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Abstract

We consider the task of assigning unique integers to a group of processes in an asynchronous
distributed system of a total of n processes prone to crashes that communicate through shared
read-write registers. In the Renaming problem, an arbitrary group of k ≤ n processes that hold
the original names from a range [N ] = {1, . . . , N}, contend to acquire unique integers in a smaller
range [M ] as new names using some r auxiliary shared registers. We develop a wait-free (k,N)-
renaming solution, where both k and N are known, operating in O(log k(logN + log k log∗ N

k
))

local steps, for M = O(k), and with r = O(k log N

k
) auxiliary registers. We give a wait-free

N -renaming algorithm, where N is known, operating in O(log2 k (logN + log k log∗ N)) local
steps, with M = O(k) and with r = O(n log N

n
) registers. We develop a wait-free k-renaming

algorithm, where k known, operating in O(k) time, for M = 2k−1 and with r = O(k2) registers.
We give an adaptive wait-free solution of Renaming, where neither k nor N is known, having
M = 8k − lg k − 1 as a bound on the range of new names, which operates in O(k) local steps
and uses r = O(n2) registers. As a lower bound, we show that a wait-free solution to Renaming
requires 1 +min{k − 2, ⌊log2r

N

M+k−1
⌋} steps in the worst case. We apply renaming algorithms

to obtain solutions to Store&Collect problem, which is about a group of k ≤ n processes with
the original names in a range [N ] proposing individual values (operation Store) and returning a
view of all proposed values (operation Collect), while using some r auxiliary shared read-write
registers. We show that if a known N is polynomial in n, then storing can be performed in
O(log3 n log∗ n) local steps and collecting in O(k) local steps with O(n logn) shared read-write
registers. We consider a problem Mining-Names, in which processes may repeatedly request
positive integers as new names subject to the constraints that no integer can be assigned to
different processes and the number of integers never acquired as names is finite in an infinite
execution. We give two solutions to Mining-Names in a distributed system in which there are
infinitely many shared read-write registers available. A non-blocking solution leaves at most
2n− 2 nonnegative integers never assigned as names, and a wait-free algorithm leaves at most
(n+ 2)(n− 1) nonnegative integers never assigned as names.
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non-blocking algorithm, wait-free algorithm, deterministic algorithm, lower bound, graph ex-
pansion.
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1 Introduction

We consider asynchronous distributed systems consisting of some n processes that are prone to

crashes and use read-write registers for inter-process communication. The studied problems concern

assigning positive integers to the processes in an exclusive fashion, which means that no integer

is assigned to two distinct processes. We seek wait-free algorithms, and sometimes consider non-

blocking ones.

When an integer i is assigned to a process p exclusively, then we say that i is p’s new name.

In the Renaming problem, some k ≤ n processes, each having an original name from a large range

[N ] = {1, . . . , N}, contend to acquire unique integers in a smaller range [M ] as new names, using

some r shared registers. An algorithm can have some of the parameters k and N as a part of code.

We indicate which parameters are known as a part of code by attaching the relevant parameters

to problems’ names and solutions. For example, an algorithm solving (k,N)-renaming has both k

and N as a part of code, whileM and r and the time complexity are characteristics of the algorithm,

given as functions of k and N and possibly also of n. Similarly, an algorithm solving k-renaming

works for any range [N ] of the original names and for up to k contending processes. Finally, an N -

renaming algorithm handles the original names in the range [N ] while the contention k is arbitrary,

except for the restriction k ≤ n. An adaptive renaming algorithm works for any contention k ≤ n

and range [N ] of the original names, which are not parts of code, while the range of new names M

and the time performance are functions of k, and the number of registers r is a function of n, as

this is the maximum value of k when k ≤ n.

We restrict our attention to one-time renaming problems in which processes that will contend

to acquire new names are designated at the start of an execution, and no new name is ever released

and reused. Time performance is measure by the number of local steps, which is a maximum number

of steps a process takes before halting in a final state.

In the problem Store&Collect, some k processes perform two operations Store and Collect.

The Store operation by a process p proposes a value, and Collect results in returning a view,

which is a collection of pairs (p, v) where p is the original name of a process that proposed a value v

before the return of Collect, but not a stale one replaced before the invocation of Collect. The

semantics of this problem under asynchrony is well determined by referring to a collection of read-

write registers, one register assigned to each process. In order to propose a value, a process writes

its original name and that value in its register. In order to collect, a process reads once each

register storing a pair consisting of a value proposed by a process and its name, in arbitrary order

of registers, and includes each such a read pair in the view.

The problem Mining-Names is about a scenario in which processes repeatedly request new

positive integers as names in an infinite execution. There are two constraints on algorithms for the

problem. One is that each process keeps an exclusive ownership of each acquired new name, to

possibly build an infinite collection of new names in an infinite execution. The other is to leave only

finitely many positive integers never assigned as new names in an infinite execution. For a fixed

integer i, no wait-free solution to Mining-Names can guarantee that i is eventually assigned as a

new name. It follows that some integers may never be used as new names when an algorithm works

to assign as many positive integers as new names as possible. We want to minimize the number of

positive integers never assigned as names in an execution, so this number is proposed as a measure

of quality of a solution for Mining-Names. The model of a distributed system we use to develop
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solutions for Mining-Names assumes finitely many processes but infinitely many shared read-write

registers.

As a preparation to developing Mining-Names solutions, we show how to implement a repository

of infinitely many values using infinitely many read-write registers. The values are generated in

a dynamic fashion. A value is considered as deposited in a register when the value is stored in

the register and will never be overwritten. In this problem, we strive to minimize the number of

available registers that never become used to store deposited values. The problem is closely related

to mining names, as new names can be used to identify registers to make deposits.

Contributions of this paper. The renaming algorithms that we develop are designed to have pro-

cesses traverse paths in graphs in which vertices represent names. During such concurrent traversals,

processes compete to acquire the names of the visited vertices. We consider graphs with suitable

expansion properties as means to makes algorithms efficient. The approaches to renaming known

in the literature, that have graphs built into algorithms in a similar manner, use graphs with simple

regular topologies, like constant-degree grids.

We develop a wait-free (k,N)-renaming algorithm operating in O(log k(logN + log k log∗ N
k ))

local steps, with a range of new names M = O(k) and r = O(k log N
k ) auxiliary registers. This is a

first known deterministic algorithm with step complexity polylogarithmic in k and a range of new

names M linear in k, for N that is polynomial in k.

We show that 1 + min{k − 2, ⌊log2r
N

M+k−1⌋} local steps are required in the worst case by any

wait-free (k,N)-renaming algorithm to assign names from a range [M ] when using r registers. This

is a first known lower bound on the local-step time performance of Renaming that comprehensively

involves all the four parameters k, N , M , and r. In particular, if N is unknown, and hence could

be arbitrarily large, while M is suitably bounded as a function of k, then k − 1 is a lower bound;

this resembles the lower bounds given by Jayanti et al. [41]. An Ω(k) lower bound on time, valid

under additional assumptions, was proven by Alistarh et al. [10] by a different argument.

We develop a wait-free N -renaming algorithm with O(log2 k (logN + log k log∗ N)) local step

complexity, for unknown contention k, with the range of new names M = O(k) and the number

of registers r = O(n log N
n ). If a known N is poly-logarithmic in n, then this renaming algorithm

runs in O(log3 n log∗ n) local steps and uses O(n log n) auxiliary registers.

We develop a wait-free k-renaming algorithm operating in O(k) local steps, with a bound on

new names M = 2k − 1 and with r = O(k2) auxiliary registers. The time complexity of this

algorithm is asymptotically optimal, which follows from the lower bound we show and the property

that the algorithm works for arbitrary N . This is the first algorithm known that has simultaneously

two properties: the local step complexity is O(k) and also the range of new names is M = O(k).

Among the previously known algorithms that run in time O(k), the value M = k(k+1)
2 was smallest

known; it is achieved by an algorithm of Moir and Anderson [45]. The fastest algorithm known

before, among those having M = O(k), operates in O(k log k) time, it was given by Attiya and

Fouren [18]. The value M = 2k − 1 is known to be the best possible size of a range of names for

infinitely many values of k, as showed by Herlihy and Shavit [40]. The fastest algorithm known

prior to this work with M = 2k − 1 as a bound on the range of new names runs in time O(k2), it

was given by Afek and Merritt [5].

We give a fully adaptive renaming algorithm, with neither k nor N known, having a bound on

the range of new names M as small as 8k− lg k−1. The algorithm operates in O(k) local steps and
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uses O(n2) auxiliary registers. This is an improvement with respect to time performance over the

previously known algorithms. The algorithm of Moir and Anderson [45] works in time O(k) with a

range of new names M = O(k2) and using O(n2) registers. The algorithm of Attiya and Fouren [18]

operates in O(k log k) time with a range M = O(k). The algorithm of Afek and Merritt [5] runs in

time O(k2) with a range of new names M = 2k − 1.

