

Proof : In order to satisfy the requirement that upon a job arrival, there exists an

active vehicle in each black-white pair, we need to make sure that after all jobs have

arrived, there still exists an active vehicle in each black-white pair. According to

Corollary 2.2.7, the amount of energy needed in any ⌈ωc⌉ × ⌈ωc⌉ × · · · × ⌈ωc⌉
︸ ︷︷ ︸

ℓ

ℓ-cube

is at most ωc(3⌈ωc⌉)
ℓ, excluding the travel overhead. Since the processing of each job

requires a walk of distance at most 1, at most 2 · ωc(3⌈ωc⌉)
ℓ units of energy is needed

in each cube for job processing. If each vehicle is given 4 · 3ℓ · ωc units of energy for

processing jobs, then after all jobs have arrived and been processed, there are at least

4 · 3ℓ · ωc · ⌈ωc⌉
ℓ − 2 · ωc(3⌈ωc⌉)

ℓ

4 · 3ℓ · ωc

=
⌈ωc⌉

ℓ

2

32

vehicles with energy left, which means there exists an active vehicle in each black-

white pair. The distance between any two vertices in the same cube in at most ℓ ·ωc,

which implies that an idle vehicle needs to move a distance at most ℓ · ωc to become

active. Therefore, at most (4 · 3ℓ + ℓ) · ωc units of energy is needed for each vehicle

for the on-line case. Since ωc ≤ max
T :T⊆Z

ℓ
ωT (see in the proof of Corollary 2.2.7), the

lemma is proven. 2

Clearly, Won ≥Woff ≥ max
T :T⊆Z

ℓ
ωT , where ωT denotes the solution of ωT · |NωT

(T)| =
∑

x∈T d(x). Combining this with Lemma 3.3.1, we have proven Theorem 1.4.2.

33

Chapter 4

Different Case Study: Broken

Vehicles

In Chapter 2, we discussed the problem of minimizing the initial energy needed for

each vehicle in the off-line case and showed that Woff is of the same order as the

solution to program (2.8), which is

Woff = Θ

(

max
T :T⊆Z

ℓ
ωT

)

,

where ωT is the solution of ωT · |NωT
(T)| =

∑

x∈T d(x). Furthermore, we showed that

Won is of the same order as Woff in Chapter 3.

We now extend the problem to allow a large number of vehicles breaking down,

which is the fourth scenario mentioned in Section 3.2.5.

For each vehicle i there is a “longevity” parameter pi(0 ≤ pi ≤ 1). The vehicle i

breaks at the time when a fraction pi of its initial energy has been used. If pi = 0,

the vehicle breaks initially; if pi = 1, the vehicle will not break.

In the off-line case, the demand function d(·), arrival sequence, and the “longevity”

parameters are known at the beginning. Let Woff-b denote the minimal W needed in

the off-line case when a large number of vehicles breaking down is allowed.

Using Linear Programming, we get a lower bound on Woff-b in Section 4.1. An

example is given in Section 4.2. It turns out that Woff-b is not of the same order as

the lower bound gotten in Section 4.1. This is different from the case in Chapter 2.

34

4.1 Lower Bound on Woff-b

In this section, we use the same method as in Section 2.2 to get a lower bound on

Woff-b.

Theorem 4.1.1 Woff-b ≥ max
T :T⊆Z

ℓ
ωT , where ωT is the solution of ωT ·

∑

i∈Npi·ωT
(T)

pi =

∑

i∈T

d(i). 2

Proof : Straightforwardly, the solution to the following programming (4.1) is a lower

bound on Woff-b.

minimize ω

s.t.







∑

j∈Npi·ω
(i)

fij ≤ pi · ω, ∀ i ∈ Z
ℓ

∑

i∈Npi·ω
(j)

fij ≥ d(j), ∀ j ∈ Z
ℓ

fij ≥ 0, ∀ i, j ∈ Z
ℓ

& ‖i− j‖ ≤ pi · ω,

(4.1)

where F = {fij} denotes the set of “flows.” Each flow fij represents the amount of

energy transported by the vehicle at position i to position j.