We apply renaming algorithms to obtain solutions to Store&Collect of the following performing

characteristics. When both parameters k andN are known, then Store&Collect can be implemented

such that the first storing operation by a process takes O(log k(logN + log k log∗ N
k )) steps and

collecting O(k) steps, while using O(k log N
k ) auxiliary registers. If N is known but k is not, then

Store&Collect can be implemented such that the first instance of storing takes O(log2 k(logN +

log k log∗ N)) local steps and collecting O(k) steps, with O(n log N
n ) auxiliary registers. If the

number of participating processes k is known but the range of original names N is not, then

Store&Collect can be implemented such that the first instance of storing takes O(k) local steps

and collecting O(k) steps, with O(k2) auxiliary registers. If k and N are both unknown, which is

the adaptive case, then Store&Collect can be implemented such that storing takes O(k) steps and

collecting takes O(k) steps, with O(n2) auxiliary registers. Afek and De Levie [4] gave an adaptive

solution to Store&Collect achieving storing in O(k) local steps and collecting in O(k) local steps,

for r = O(n2).

We consider the problem called Mining-Names, which is about processes working to claim

nonnegative integers as names in a mutually exclusive manner. We show that Mining-Names is

solvable in a non-blocking way such that at most 2n−2 integers are never assigned as names, which is

asymptotically best possible, and in a wait-free manner so that at most (n+2)(n−1) values are never

assigned as names. The problem Mining-Names has not been considered before in the literature, by

the knowledge of the authors of the paper. Name mining is related to “depositing” infinitely many

values in read-write registers, where depositing means storing a value in a register such that it is

never overwritten. We give a non-blocking implementation of depositing in which at most 2n − 2

dedicated read-write registers are never used for depositing, and a wait-free implementation with

the property that at most (n+ 2)(n− 1) dedicated deposit registers are never used for depositing.

Related work. Now we describe the context of this work by reviewing research related to renaming.

We restrict our attention to asynchronous systems with shared memory consisting of read-write

registers only; for a comprehensive survey of renaming see Alistarh [9].

The problem of renaming was introduced by Attiya et al. [15] in the model of asynchronous

message-passing. They showed that n processes may assign themselves new names from the range

[n + f ], where f < n is an upper bound on the number of crashes. This established renaming as

a non-trivial algorithmic problem with a wait-free solution for environments in which Consensus

cannot be solved; see [24, 39, 42]. The range of new names [M = n+ f ], with up to f crashes, was

shown to be the smallest possible for renaming to be solvable by Herlihy and Shavit [40]. Next we

consider a scenario win which k ≤ n contending processes with original names in a large range [N ]

want to obtain new names in a small range [M ]. Borowsky and Gafni [25] gave a wait-free algorithm

solving this problem in time O(k2N) for M = 2k− 1. Moir and Anderson [45] gave a solution with

time complexity O(k), for new names of magnitude M = k(k+1)
2 and using r = O(k2) registers.

Attiya and Fouren [18] gave an algorithm working in time O(k log k) for M = 6k − 1, and another

of time complexity O(N) for M = 2k− 1. Afek and Merritt [5] developed an algorithm working in

time O(k2) for M = 2k − 1.
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A renaming solution is long-lived when processes may invoke the operations to request a name

and to release the current name repeatedly, as long as exclusiveness of each name holds within

the interval from acquiring to releasing. It is assumed that at most k processes contend for names

concurrently. The following is a selection of published long-lived renaming algorithms. Burns

and Peterson [28] gave a solution of time complexity O(Nk2), for M = 2k − 1 and r = O(N2).

Moir and Anderson [45] improved the time to O(Nk), for M = k(k+1)
2 and r = O(Nk2). Further

improvements were due to Buhrman et al. [27], who achieved O(k3) time, for M = k(k+1)
2 and the

number of registers r = O(k4 min{3k, N}), and to Moir and Garay [46] whose algorithm achieved

O(k2) time complexity, for M = k(k+1)
2 and r = O(k3) registers, and who also gave another solution

with O(k4) time, for M = 2k − 1 and r = O(k4).

For other work on renaming, see the papers by Afek et al. [2, 3, 7], Brodsky et al. [26], and

Eberly et al. [36]. Randomized renaming algorithms were considered by Alistarh et al. [11, 12, 13].

Lower bounds on renaming were given by Alistarh et al. [10], Attiya et al. [16, 22, 23], Burns and

Peterson [28], Castañeda et al. [30], Castañeda and Rajsbaum [31, 32], and Helmi et al. [38].

Previous work on the problem Store&Collect includes papers by Afek et al. [6], Attiya et al. [17,

19, 20, 21], Chlebus et al. [34] and Saks et al. [47]. Previous work on models with infinite arrivals

of processes and infinitely many shared registers includes [8, 14, 35, 37, 43, 44].

2 Technical Preliminaries

Algorithms are executed in an asynchronous system with n processes prone to crashes and a set

of read-write registers. Each process p is identified by its original name namep, which is a unique

number in some range of names [N ] = {1, . . . , N}.

If a parameter of a distributed system can be used in a code of algorithm then this parameter is

known. In particular, each process p knows its original name, which is referred to by a specialized

variable in codes of algorithms, say name, with process p substituting namep as its private value.

We assume throughout that the number n is known.

The following is a standard terminology regarding delays of enabled operations; see [24, 39, 42]

for expositions of these and related concepts. When, for any configuration in an execution, some

process will eventually complete an invoked operation, then the executed algorithm is non-blocking.

When, for any configuration in an execution, each process will eventually complete an invoked

operation, even when all the remaining processes have crashed, then the algorithm is wait-free.

Competing for registers. We introduce a procedure used by processes to compete for a shared

register. The procedure has two two properties. First is that a lack of contention guarantees

wining. This means that if there is exactly one process p working to win a register R, then p

eventually wins R. The second property is that a win provides exclusivity. This means that once

some contender wins a register R, then no other contender will ever win R. This specification does

not require a register to be won by a process when there are multiple contenders but also does not

preclude this.

To implement a competition for a register R, we use an auxiliary dedicated shared register HR

initialized to null. This register HR is used as a placeholder to store a reservation for R. A

pseudocode of a procedure for p is given in Figure 1.
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procedure Compete-For-Register (R)

1. read: contentionp ← R

2. if contentionp = null then write R← namep else exit

3. read: contentionp ← HR

4. if contentionp = null then write HR ← namep else exit

5. read: contentionp ← R

6. if contentionp = namep then return win else exit

Figure 1: Pseudocode for a process p with name namep to win a shared register R. It uses a private
variable contentionp and a shared register HR associated with R. Both registers R and HR are
initialized to null.

Lemma 1 Procedure Compete-For-Register() is an implementation of competition for a regis-

ter.

Proof: To show correctness, consider two cases corresponding to the specification during a com-

petition for a register R. If a process p acts as the only contender to win R, then p eventually

writes the value namep to both registers HR and R, and the final read from R makes process p a

winner. Now suppose some process p wins R in the presence of a contender process q. If the first

read of R by q does not return null then q exits immediately and no longer contends to win R.

Otherwise, process q reads null from R as its first action, which means that process q managed

to read from register R before process p wrote to R. Still process p wins R, so p managed to write

namep to R and then the same value to HR and then check that namep is still in register R, as all

this is required to win R. When process p confirms by the second read of R that namep is still

there then HR already stored namep. So process q could overwrite the value namep at register R

only after process p read it for the second time, which means after register R has the value namep

stored in it already. When process q reads register HR then this occurs after process p wrote namep
to it, so the read returns namep, which is different from null. This makes process q exit without

invoking a write to HR. �

Graphs. Let G = (V,W,E) be a simple bipartite graph. This notation means that the vertices

are partitioned into the set of inputs V and the set of outputs W , E is the set of edges, and each

edge has one endpoint in V and the other in W . We say that graph G has input-degree ∆ if each

vertex in V is connected to exactly ∆ neighbors in W . A graph G is said to be an (L,∆, ε)-lossless

expander, for a natural number L, if ∆ is the input-degree of G and each subset X of V of size

|X| ≤ L has at least (1 − ε)∆ · |X| neighbors in W . A vertex v ∈ W is a unique neighbor of set

S ⊆ V if vertex v is adjacent to exactly one vertex in S.

Lemma 2 ([29]) Let G be a (L,∆, ε)-lossless expander, for some parameters L and ε < 1
2 . Then, for

each subset X ⊆ V of size |X| ≤ L, at least the fraction (1− 2ε)∆ of vertices among the neighbors

of X are unique neighbors.

Proof: Fix an ordering of the sets of vertices W . For v ∈ V , let (v, i) denote the ith neighbor of v

in W . There are ∆|X| pairs of the form (v, i), for v ∈ X and 1 ≤ i ≤ ∆. By the definition of lossless

expanders, all these pairs determine at least (1 − ε)∆|X| neighbors of X. It follows that at most
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ε∆|X| such pairs denote vertices repeated at least twice. Each such a repetition (v1, i) = (v2, j)

eliminates two possible unique neighbors of X per one real neighbor (v1, i) = (v2, j), in the total

number ∆|X| of pairs of the form (v, i), for v ∈ X and 1 ≤ i ≤ ∆. �

Lemma 3 If a bipartite graph G = (V,W,E) is an (L,∆, ε)-lossless expander, for some numbers L

and ε < 1
2 , then, for each set X ⊆ V of size |X| ≤ L, there is a partial matching in G, between

some vertices in X and unique neighbors of X, that has at least (1− 2ε)|X| edges.

Proof: By Lemma 2, a fraction of at least (1− 2ε)∆ vertices among the neighbors of X are unique

neighbors. We can match these inputs to their unique neighbors. �

Let lg z denote the logarithm of z to the base 2, and e be the base of natural logarithms. We

will use the existence of lossless expanders with the following properties:

Lemma 4 Let V and W be two finite disjoint sets and L a natural number such that 1 ≤ L ≤ |V |
2 .

If |W | = 12e4L lg |V |
L then there exists a bipartite graph G = (V,W,E) of input-degree ∆ such that

4 ≤ ∆ ≤ 4 lg |V | and G is a (L,∆, 14)-lossless expander.

Proof: We show that a set of edges between the vertices in V and W selected randomly subject

to degree constraints meets the requirements with a positive probability. More precisely, for each

vertex v ∈ V , we select ∆ neighbors in W uniformly at random. Next, we demonstrate that the

resulting graph is a (L,∆, 14)-lossless-expander with a probability greater than 0, where a specific

value of ∆ will be determined later.

Let X ⊆ V be a subset of x = |X| ≤ L elements, and Y ⊆ W be a subset of 3
4x∆ elements.

The probability that all the neighbors of X are in the set Y is at most

(

(|Y |
∆

)

(|W |
∆

)

)x

≤

(

|Y |e

|W |

)x∆

≤

( 3e
4 · x∆

|W |

)x∆

,

where we used the bounds (nn)
k ≤

(

n
k

)

≤ (enk )k. The number of different subsets X ⊆ V of size x is

at most
(

|V |

x

)

≤

(

|V |e

x

)x

.

The number of different subsets Y ⊆W of size 3
4x∆ is at most

(

|W |
3
4x∆

)

≤

(

|W |e
3
4x∆

)3x∆/4

.

Therefore, the probability that there exists a set X ⊆ V with at most 3
4x∆ neighbors, for a given

size x, is at most

(

|V |e

x

)x

·

(

|W |e
3
4x∆

)3x∆/4

·

( 3e
4 x∆

|W |

)x∆

≤

(

|V |e

x

)x

·

( 3e3

4 x∆

|W |

)x∆/4

. (1)

We assumed |W | = 12e4L lg |V |
L . Now, define ∆ = 4 lg |V |

L . Observe that ∆ ≥ 4, because |V | ≥ 2L.

The assumption on W and the specification fo ∆ produce cancellations that give:

3e4

4
·
x∆

W
=

3e4

4
·

x4 lg |V |
L

12e4L lg |V |
L

=
x

4L
.
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To estimate (1) further, observe that the quantity raised to the power x in (1) equals:

|V |

L
·
L

x
·

(

3e4x∆

4|W |

)∆/4

=
|V |

L
·
L

x
·

(

1

4
·
x

L

)lg
|V |
L

. (2)

Let us introduce the notation α = |V |
L and β = L

x . By the assumptions, we have α ≥ 2 and β ≥ 1.

The right-hand side of (2) can be represented as

αβ

(4β)lg α
=

β

αβlgα
.

This quantity is at most 1
2 , for α ≥ 2 and β ≥ 1. It follows that the right-hand side of (1) is at

most 1
2x .

We demonstrated that the probability that some subset X ⊆ V of size x = |X| ≤ L has at most
3
4x∆ neighbors in W is at most 1

2x . The probability that some subset X ⊆ V of size x = |X| ≤ L

has at most 3
4 |X|∆ neighbors in W is at most

∑L
x=1

1
2x < 1. By the probabilistic method, there

exists a bipartite graph G = (V,W,E) with input-degree ∆ = 4 lg |V |
L in which every subset X ⊆ V

of size |X| ≤ L has more than 3
4 |X|∆ neighbors in W , where the number L satisfies L ≤ |V |

2 . �

3 Bounded Selection

We consider the problem of assigning new names to a group of participating processes, from among

the total of n, known as renaming. Each among n processes holds an original name from some

range [N ] = {1, . . . , N}, which is the value of its variable namep. The number of participating

processes is denoted as k, where k ≤ n. These participating processes contend to acquire unique

integers in a range [M ] as new names using some r auxiliary shared registers, where M < N . The

goal is to minimize a number of parameters: the running time and a range [M ] of new names, but

also the number of auxiliary registers r. Running time means local steps, which is a maximum

among the processes of the number of time-steps counted by each process until halting.

We assume that n is known, but whether k and N are known depends on a precise specification

of the renaming problem. This leads to four variants of the problem of renaming, where either

(1) both k and N are known, or (2) only k is known, or (3 only N is known, and finally (4) with

none of k and N known. The case of both k and N unknown is most challenging. Algorithms for

renaming that do not refer to either k nor N in their codes, and so work for arbitrary unknown

values of k and N , are called adaptive. We apply the convention to add known parameters among

k and N to names of algorithms, so that if a parameter is missing in the name then this means the

parameter is unknown.

Our first goal is to develop a renaming algorithm with both k and N known. We begin by

introducing an auxiliary problem called Majority-Renaming, which is about assigning new names

to at least half of some k contending processes. An algorithm is (k,N)-majority renaming with a

bound M on new names if at least half of any k contending processes with original names in [N ]

acquire unique names in [M ], while the numbers k and N can be part of code of the algorithm.

We find a solution for Majority-Renaming based on lossless expanders with good unique-neighbors

properties. This becomes a stepping stone to develop solutions for Renaming itself. Employing a

7



renaming algorithm that relies on some known information, we then argue how to obtain an adaptive

solution. Finally, we discuss how to use the obtained renaming algorithms to solve Store&Collect.

We begin by presenting an algorithm called Majority(ℓ,N), where N is a natural number and

ℓ ≤ N
2 , which is (ℓ,N)-majority renaming. The number M = 12e4ℓ lg N

ℓ serves as a bound on the

range of new names. We consider a bipartite graph G = (V,W,E), where V = [N ], W = [M ], and

each input-degree is ∆. The topology of G is such that G satisfies the properties given in Lemma 4.

The graph G is part of code of the algorithm. The set V of inputs corresponds to all original names

of processes. Each output vertex in the set W represents a possible new name.

The edges of G determine which registers will be competed for by the processes, using procedure

Compete-For-Register given in Figure 1. To facilitate this, there are two unique shared registers

associated with each output vertex.

Competition to win registers in an execution of algorithm Majority(ℓ,N) proceeds as follows.

A process p with a name in V = [N ] uses a vertex in V labeled namep. It begins by attempting to

win a register corresponding to the first neighbor of namep in W . If p fails then it attempts to win

the register of its second neighbor in W . This continues until p either wins a register or exhausts

all the neighbors. As soon as p wins a register in W then p adopts the number of the won register

as its new name and exits. If p fails all ∆ competitions, then p halts without acquiring a new name.

Lemma 5 Algorithm Majority(ℓ,N), for a natural number N and ℓ ≤ N
2 , is (ℓ,N)-majority-

renaming, where M = 12e4ℓ lg N
ℓ is a bound on new names. The algorithm operates in O(logN)

local steps and uses 24e4ℓ lg N
ℓ auxiliary registers.

Proof: The graph G is a (ℓ,∆, 14)-lossless-expander, as stated in Lemma 4. A majority of contend-

ing processes have unique neighbors not shared with other active processes, by Lemma 3 applied

to graph G. If an active process has a unique neighbor then it eventually wins some register rep-

resenting its neighbor, by Lemma 1. Hence a majority of active processes get unique names. The

worst-case running time is proportional to the degree ∆ of graph G, which is O(logN). The number

of used registers is 2M , as we use two unique shared registers per one vertex in W . �

Renaming when both k and N are known. Next, we consider an algorithm Plain-Rename(k,N),

which is (k,N)-renaming with M = 24e4k lg N
k as a bound on new names. A process p ∈ [N ]

proceeds through consecutive stages, up to 1 + lg k stages maximum, until it gets a unique name.

In a stage i, where 0 ≤ i ≤ lg k, process p executes Majority( k
2i
, N) on the set of pairs of

registers Mi, where |Mi| = 12e4 k
2i
lg N2i

k . We assume that the sets Mi are mutually disjoint. A

union of these sets ∪1+lg k
i=1 Mi constitutes a collection of new names.

Lemma 6 Algorithm Plain-Rename(k,N) is (k,N)-renaming with M = 24e4k lg 2N
k as a bound

on new names. It operates in O(log k logN) local steps and uses 48e4k lg 2N
k auxiliary registers.

Proof: Procedure Majority( k
2i
, N) is majority renaming, by Lemma 5. Each call of this procedure

at least halves the number of contending processes that still need names. Calls of the procedure

continue until there remain at most one process without a new name, which then eventually also

gets a name. This takes O(log k · logN) local steps in total, by Lemma 5. Number 1 + lg k is a
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bound on the number of stages. The size of a pool of new names can be estimated as follows:

M =

lg k
∑

i=0

12e4
k

2i
lg

2iN

k
= 12e4k

(

lg k
∑

i=1

i

2i
+

lg k
∑

i=0

1

2i
lg

N

k

)

= 12e4k
(

2 + 2 lg
N

k

)

= 24e4k log
2N

k
.

The number of shared registers needed for this to work correctly is 2M . �

Next, we consider an (k,N)-renaming algorithm called Compact-Rename(k,N). It is an

improvement over Plain-Raname in that the range of new names is O(k).