Since we are using the same method as in Section 2.2 to solve (4.1), we will just

give an outline of the proof in the following.

We first study the following linear program (LP):

minimize ω

s.t.







∑

j∈Npi·r
(i)

fij ≤ pi · ω, ∀ i ∈ Z
ℓ

∑

i∈Npi·r
(j)

fij ≥ d(j), ∀ j ∈ Z
ℓ

fij ≥ 0, ∀ i, j ∈ Z
ℓ

and ‖i− j‖ ≤ pi · r

(4.2)

35

The dual of (4.2) is

maximize
∑

j∈Z
ℓ

βjd(j)

s.t.







∑

i∈Z
ℓ

pi · αi ≤ 1,

αi ≥ 0, ∀ i ∈ Z
ℓ

βj ≥ 0, ∀ j ∈ Z
ℓ

βj ≤ αi, ∀ i, j ∈ Z
ℓ

and ‖i− j‖ ≤ pi · r

(4.3)

which simplifies to the LP:

maximize
∑

j∈Z
ℓ

(

d(j)× min
i:‖i−j‖≤pi·r

αi

)

s.t.







∑

i∈Z
ℓ

pi · αi ≤ 1,

αi ≥ 0, ∀ i ∈ Z
ℓ

(4.4)

Let h denote a mapping from the set of subsets of Z
ℓ

to R, then (4.4) is equivalent

to

maximize
∑

j

(

d(j)
∑

T :{i:‖i−j‖≤pi·r}⊆T

h(T)

)

s.t.







∑

T⊆Z
ℓ

(

h(T)
∑

i∈T

pi

)

≤ 1

h(T) ≥ 0, ∀ T ⊆ Z
ℓ

(4.5)

The dual of (4.5) is

minimize ω

s.t. ω ·
∑

i∈T

pi ≥
∑

j:{i:‖i−j‖≤pi·r}⊆T

d(j), ∀ T ⊆ Z
ℓ (4.6)

Therefore, the solution of (4.2) is

ω = max
T :T⊆Z

ℓ

∑

j:{i:‖i−j‖≤pi·r}⊆T

d(j)

∑

i∈T

pi
= max

T :T⊆Z
ℓ

∑

i∈T

d(i)

∑

i∈Npi·r
(T)

pi
.

36

Let ω(r) = max
T :T⊆Z

ℓ

∑

i∈T

d(i)

∑

i∈Npi·r
(T)

pi
. We see that ω(r) is a non-increasing function of

r. Therefore, the solution to the program (4.1) is the same as the solution of the

equation r = ω(r), which is max
T :T⊆Z

ℓ
ωT . 2

4.2 An Example of a Large Woff-b

In this section, we use an example to illustrate the difference between Woff-b and the

solution to (4.1).

i jk

r2 r2r1 r1

Figure 4.1: A scenario illustration. Every vehicle x outside the circle (green position)
has px = 1; the vehicle at k (green point in the circle) has pk = 1; any other vehicle
x has px = 0. The demands at i and j (red points) are d(i) = d(j) = r1; the demand
at any other position is 0.

Consider the scenario shown in Figure 4.1. The distance between i and k is

D(i, k) = r1. The distance between j and k is also D(j, k) = r1. D(i, j) = 2r1. The

distance from i or j to the boundary of the circle is r2 ≫ r1. Every vehicle x outside

the circle has px = 1; the vehicle at the green position k in the circle has pk = 1;

other vehicles have px = 0. The demands at i and j (red points) are d(i) = d(j) = r1;

the demand at any other position is 0. The service requests arrive at positions i and

j alternatively, i.e., the sequence of requests is i, j, i, j, · · · , i, j.

37

Under the scenario of Figure 4.1, the solution to programming (4.1) is 2r1, which

is achieved when fki = r1, fkj = r1.