An execution of Compact-Rename(k,N) is structured as a sequence of epochs. A process p ∈

[N ] participates in consecutive epochs, in each one getting a new name. At least one epoch is

executed as long as N ≥ 215k, otherwise the original names serve as new names without any

change. The original names are used in the first epoch, and then the names acquired in epoch i are

used as original names in epoch i + 1. This continues until the upper bound on the range of the

new names, determined by the properties of a current epoch, becomes less than 215k. A process

acquires its ultimate name during this last epoch.

In epoch j, process p executes Plain-Rename(k,Nj), where N1 = N and Nj+1 = 24e4k lg
2Nj

k

are bounds on new names in calls of Plain-Rename(k,Nj), for j ≥ 1. The executions of instanti-

ations of algorithm Plain-Rename use sets of shared registers dedicated for each epoch, such that

a shared register is used in only one epoch. Processes use names from the range [Nj ] in epoch j,

with N1 = N . The names assigned in epoch j are from the range [Nj+1].

The algorithm Compact-Rename(k,N) terminates because the ranges of new names shrink

with passing epochs: Nj+1 < Nj, for j > 0. We evaluate the rate of shrinking next.

Lemma 7 If N ≥ 215k then N2

N1
< 2

3 , and as long as Nj−1 ≥ 215 · k then
Nj+1

Nj
< 24

25 , for j > 1.

Proof: The case of j = 1:

N2

N1
=

24 e4 k lg 2N
k

N
≤

24 e4 k lg 216k
k

215k
=

24 e4 16

215
<

2

3
.

The case of j > 1:

Nj+1

Nj
=

24e4k lg
2Nj

k

24e4k lg
2Nj−1

k

=
lg(48e4 lg

2Nj−1

k )

lg
2Nj−1

k

=
lg(48e4)

lg
2Nj−1

k

+
lg lg

2Nj−1

k

lg
2Nj−1

k

<
71

100
+

1

4
=

24

25
,

for Nj−1 ≥ 215 · k. �

Define a sequence (aj)j≥1: aj = lg(
2Nj

k ) for j ≥ 1.

Lemma 8 If Nj ≥ 216k then aj+1 < log 3

2

aj.

Proof: The sequence aj satisfies the following recurrence, for j ≥ 1:

aj+1 = lg
(2Nj+1

k

)

= lg(48e4 lg
(2Nj

k

)

) = lg(48e4aj) .

The inequality lg(48e4x) < log 3

2

x holds for x ≥ 17, by inspection. Substituting aj = lg(
2Nj

k ) for x,

we obtain that aj+1 < log 3

2

aj for lg(
2Nj

k ) ≥ 17, which holds for Nj ≥ 216k. �
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We use the iterated-logarithm function log(i) n, which denotes log n iterated i times. A recursive

definition of this function reads log(0) n = n and log(i+1) n = log log(i) n. We also refer to log∗ n =

min{i : log(i) n ≤ 1}, for n > 1.

Theorem 1 Algorithm Compact-Rename(k,N) is (k,N)-renaming with M = 215 k as a bound on

new names, assuming N ≥ 215 k. It operates in O(log k(logN + log k log∗ N
k )) local steps and uses

O(k log N
k ) auxiliary registers.

Proof: We assume that N ≥ 215k, as otherwise no epoch is executed. The ranges of names used

through the epochs can be traced back to N1 = N as follows. If Nj ≥ 216k then

Nj+1 = 24e4k lg
2Nj

k
= 24e4kaj < 24e4k log

(j−i)
3

2

ai ,

as long as Nj−i ≥ 216k, by Lemma 8. Combining this with Lemma 7, we obtain the bound

Nj+1 = O
(

k log(j)
N

k

)

,

for N ≥ 215k. The final range of new names [Nj∗+1] satisfies Nj∗+1 < 215k. The number of epochs

is j∗ = O(log∗ N
k ).

The number of local steps can be estimated as follows:

O
(

j∗
∑

j=1

log k logNj

)

= O
(

log k

j∗
∑

j=1

(log k + log(j)N)
)

= O(log2 k · log∗
N

k
+ log k · logN) ,

by Lemma 6 and the bound on the number of epochs j∗ = O(log∗ N
k ).

The first epoch uses 48e4 lg 2N
k registers. A number of registers used in subsequent epochs is

given by Lema 6. These numbers keep decreasing, with a rate determined Lemmas 7 and 8. By

combining this together we obtain that the number of needed registers is

j∗+1
∑

j=1

48e4 lg
2Nj

k
= 48e4k

j∗+1
∑

j=1

aj .

The estimate on the rate of decreasing of aj given in Lemma 8 applies for all but O(1) epochs. It

follows that the number of needed registers is O(ka1) = O(k log
N
k ). �

The knowledge of k and rangeN that is polynonomial in n allows to obtain a renaming algorithm

efficient with respect to the total number of processes n.

Corollary 1 If k and N are known and N = O(n), then algorithms Compact-Rename(k,N)

runs in O(log2 n) local steps and uses O(n) auxiliary registers. If k and N are known and N is

polynomial in n, then algorithm Compact-Rename(k,N) runs in O(log2 n log∗ n) local steps and

uses O(n log n) auxiliary registers.

Proof: Algorithm Compact-Rename(k,N) needs O(log k(logN + log k log∗ N
k )) local steps, by

Theorem 1. This bound is O(log2 n) if N = O(n), and it is O(log2 n log∗ n) if N is polynomial

in n. Algorithm Compact-Rename(k,N) uses O(k log N
k ) auxiliary registers, by Theorem 1. If a

known N is such that N = O(n) then use O(k log n
k ) = O(n), which holds for 1 ≤ k ≤ n, to obtain

the bound O(n) on the number of registers. If a known N satisfies N = O(nα), for α > 1, then the

bound on the number of registers becomes O(k log N
k ) = O(n log n). �
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Renaming when N is known while k is not. We present an algorithm Range-Rename(N), which

renames k contending processes assigning names of magnitude O(k). A bound N on the magnitude

of original names is known but the number of participating processes k is unknown.

The algorithm is specified as follows. A process participates in consecutive executions of al-

gorithms Compact-Rename(2i, N), for consecutive integers i = 1, 2, 3 . . ., until it obtains a new

name. After the first execution is over, it starts a new execution only after the previous one has

failed to assign a new name. These consecutive executions use disjoint sets of registers. An exe-

cution of Compact-Rename(2i, N), for i > 1, uses a next interval of integers as a range of new

names, following the intervals used by Compact-Rename(2j, N), for 1 ≤ j < i. This means the

size of interval used by Compact-Rename(2i, N) is 2152i, as indicated by Theorem 1, but it is of

the form [ℓ, ℓ+ 2152i], for a suitable positive integer ℓ that is greater than 1, except for i = 1.

Theorem 2 Algorithm Range-Rename(N) is N -renaming. It assigns new names of magnitude

216k, runs in O(log2 k(logN + log k log∗ N)) local steps, and uses O(n log N
n ) auxiliary registers.

Proof: At most k processes participate in each execution of Compact-Rename(2i, N). We have

that i ≤ ⌈lg k⌉, because as soon as k ≤ 2i then each process acquires a new name. The size of the

range of new names is estimated by Theorem 1 to be at most

215
⌈lg k⌉
∑

j=1

2j ≤ 216k .

The number of steps through executing Compact-Rename(2⌈lgk⌉, N) follows from Theorem 1:

O
(

⌈lg k⌉
∑

j=1

(

j logN + j2 log∗
N

2j

))

= O(log2 k(logN + log k log∗ N)) .

The number of registers follows from Theorem 1:

O





⌈lgn⌉
∑

j=1

2j log
N

2j



 = O

(

n log
N

n

)

,

since k ≤ n. �

The renaming algorithms for the case when N is known use few auxiliary registers if N is

polynomial in n.

Corollary 2 If a known range of the original names N is polynomial in n, then algorithm Range-

Rename(N) runs in O(log3 n log∗ n) local steps and uses O(n log n) auxiliary registers. If a known

range of the original names N satisfies N = O(n), then algorithm Range-Rename(N) uses O(n)

auxiliary registers.

Proof: Algorithm Range-Rename(N) runs in O(log2 k(logN + log k log∗ N)) local steps, by The-

orem 2. The time bound becomes O(log3 n log∗ n) if N is polynomial in n, since k ≤ n. Algorithm

Range-Rename(N) uses O(n log N
n ) auxiliary registers, by Theorem 2. If N = O(n) then the

number of registers is O(n log N
n ) = O(n), and if N = O(nα), for α ≥ 1, then the number of

registers is O(n log N
n ) = O(n log n). �
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Renaming when k is known while N is not. We design an algorithm Square-Rename(k), where

a range N is unspecified. The algorithm assigns new names with 2k − 1 as a range of new names.

The algorithm refers to three other algorithms, some for the case when both parameters k

and N are known. Let MA(k) be an adaptive algorithm given by Moir and Anderson [45], which

is k-renaming with M = O(k2) as a bound on new names. It operates in O(k) local steps and

uses O(k2) auxiliary registers. Let AF(k,N) be the algorithm of Attiya and Fouren [18], which is

(k,N)-renaming with 2k − 1 as a bound on new names. It operates in O(N) local steps and uses

O(N2) auxiliary registers. We use algorithm Compact-Rename together with algorithms AF and

MA to obtain a new algorithm called Square-Rename(k), which is k-renaming with 2k − 1 as a

bound on new names, for any k and N .

Algorithm Square-Rename(k) is structured into three parts. The sets of registers used in all

three parts are disjoint. First run algorithm MA(k) to rename, with Ck2 as a bound on new names,

for some C > 0. Continue by invoking Compact-Rename(k,Ck2) to rename again, with 215k as

a range of new names, by Theorem 1. The processes execute Compact-Rename(k,Ck2) with the

names obtained in the preceding execution of MA(k) treated as original names. Finally, execute

AF(k, 215k) to rename one more time. The processes execute AF(k, 215k) with names obtained

in Compact-Rename(k,Ck2) treated as original names. The final new names are as assigned by

AF(k, 215k).

Theorem 3 Algorithm Square-Rename(k) is k-renaming with 2k − 1 as a bound on new names.

It operates in O(k) local steps and uses O(k2) auxiliary registers.

Proof: We rely on the properties of algorithm MA from [45], and on the properties of algorithm AF

given in [18]. Correctness follows from the fact that each of the three renaming algorithms properly

handles original names, possibly yielded by a preceding execution, assuming they are given correct

ranges of original names, if they rely on this information. The range of names is reduced first to

Ck2 by algorithm MA, for a suitable C > 0. Then algorithm Compact-Rename takes over, with

N = Ck2, and reduces the range of names to 215k, by Theorem 1. Finally, algorithm AF reduces

the range of names to 2k − 1, while using N = 215k.

The local step complexity of algorithm Square-Rename(k) is

O

(

k + log k

(

log k2 + log k log∗
k2

k

)

+ k

)

= O(k) ,

by the properties of algorithm MA in [45], and by these of algorithm AF given in [18], and by

Theorem 1. The number of needed registers is at most

O

(

k2 + k log
k2

k
+ k2

)

= O(k2) ,

by the respective properties of algorithms MA(k) and AF(k, 215k), and by Theorem 1. �

Adaptive renaming with both k and N unknown. Now we develop algorithm Adaptive-Rename

solving Renaming in a fully adaptive fashion. The algorithm uses Square-Rename as a subroutine.

It operates as follows. A process p executes instantiations of algorithm Square-Rename(2j), for

consecutive integers i = 0, 1, 2, . . .. If p does not obtain a new name in an execution of Square-

Rename(2j), then it proceeds to execute Square-Rename(2j+1). Once a process p acquires a new
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name, then it halts. Executions of Square-Rename(2j) for different values of j use dedicated sets

of auxiliary registers assigned to each possible integer value j ≤ ⌈lg k⌉ and also dedicated ranges

of names assigned to j. These ranges are disjoint, and a range for j + 1 immediately follows a

range for j, such that the range for i such that 0 ≤ i ≤ j fill a contiguous segment. Algorithm

Adaptive-Rename does not have the parameters k and N in its code.

Theorem 4 Algorithm Adaptive-Rename solves Renaming in an adaptive manner. The range of

new names is M = 8k − lg k − 1. The number of local steps is O(k) and the number of auxiliary

registers is O(n2).

Proof: Consider an instantiation of Square-Rename(2j) for j = ⌈lg k⌉, which is the latest possible.

At most k processes participate in this execution. By Theorem 3, the magnitude of new names is

bounded above by

⌈lg k⌉
∑

i=0

(2i+1 − 1) = 2⌈lg k⌉+2 − (⌈lg k⌉+ 1) ≤ 8k − lg k − 1 .

The number of local steps of each process is bounded from above by

O
(

⌈lg k⌉
∑

i=1

2i
)

= O(2⌈lg k⌉) = O(k) ,

by Theorem 3. The number of needed auxiliary registers used is

O
(

⌈lg k⌉
∑

i=1

22i
)

= O(22⌈lg k⌉) = O(n2) ,

again by Theorem 3. �

There is an alternative adaptive solution for Renaming, which works as follows. First execute

an adaptive version of algorithm MA. It accomplishes renaming in O(k) local steps and k2 new

names using O(n2) registers. Follow by executing algorithm Range-Rename(k2). By Theorem 2,

this solves Renaming in O(k + log3 k) = O(k) local steps while using O(n2 + n log n) = O(n2)

registers. A drawback of this algorithm is that the range of new names, although still O(k), has a

large constant factor by k. This is not the case for the algorithm Adaptive-Rename, where the

range of names is smaller than 8k − lg k.

Solutions for Store&Collect. We show how to implement the Store and Collect operations, with

k processes out of n participating, with original names in the range [N ]. We want the first Store

by a process to begin by executing a suitable renaming algorithm. A new name identifies a register

which the process uses to store by writing into it. Each of the subsequent calls of Store takes a

constant number of local steps, because the register to write to has already been identified The

algorithms for Store&Collect are categorized by the levels of knowledge of k and N , with n always

known.

A number M is a range of new names in a renaming algorithm. If M can be computed in

advance, based on the available knowledge of the numbers k and N , then an algorithm can be

structured as follows. We allocate M shared read-write registers Si indexed by natural numbers i
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in [M ]. In order to store a value, a process first seeks a new name x in [M ]. This assigns a

unique read-write register Sx. The process with a new name x stores its values by writing into Sx.

Collecting is performed by reading the registers Si, for all i ∈ [M ]. This approach works when both

parameters k and N are known.

Theorem 5 If both k and N are known, then Store&Collect can be implemented such that a first

storing operation by a process takes O(log k(logN + log k log∗ N
k )) steps and collecting O(k) steps,

while using O(k log N
k ) auxiliary registers.

Proof: Since we use algorithm Compact-Rename(k,N) for renaming, it is Theorem 1 that sum-

marizes the performance characteristics of renaming. The number of registers to store values

corresponding to the new names is M = 215k. The first Store operation of a process is preceded

by acquiring a new name. This takes O(log k(logN +log k log∗ N
k )) local steps. The Collect oper-

ation consists of reading all the 215k shared registers, which takes time O(k). The algorithm uses

O(k log N
k ) registers for renaming and 215k registers for storing, which together make O(k log N

k )

auxiliary registers. �

The knowledge of k and a range of original names N that is polynomial in n allows to obtain a

Store&Collect algorithm efficient with respect to the total number of processes n.

Corollary 3 If both k and N are known and N = O(n) then Store&Collect can be implemented

such that a first storing operation by a process takes O(log2 n) local steps and collecting O(k)

steps, while using O(n) auxiliary registers. If both k and N are known and N is polynomial

in n then Store&Collect can be implemented such that a first storing operation by a process takes

O(log2 n log∗ n) local steps and collecting O(k) steps, while using O(n log n) auxiliary registers.

Proof: This is a specialization of the solution of Store&Collect when both k and N are known

with performance summarized in Theorem 5. Since we use algorithm Compact-Rename(k,N) for

renaming, we refer to Corollary 1 that summarizes it performance characteristics with additional

assumptions on the magnitude of N . �

Next, we consider the case when N is known but k is unknown. These assumptions qualify

algorithm Range-Rename(N) for renaming to be applicable. This algorithm assigns new names

that are in the range between 1 and 216k, if k processes contend for new names, by Theorem 2.

A solution to Store&Collect needs to have at least 216n registers allocated in advance, since the

unknown k could be as large as n.

In order to read only the registers actually used for storing, while performing Collect, we

suitably mark an initial range of registers during writing into them not to waist time reading unused

registers. This is implemented as follows. The number 216n of registers needs to be incremented by

16 + ⌈lg n⌉. These many registers are identified by the integers in the range [1, 216n+ ⌈lg n⌉+ 16]

as their primary addresses, in that the ith register has primary address i. All these registers are

initialized to be null as usual. The registers with primary addresses of the form i + 2i, for i ≥ 0,

play an auxiliary role. If a value written in such a register is different from null then the register

is marked. The registers with primary addresses between 2i + i + 1 up to 2i+1 + i have secondary

addresses between 2i and 2i+1 − 1, for i ≥ 0. Once can verify directly that each register is either

auxiliary or it has a unique secondary address, and each integer between 1 and 216n is a secondary

address of a unique register.
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A process with a new name m stores its proposed value along with its original name in a register

of the secondary address m. During its first operation Store, the process marks all the auxiliary

registers whose primary addresses are less than the primary address of the register with m as the

secondary address. In order to perform Collect, a process reads the consecutive registers up to

the first unmarked auxiliary register or all the registers if all auxiliary registers are marked. An

unmarked auxiliary register indicates that no value has been stored beyond this primary address.

Theorem 6 If N is known but k is not, then Store&Collect can be implemented such that a first

instance of storing takes O(log2 k(logN + log k log∗ N)) local steps and collecting O(k) steps, with

O(n log N
n ) auxiliary registers.

Proof: As a renaming subroutine, we use Range-Rename(N), and refer to Theorem 2, which

summarizes the performance characteristics of the algorithm. The number of registers to store

values corresponding to the new names is 216n, because the range of new names is M = 216k with

k ≤ n. The first Store operation of a process takes time O(log2 k(logN + log k log∗ N)) to identify

a new name and then up to 1 + lg k steps to mark auxiliary registers and store a proposed value.