Assume Woff-b is of order r1. Since r2 ≫ r1, the non-broken vehicles outside the

circle can’t move to positions i or j. The only remaining non-broken vehicle is k. The

vehicle k needs to walk back and forth between i and j because the service requests

arrive at positions i and j alternatively. In order to serve all the requests, the travel

distance of k is r1+(2r1−1)·2r1, which is not of order r1. A contradiction. Therefore,

Woff-b is not of order r1 and Woff-b = ω(r1).

From this example, we see that, when the vehicle breaking down is allowed, the

job arriving order matters and the bound given in Section 4.1 is a weak lower bound,

which is not tight up to a constant factor.

38

Chapter 5

Inter-Vehicle Energy Transfers

In Chapters 2 and 3, we discussed the problem of minimizing the initial energy needed

for each vehicle in the off-line and on-line cases respectively. We now extend the

problem to allow inter-vehicle energy transfers. That is, vehicle A can transfer energy

to vehicle B when A and B are at the same location. We consider two methods of

accounting for energy transfers:

• Fixed cost: Charge a1 units of energy per transfer, no matter how much energy

is transferred, or

• Variable cost: Charge a2 ≪ 1 units of energy per unit of energy transferred.

It turns out that, no matter which accounting method is used, under the same

job load, the minimal vehicle capacity W needed with energy transfer allowed is of

the same order as that without energy transfer. We let Wtrans-off and Wtrans-on denote

the minimal W in the off-line and on-line energy-transfer cases respectively. Clearly,

Wtrans-off ≤Wtrans-on, Wtrans-off ≤Woff, and Wtrans-on ≤Won,

so it is enough to show that Wtrans-off = Θ(Woff). This, together with Theorem 1.4.2,

shows that all four W ’s (Wtrans-off, Wtrans-on, Woff, and Won) are of the same order. In

the following, we will first show that Wtrans-off = Θ(Woff). Then we provide a brief

discussion on how high capacity tanks can help performance.

39

5.1 Wtrans-off = Θ(Woff)

In this section, the analysis in the proof of Theorem 5.1.1 gives a lower bound on

Wtrans-off. It works for both energy-transfer accounting methods: the fixed cost sce-

nario where each transfer costs a1 units regardless of amount transferred, and the

variable cost scenario where the transfer costs a2 units per unit of energy transferred.

Once again, for simplicity, we only study the two-dimensional (ℓ = 2) case.

Theorem 5.1.1 Wtrans-off = Θ(Woff).

Proof : Since there is at most Wtrans-off units of energy in each vehicle, the minimum

traveling cost per unit energy per distance is 1
Wtrans-off

1. Moving Wtrans-off units of

energy from a position i to another position j will cost energy at least

Wtrans-off ×
1

Wtrans-off

+ Wtrans-off

(

1−
1

Wtrans-off

)

×
1

Wtrans-off

+ · · ·+ Wtrans-off

(

1−
1

Wtrans-off

)‖i−j‖−1

×
1

Wtrans-off

= Wtrans-off ×

(

1−

(

1−
1

Wtrans-off

)‖i−j‖
)

,

and so the left energy amount is at most Wtrans-off ×
(

1− 1
Wtrans-off

)‖i−j‖

, no matter

how many transfers of energy occur, nor which transfer accounting method is used.

Therefore, when moving Wtrans-off units of energy from position i into an s × s

square T ⊆ Z2, the amount of remaining energy, which is initially from i, is at most

Wtrans-off ×

(

1−
1

Wtrans-off

)D(i,T)

,

where D(i, T) is the Manhattan distance from the point i to the square T .

The amount of energy initially in the square T is Wtrans-off × s2. Since

|{i : D(i, T) = r}| = 4s + 4(r − 1),

1The traveling cost is 1 unit of energy per unit of distance.