Each of the subsequent Store operations takes constant time. The Collect operation consists of

reading up to ⌈lg k⌉ auxiliary registers and up to the 216k registers with the smallest secondary

addresses. The algorithm uses O(n log N
n ) auxiliary registers for renaming and 216n + ⌈lg n⌉ + 16

registers for storing, which together make O(n log N
n ) registers. �

The algorithms for Store&Collect for the case when N is known use few auxiliary registers if N

is polynomial in n.

Corollary 4 If a known range of the original names N is such that N = O(n), then Store&Collect

can be implemented using O(n) auxiliary registers. If a known range of the original names N is

polynomial in n, then Store&Collect can be implemented using O(n log n) auxiliary registers. In

each of these cases, a first operation of storing can be performed in a number of local steps poly-

logarithmic in n and collecting takes O(k) steps.

Proof: This is a specialization of the solution of Store&Collect when N is known but k is not with

performance summarized in Theorem 6. Since we use algorithm Range-Rename(N) for renaming,

we refer to Corollary 2 that summarizes it performance characteristics with additional assumptions

on the magnitude of N . �

Next we consider the case when k is known but N is not. We want to use the algorithm

Square-Rename(k) for renaming. By Theorem 3, the range of new names can be determined as

M = 2k − 1 and renaming requires O(k2) auxiliary registers. A solution to Store&Collect needs

Ck2 shared registers for renaming, for a suitable C > 0, and 2k − 1 registers for storing.

Theorem 7 If the number of participating processes k is known but the range of original names N

is not, then Store&Collect can be implemented such that a first instance of storing takes O(k) local

steps and collecting O(k) steps, with O(k2) auxiliary registers.

Proof: The design of the implementations of Store and Collect follows the general approach of

having a dedicated block of 2k−1 registers for storing and each participating process first acquiring
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a new name to identifies a register. By Theorem 3, this takes O(k) local steps while using O(k2)

auxiliary registers. To collect the proposed values to build a view, a process reads all 2k−1 registers

used for storing, which takes O(k) local steps. �

Next we consider the adaptive case with both k and N unknown. We want to use algorithm

Adaptive-Rename for renaming. According to its performance characteristics summarized in

Theorem 4, the range of new names is M = 8k − lg k − 1 and the number of auxiliary registers

is O(n2). Registers used for storing can be handled similarly as in the case of unknown k and

known N , by arranging a suitably large segment of registers and using them by referring to primary

and secondary addresses. We need 8n − lg n − 1 secondary addresses, so a block of registers with

8n− lg n− 1+ ⌈lg(8n− lg n− 1)⌉ primary addresses suffices. Additionally, we need to allocate Dn2

registers for renaming, for a suitable D > 0.

Theorem 8 If k and N are both unknown, then Store&Collect can be implemented adaptively such

that first storing takes O(k) steps and collecting takes O(k) steps, with O(n2) auxiliary registers.

Proof: We use Adaptive-Rename for renaming purposes. The total number of auxiliary registers

is O(n2), with O(n) for storing and O(n2) for renaming. The first store operation of a process takes

O(k + log k) = O(k) local steps, by Theorem 4. The subsequent store operations are of constant

time each. The collecting operation takes O(k) steps, since there is only a prefix of O(k) registers

corresponding to the names to be read. �

An adaptive solution of Store&Collect with performance as in Theorem 8 has already been given

by Afek and De Levie [4], by using a different approach.

4 Lower Bounds on Local Steps

We consider the time complexity of renaming and storing for the first time. A configuration of the

system consists of events enabled by each process, which are either reads or writes. An execution

consists of events as they occur in time. An event that occurs is selected from a current configu-

ration. A process participating at a current event immediately enables either a read or a write to

contribute an option for such a read or write to occur in the next configuration.

A lower bound for renaming. For a distributed system of n processes, an instance of Renaming

is determined by some of the following four parameters: an upper bound on the number of par-

ticipating processes k, a range of new names M , a range of original names N , and a number of

auxiliary shared read-write registers r. For some configurations of these parameters, the number of

steps can be very small; for instance, if N = Θ(k) then the original names could do, so the number

of steps is O(1). On the other side of the spectrum, if N is not known and can be arbitrarily large,

then the step complexity of any renaming algorithm is k − 1.

An intuition why the number of steps is k − 1 in some scenarios could be build as follows.

If the original names affect the actions of processes, then there is such an assignment of the n

original names that at any point of an execution, if there is a choice that processes can make which

is affected by the original names, then all the processes might choose similarly. In particular, if

processes choose not to write, so that there is no communication among them, then all want to

assign the same name. Therefore, one of the processes writes at some point, and let p be the first
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such a process. After a write, some processes learn of the value written, by reading. All processes

have to learn the value written by p, since otherwise one process among these that never learn could

choose the same name as p. This argument can be extended by induction to imply that the process

that chooses the name as the last one had to read at least k − 1 times. A general lower bound of

Jayanti et al. [41] captures related scenarios.

We present a lower bound which gives an estimate on N , depending on fixed range of original

names M and the number of auxiliary shared read-write register r, for which k − 1 steps during

assigning new names are necessary. The lower bound is flexible enough to be applicable to scenarios

when algorithms of poly-logarithmic step complexity exist.

Theorem 9 Let k processes among a total of n in an asynchronous system using r shared read-write

registers and with original names in the range [N ] execute a wait-free renaming algorithm that

assigns new names in a range [M ]. Then there exists an execution in which some process performs

1 + min{k − 2, ⌊log2r
N

M+k−1⌋} steps.

Proof: Consider a conceptual set consisting of N processes, each identified by a different original

name. The first goal is to identify a subset K of these processes consisting of at most k elements so

that an execution of the algorithm by these processes results in a necessary number of local steps.

The construction of the set K is recursive and proceeds through a sequence of stages.

A stage represents a group of concurrent reads or writes to shared registers. A stage determines

groups of processes we call pool and residue. When the stages get completed, the pool and the

residue together make a set K we seek. In notation, let stage i result in determining a pool

set P (i+1) of processes eligible to be considered for stage i+1, a residue set Q(i+1), by determining

a prefix E(i) of an execution. The construction starts with the initial pool P (0) consisting of N

conceptual processes, each identified by its original name, the initial residue Q(0) is empty, and

E(0) is an empty prefix of an execution.

Suppose we have a configuration with a determined sets P (i) and Q(i) and a prefix E(i) of the

execution. Let R(i) consist of the processes in P (i) that have a read enabled in the configuration

and W (i) consist of the processes in P (i) that have a write enabled. There are two cases we

considered next that determine P (i+ 1), Q(i+ 1), and E(i+ 1).

Suppose first that |R(i)| ≥ |W (i)|. By the pigeonhole principle, there is a register which a group

of at least these many processes want to read:

|R(i)|

r
≥
|P (i)|

2r
.

Define the pool P (i+1) to be this group of processes and the residue Q(i+1) to be equal to Q(i).

The prefix E(i + 1) is obtained from E(i) by having the processes in R(i) read the register in

arbitrary order.

Suppose next that |R(i)| < |W (i)|. By the pigeonhole principle, there is a register to which a

group of at least these many processes want to write to:

|W (i)|

r
≥
|P (i)|

2r
.

Define the pool P (i+1) to be this group of processes. The prefix E(i+1) is obtained from E(i) by

having the processes in W (i) write to the register in arbitrary order. A process p that writes last

in this group is added to Q(i) to obtain Q(i+ 1) = Q(i) ∪ {p}.
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As the recursive construction progresses, for i ≥ 0, the following invariant is maintained:

1) the pool P (i) includes at least N
(2r)i

processes,

2) all the processes in P (i) have exactly the same history in E(i) of reading from shared registers,

3) the residue Q(i) includes at most i processes,

4) all the processes that wrote a value to a shared register that has ever been read in E(i) are

in Q(i).

We continue for the maximum number of stages t such that two constraints are met. One is

that the inequality N
(2r)t ≥ M + k − 1 holds, where M is the range of new names. The resulting

stage number t satisfies t ≤ log2r
N

M+k−1 and P (t) contains at least M + k− 1 elements. The other

constraint is that t ≤ k − 2, so that Q(t) has at most k − 2 elements. These two requirements

combined determine

t = min

{

k − 2,
⌊

log2r
N

M + k − 1

⌋

}

.

The definitions of P (t) and Q(t) imply that the processes in P (t) \ Q(t) have not written in E(t)

yet and have read the same values from the same shared registers in the same order of reading.

The set P (t) \Q(t) has at least M + k − 1− (k − 2) ≥M + 1 elements.

Suppose that a decision on a new name is made by each among the processes in P (t) \ Q(t)

were possible without any further reads or writes. The range of new names has M elements. By

the pigeonhole principle, there are two processes p1 and p2 in P (t) \Q(t) that would get assigned

the same name. This means some process among p1 and p2 performs at least one additional read.

We set K = Q(t) ∪ {p1, p2}, which has at most k elements.

There is an execution E of the algorithm, with the processes in K as the only contenders for

new names, such that E(t) restricted only to the events involving the processes in K is a prefix of E .

The processes that wrote values ever read in E(t) are in K. The processes p1 and p2 have the same

history of reads in E(t), and each of them read t times without writing even once. The algorithm

is a wait-free solution to Renaming, so both p0 and p1 eventually assign themselves names in E . It

follows that at least one of the processes p1 and p2 eventually performs at least one read after E(t).

This means that the process makes at least 1 + t steps in execution E . �

Theorem 9 implies that some process executing a renaming algorithm has to perform at least

k − 1 steps in a suitable distributed system, which we show next.

Corollary 5 For any k-renaming algorithm for processes with new names in some range [M ] and

using some r shared read-write registers, there exists a sufficiently large range of original names [N ]

and an execution in which some process performs at least k − 1 steps.

Proof: Let us choose N such that the part log2r
N

M+k−1 in the lower bound of Theorem 9 is at least

k − 2. To thus end, it suffices to set N to be at least as large as (M + k − 1)(2r)k−2. Then the

lower bound of Theorem 9 becomes k − 1. �

Algorithm Square-Rename(k) works for arbitrary range [N ] of original names. Corollary 5

implies that this algorithm is asymptotically optimal with respect to local-step performance, which

is O(k).
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Corollary 6 For any (k,N)-renaming algorithm that has M = O(k) as a bound on new names

and uses O(k log N
k ) auxiliary registers, for a range of original names N = Ω(n2), there exists an

execution in which some process performs Ω
( logn
log k+log logn

)

steps.

Proof: We reformulate the logarithmic part of the bound in Theorem 9 as follows:

log2r
N

M + k − 1
=

lg N
M+k−1

lg(2r)
=

lgN − lg(M + k − 1)

lg r + 1
. (3)

By the assumptions, we have Ω(1) + 2 lg n ≤ lgN , lg(M + k − 1) ≤ lg(2M) ≤ O(1) + lg k, and

lg r ≤ lg k + lg lg n+O(1). Substitute these into (3) to obtain a bound

lgN − lg(M + k − 1)

lg r + 1
≥

lg n+Ω(1)

lg k + lg lg n+O(1)
,

which is Ω
( logn
log k+log logn

)

. �

Corollary 6 implies that algorithm Compact-Rename(k,N) may miss local-step optimality by

a factor that is about log2 k. More precisely, assuming additionally that k = Ω(log n), the lower

bound of Theorem 9 becomes Ω
( logn
log k

)

. Each process executing algorithm Compact-Rename(k,N)

performs O(log k(logN + log k log∗ N
k )) steps, by Theorem 1. We have the following asymptotic

identity log2 k ·Ω
( logn
log k

)

= Ω(log k(logN + log k log∗ N
k )), under the additional assumption about k

that log k · log∗ N
k = O(log n).

A lower bound on first storing. The lower bound on the first operations of storing applies to

implementations of solutions of Store&Collect in which a process proposes a value by writing it to

a dedicated register, one such a register per process, and collecting is performed by reading all such

registers. The first operation Store that a process performs requires identifying a register to write

a proposed value. We assume there are r shared registers available. The processes have names from

the range [N ].

Theorem 10 Let k processes among a total of n in an asynchronous system using r auxiliary shared

read-write registers and with names in the range [N ] execute a wait-free algorithm for Store&Collect

in a system with r shared read-write registers. Then there exists an execution in which some process

performs 1 + min{k − 2, ⌊log2r
N

r+k−1⌋} steps in its first operation Store.

Proof: A proof is similar to that of Theorem 9. We structure a prefix of an execution E to reflect

stages, with a pool P (i) and residue Q(i) sets of processes after stage i. An execution continues

for the maximum number of stages t such that two constraints are met. One is that the inequality
N

(2r)t ≥ r + k − 1 holds. The resulting stage number t satisfies t ≤ log2r
N

r+k−1 and P (t) contains

at least r + k − 1 elements. The other constraint is that t ≤ k − 2, so that Q(t) has at most k − 2

elements. These two requirements combined determine

t = min

{

k − 2,
⌊

log2r
N

r + k − 1

⌋

}

.

The definitions of P (t) and Q(t) imply that the processes in P (t) \ Q(t) have not written in E(t)

yet and have read the same values from the same shared registers in the same order of reading.

The set P (t) \Q(t) has at least r + k − 1− (k − 2) ≥ r + 1 elements.
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Suppose that selections of registers for storing by each among the processes in P (t) \Q(t) were

possible without any further reads or writes. There are r shared registers. By the pigeonhole

principle, there are two processes p1 and p2 in P (t) \ Q(t) that would select the same register.

This means some process among p1 and p2 performs at least one additional read. We set K =

Q(t) ∪ {p1, p2}, which has at most k elements.

There is an execution E of the algorithm, with the processes in K as the only competitors to

select registers for storing, such that E(t) restricted only to the events involving the processes in K

is a prefix of E . The processes that wrote values ever read in E(t) are in K. The processes p1 and p2
have the same history of reads in E(t), and each of them read t times without writing even once.

At least one of the processes p1 and p2 eventually performs at least one read after E(t). This means

that the process makes at least 1 + t steps in execution E . �

Theorem 10 implies that for each solution of Store&Collect some process has to perform at least

k − 1 steps during its first storing, in a suitable distributed system, which we show next.

Corollary 7 For any Store&Collect algorithm for a system with some r shared read-write registers,

there exists a sufficiently large range of original names [N ] and an execution in which some process

performs at least k − 1 steps.

Proof: Let us choose N such that the part log2r
N

r+k−1 in the lower bound of Theorem 10 is at least

k− 2. To thus end, it suffices to set N to be at least as large as (r+ k− 1)(2r)k−2. Then the lower

bound of Theorem 10 becomes k − 1. �

The algorithm for Store&Collect with performance characteristics summarized in Theorem 7

works for an arbitrary range [N ] of original names. Corollary 7 implies that this algorithm is

asymptotically optimal with respect to local-step performance of first storing, which is O(k).

Corollary 8 For any algorithm for Store&Collect that uses r = O(k log N
k ) auxiliary registers for

a range of original names N = Ω(n3), there exists an execution in which some process performs

Ω
( logn
log k+log logn

)

steps in its first storing.

Proof: Reformulate the logarithmic part of the bound in Theorem 10 as follows:

log2r
N

r + k − 1
=

lg N
r+k−1

lg(2r)
=

lgN − lg(r + k − 1)

lg r + 1
. (4)

By the assumptions, we have Ω(1) + 3 lg n ≤ lgN and lg r ≤ lg(r + k − 1) ≤ lg k + lg lg n +O(1).

Substitute these into (3) to obtain a bound

lgN − lg(r + k − 1)

lg r + 1
≥

lg n+Ω(1)

lg k + lg lg n+O(1)
,

which is Ω
( logn
log k+log logn

)

. �

Corollary 8 implies that the algorithm for Store&Collect for the case when both k and N

are known, and whose performance characteristics are given in Theorem 5, may miss local-step

optimality of first storing by a factor that is about log2 k. More precisely, assuming additionally that

k = Ω(log n), the lower bound of Theorem 10 becomes Ω
( logn
log k

)

. Each process storing for the first
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time performsO(log k(logN+log k log∗ N
k )) steps, by Theorem 5. We have the following asymptotic

identity log2 k ·Ω
( logn
log k

)

= Ω(log k(logN + log k log∗ N
k )), under the additional assumption about k

that log k · log∗ N
k = O(log n).

5 Unbounded Selection

We consider problems concerning processes selecting positive integers continuously such that each

selection is exclusive. A selected positive integer may be considered as an abstract name from an

unbounded range. Such names can be used to identify registers from an infinite pool of registers.

Infinitely repeated selections of names are efficient when they minimize the number of positive

integers that never get selected to be assigned as names.

Next, we review the functionality of a distributed dynamic data structure that we call a “repos-

itory.” We will refer to two related concepts of “storing” and “depositing” a value in a register. A

value written to a register gets stored in it as long as it is not overwritten by a different value.

Depositing a value means storing it indefinitely in some register. A repository is a concurrent data

structure for depositing values in shared read-write registers. The underlying assumption is that,

for each point in time, each process will eventually generate a value to be deposited in a repository.

We assume that there are infinitely many shared read-write registers, denotedR[1], R[2], R[3], . . .,

used to store deposited values. We say that these registers are dedicated to depositing and that i

in the index of register R[i]. We assume random access to these shared registers, in that an index i

allows to identify the shared register R[i] and perform a read or write on it. Every register R[i]

is initialized to null, which is interpreted as the register being empty. An algorithm managing

repeated deposits may also use additional auxiliary registers.

A formal definition of depositing and a repository refers to an algorithm implementing this

operation and supporting registers. Consider an execution of an algorithm implementing depositing.

A value x is considered deposited in a register R at an event in the execution, when the following

is satisfied in the system’s configuration just after the event:

1. The value x is stored in register R.

2. The value x will not be overwritten in register R by any different value in the following events

of the execution.

A repository is a distributed data structure that provides a repertoire of operations for each par-

ticipating process. We describe these operations next.

A process p may invoke an operation Queryp to obtain a new value to be deposited. An

event Returnp(v) returns a value v for Queryp, where v 6= null is a value to deposit. An event

Returnp(null) indicates that there is no value to deposit yet.