40

the total amount of energy that can be moved into the square T is at most

Wtrans-off × s2 +
∞∑

r=1

Wtrans-off × (1−
1

Wtrans-off

)r × (4s + 4(r − 1))

= Wtrans-off ×

(

s2 + 4

∞∑

r=1

(1−
1

Wtrans-off

)r × (r + s− 1)

)

= Wtrans-off ×

(

s2 + 4

∞∑

r=1

r(1−
1

Wtrans-off

)r + 4(s− 1)

∞∑

r=1

(1−
1

Wtrans-off

)r

)

= Wtrans-off ×
(
s2 + 4(Wtrans-off − 1)Wtrans-off + 4(s− 1)(Wtrans-off − 1)

)

= Wtrans-off ×
(
s2 + 4W 2

trans-off
+ 4sWtrans-off − 8Wtrans-off − 4s + 4

)
,

which should be at least the total demand in T . That is,

Wtrans-off ×
(
s2 + 4W 2

trans-off
+ 4sWtrans-off − 8Wtrans-off − 4s + 4

)
≥
∑

i∈T

d(i).

Since

|NWtrans-off
(T)|

= Θ
(
s2 + W 2

trans-off

)

= Θ
(
s2 + 4W 2

trans-off
+ 4sWtrans-off − 8Wtrans-off − 4s + 4

)
,

we have that Wtrans-off = Ω (ωT), where ωT denotes the solution of ωT · |NωT
(T)| =

∑

x∈T d(x). Let Γ be the set of all squares in Z2. Then Wtrans-off = Ω

(

max
T∈Γ

ωT

)

.

By Corollary 2.2.6, Woff = Θ

(

max
T∈Γ

ωT

)

. Since Wtrans-off ≤ Woff, we have that

Wtrans-off = Θ

(

max
T∈Γ

ωT

)

= Θ(Woff). 2

Corollary 5.1.2 Wtrans-off, Wtrans-on, Woff, and Won are Θ
(

max
T

ωT

)

.

41

5.2 High Capacity Tanks

Often in practical applications, the vehicle tanks might not be full initially. Let W

denote the initial energy and C > W denote the vehicle tank capacity. When energy

transfer is not allowed, the minimal W is the same as discussed in Chapters 2 and

3 regardless of C. However, when energy transfer is allowed, large capacity tanks

can improve performance. We present an interesting example where Wtrans−off =

Θ (avgxd(x)).

5.2.1 An example of Wtrans−off with C =∞

For this illustration, one dimension suffices. Consider a line segment of length N

(vertices numbered 1 through N). When the vehicle capacities are infinite, we let

vehicle-1 travel to N while collecting energy from vehicles 2, 3, . . . , N−1 along the way.

At N , it exchanges energy with vehicle N such that vehicle-N has exactly the amount

of energy required to process the jobs at its position. After the exchange, vehicle-1

walks back to its original position while distributing energy to vehicles N −1, . . . , 3, 2

according to the demand required at each position. In total, the number of energy

transfers is 2N − 3 and the distance traveled is 2N − 2.

• In the fixed cost scenario where each transfer costs a1 units regardless of amount

transferred, the total energy needed is

Etotal = a1 · (2N − 3) + (2N − 2) +
∑

x

d(x).

Then

Wtrans−off =
a1 · (2N − 3) + (2N − 2) +

∑

x d(x)

N

= 2a1 + 2 +

∑

x d(x)− 3a1 − 2

N
.

• In the variable cost scenario where the transfer costs a2 units per unit of energy

42

transferred, the total energy needed is

Etotal = a2 ·Wtrans−off · (2N − 3) + (2N − 2) +
∑

x

d(x).

Then

Wtrans−off ·N = a2 ·Wtrans−off · (2N − 3) + (2N − 2) +
∑

x

d(x)

⇒ Wtrans−off =
2N − 2 +

∑

x d(x)

N − 2a2N + 3a2
.

Therefore, Wtrans−off = Θ (
∑

x d(x)/N) = Θ (avgxd(x)), no matter which energy-

transfer accounting method is used.

From this example, we see that there is significant performance difference between

the C = W and C 6= W in the off-line case.

43

Chapter 6

Conclusions and Future Works

The key concepts/contributions of the thesis is as follows:

• The minimal energy needed in the off-line case is of the same order as that of

the on-line case.

• We proposed an algorithm and a strategy for the Capacitated Multivehicle

Routing Problem.

We note that the proposed algorithm represents only an initial prototype. We expect

that this thesis will provide an incentive for future work on this problem. There are

also several immediate research directions that can be pursued:

• The example from Section 5.2.1 shows that when inter-vehicle energy transfer

is allowed and vehicles posses (non-full) large-capacity tanks, there can be sig-

nificant energy savings. The questions of how much energy could be saved in

general remains open.

• One can explore further the precise relationship between Woff and Won, trying

to tighten the constant factor, which is exponential in ℓ. In particular, it would

be nice to show that the exponential dependence on ℓ is unnecessary.

• We have only discussed the case where the underlining graph is a grid. It would

be nice to have results for graphs in general.

44

Ongoing advances in technology suggests that electronic devices will become smaller,

smarter, more mobile, and ubiquitous. We hope to see the applications of these de-

vices benefit from the theoretical research of CMVRP. The rich applications of such

mobile devices will surely yield many interesting theoretical research problems as well.

45

Bibliography

[1] L. Bodin and B. Golden. Classification in vehicle routing and scheduling. Net-

works, 11(2):97–108, 1981.

[2] J. Bramel and D. Simchi-Levi. Probabilistic analyses and practical algorithms for

the vehicle routing problem with time windows. Operations Research, 44(3):501–

509, 1996.

[3] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows,

part i: Route construction and local search algorithms. Transportation Science,

39(1):104–118, 2005.

[4] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12(4):568–581, 1964.

[5] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management

Science, 6(1):80–91, 1959.

[6] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing compu-

tations. Inf. Proc. Letters, 11(1):1–4, 1980.

[7] M. L. Fisher. Optimal solution of vehicle routing problems using minimum k-

trees. Operations Research, 42(4):626–642, 1994.

[8] M. Gendreau, F. Guertin, J. Y. Potvin, and E. Taillard. Parallel tabu search for

real-time vehicle routing and dispatching. Transportation Science, 33(4):381–390,

1999.

46

[9] B. E. Gillet and L. R. Miller. A heuristic algorithm for the vehicle - dispatch

problem. Operations Research, 22(2):340–349, 1974.

[10] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile

networking for “smart dust”. In International Conference on Mobile Computing

and Networking (MOBICOM), pages 271–278, 1999.

[11] N. Katoh and T. Yano. An approximation algorithm for the pickup and delivery

vehicle routing problem on trees. Discrete Appl. Math., 154(16):2335–2349, 2006.

[12] G. Laporte. The vehicle routing problem: An overview of exact and approximate

algorithms. European J. Oper. Res., 59:345–358, 1992.

[13] T. Ralphs, J. Hartman, and M. Galati. Capacitated vehicle routing and some

related problems. Some CVRP Slides, Rutgers University, 2001.

[14] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter. On the capacitated

vehicle routing problem. Accepted to Mathematical Programming, 2001.

[15] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric

for image retrieval. Int. J. Comput. Vision, 40(2):99–121, 2000.

[16] M. M. Solomon. Algorithms for the vehicle routing problem with time windows.

Transportation Science, 29(2):156–166, 1995.

[17] P. Toth and D. Vigo. An overview of vehicle routing problems. pages 1–26, 2001.

[18] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communi-

cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[19] A. Wren. Computers in transport planning and operation. Operational Research

Quarterly, 23(3):404–405, 1972.

[20] A. Wren and A. Holliday. Computer scheduling of vehicles from one or more de-

pots to a number of delivery points. Operational Research Quarterly, 23(3):333–

344, 1972.

47

[21] K. Zhu, K. Tan, and L. Lee. Heuristics for vehicle routing problem with time

windows. In Sixth International Symposium on Artificial Intelligence and Math-

ematics, 2000.