A process p invokes an operation Depositp(v) to deposit a value v 6= null. An event Ackp(i)

acknowledges completing Depositp(), where R[i] is the register in which the value has been de-

posited. When a process crashes while working to deposit a value, and depositing this value has not

been acknowledged before the crash, then the value may either get deposited or not in a dedicated

register.
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Following the standard understanding of simulating executions, as presented by Attiya and

Welch [24], we prohibit “pipelining” on the operations Query and Deposit. This means that a

process may invoke a new operation only after the previous one, if any, has returned an outcome or

has been acknowledged as completed. When a process p obtains a return of a query for a new value,

then the process eventually invokes Queryp again. We assume fair occurrence of deposit requests at

processes, which means that each process eventually obtains a new value to deposit, after having

deposited the previous value, if any, unless the process crashes.

Let us observe that no algorithm depositing values and resilient to even one crash can guarantee

for a specific register that a value gets deposited in the register eventually, since otherwise the value

stored there could be used to determine a decision in a solution of Consensus, which is impossible

in asynchronous systems with processes prone to crashes and read-write registers [24, 39, 42]. This

means that for any execution of a depositing algorithm, some registers dedicated for depositing may

never be used for deposits. Now the question is how many registers dedicated for depositing will

never be used to deposit? There is a simple solution to the problem of repeated deposits in which a

process i deposits only in consecutive registers with indices congruent to i modulo n. The problem

with this approach is that if even one process crashes then infinitely many registers dedicated for

depositing will never deposit a value. We want to have a solution to repeated depositing in which

the number of dedicated registers not used for deposits is finite in any infinite execution.

A repository is a concurrent data structure that allows each process to deposit values in dedicated

registers that satisfied the following two properties, subject to fair occurrence of deposit requests

in an infinite execution:

Persistence: Starting from an acknowledgment event Ackp(i), for a process p and register R[i] ded-

icated for depositing, the value stored in R[i] by p becomes deposited.

Utilization: There are finitely many registers dedicated for depositing that never store a deposited

value.

We want the quality of an implementation of a repository to be be minimally non-blocking, but

preferably wait-free. These qualities have the following standard meaning:

Non-blocking: If at least one nonfaulty process wants to deposit a value in a configuration, then

eventually a value gets deposited.

Wait-free: If some nonfaulty process wants to deposit a value in a configuration, then eventually

this process succeeds in depositing its value.

The Repository problem is to implement a repository in a distributed system of n processes prone

to crashes and an unbounded supply of read-write registers initialized to null.

Implementations of a repository. The algorithms we give next assign integers to processes such

that an assignment provides exclusivity of a selection of an integer by a process. We interpret a

newly assigned integer i as an indication that the register R[i] could be available for depositing.

We start from the algorithm called Selfish-Repository, which works as follows. Each pro-

cess p maintains a sorted list Lp of 2n − 1 indices i in its local memory, which are interpreted

as identifying registers possibly still available for deposits. The list is initialized to store the first

2n− 1 positive integers arranged in order in consecutive entries. Pointer Lp.head points to the first
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item on the list. For an entry x in the list, x.next is the next item in the list, and x.value is the

integer stored in the entry. Process p also uses a variable Ap interpreted as an index of the next

available empty register immediately after the registers whose indices are in Lp. The variable Ap

is initialized to 2n. The entry at position i in list Lp of process p is denoted Lp[i] (or L[i] when p

is understood).

Process p may update list Lp, which is performed as follows. Process p scans Lp, starting from

Lp.head. For each entry x scanned in the list, if x.value = j, then p reads R[j]. If R[j] is still

empty, then the next entry x.next is considered, otherwise p removes entry x from list Lp, by

making the predecessor of x point to its successor x.next, and begins scanning registers R[i] one by

one in the order of indices, starting from the index i stored in Ap. The scan of array R continues

until an empty R[k] is found, if any. Once process p reads an empty R[k] then p appends a new

entry y with y.value = k to Lp, and sets Ap to k + 1. This completes processing entry x. Next

the entry x.next in Lp is processed in a similar manner. Updating list Lp ends after all the entries

of Lp have been processed.

We will use an atomic-snapshot object S. It includes read-write registers S[p], for each process p,

for 1 ≤ p ≤ n, such that S[p] is writable by p and readable by all processes. A view returned to

a process that invoked taking a snapshot consists of a vector V = (V [1], V [2], . . . , V [n]), where

V [i] stores the value read from S[i]. Each register S[i], for 1 ≤ i ≤ n, is initialized to null. The

registers S[i] are supported by other auxiliary registers in S to equip S with the functionality of

an atomic snapshot object, see [1]. Process p writes an integer in the interval [1, 2n − 1] to the

register S[p] in S. After taking a snapshot using S, process p assigns itself the rank defined as

follows: it is the rank of p among the indices q such that the variable V [q] stores an entry different

from null. A snapshot determines integers in the interval [1, 2n − 1] that are available: these are

the numbers in the interval that do not occur in the snapshot. For each snapshot with at least one

repetition of entries there are always at least n integers available: this is because at most n − 1

numbers in [1, 2n − 1] occur in the snapshot.

The need for a deposit occurs when a process p that has been querying for a new value to deposit

obtains such a value. Then process p begins attempts to acquire an index of a register available

for deposits. Such attempts are performed repeatedly until identifying an index of a register i

exclusively available to p, we call such i a list name. Each attempt begins with p reviewing its

list Lp and setting the candidate index, of an eligible register dedicated to depositing, to Lp[1].

The first goal is to go through a sequence of candidates to eventually identify a list name, while

verifying each candidate until it passes the verification and becomes a list name.

Identifying a candidate and verification proceed as follows. After p sets the candidate to L[1],

it repeats the following three actions. First p sets S[p] to the candidate index. Then p invokes

obtaining a view V from the snapshot object S. The third action depends on whether the candidate

is unique in the view V . If this is the case then p treats the candidate index in L as a list name

produced by the list. Otherwise, p sets r to the rank of p in V , then sets j to the rth integer

available in [1..2n − 1], and finally chooses a next candidate as the entry on L at position j. Now

p resumes verifying the candidate. When process p acquires a list name j then it checks to see if

R[j] is empty. If this is the case then p deposits at R[j]. Otherwise, when R[j] already stores a

deposited value then p resumes attempts to acquire an index of an eligible register.

A pseudocode of algorithm Selfish-Deposits is presented in Figure 2. In the pseudocode,

the names of variables candidate and list-name half self-explanatory meaning. The pseudocode

23



algorithm Selfish-Repository

1. repeat
(a) update list L; list-name← null; candidate← L[1];
(b) repeat

i. S[p]← candidate

ii. obtain a view V from snapshot object S
iii. if candidate is unique in the view V then list-name← candidate else

A. r ← the rank of p in V

B. j ← the rth integer available in [1..2n − 1]
C. candidate← L[j]

until list-name 6= null

(c) if R[list-name] = null then

i. R[list-name]← v

ii. S[p]← null

iii. return Ack(list-name)

Figure 2: Pseudocode of procedure Deposit(v), for a process p, implementing a selfish repository.

is structured as a repeat loop (1.), which terminates by return of acknowledgement in the last

line (1(c)iii).

Theorem 11 Depositing based on algorithm Selfish-Deposit is a non-blocking implementation of

a repository such that in each execution at most 2n− 2 dedicated deposit registers are not used for

depositing.

Proof: When a value v gets stored in a register R[list-name] by a process p in instruction (1(c)i)

in Figure 2, then this occurs after list-name has been verified to be unique in the view returned

by the snapshot object. This entry written by p in S[p] stayed there until after p completed writing

to R[list-name]. This means that at most one process could attempt to store a value in this

register R[list-name]. The first such process would succeed, as all subsequent attempts, if any,

would be prevented by the verification in line (1b) of the pseudocode. This provides the property

of Persistence defining a repository.

Next we argue that there are infinitely many successful deposits, assuming fair occurrence of

deposit requests. Suppose there is an event after which no deposits occur. Eventually every process

either has crashed or it has a value to deposit, by the assumed fair occurrence of deposit requests.

Each failure to deposit starts a new iteration of the main repeat loop in Figure 2, which begins with

updating list L by instruction (1a). As all the non-faulty processes keep updating the lists, while

no deposits occur, then eventually all their lists become equal and store the indices of the smallest

empty deposit registers. The values on this list make a set of 2n− 1 natural numbers. Let us take

the first event when this occurs. Consider the first following event when each non-faulty process p

has written to S[p]. Starting from this point in the execution, the ranks of all the processes become

fixed in the snapshot object. Consider the subsequent writes to S[p] by a process p. If such a write

does not produce a unique number in the view, then each next write of a proposed list name is after

choosing by rank. Once the ranks become fixed, each choosing by rank produces a unique entry in

the common list L shared by all the processes. It follows that eventually some non-faulty process p
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acquires a list name. Now this list name identifies a unique entry in the list L shared by all the

processes. The register dedicated for deposits with the index in this unique entry of L is empty

and no other process attempts to use this register, so p completes a deposit. This contradicts the

assumption that there are no deposits after some event.

If a process crashes in the course of depositing, then the process may have identified a regis-

ter R[k] for depositing by acquiring a list name k, but the crash occurred before the value got stored

in the register R[k]. There may be up to n− 1 such indices k and the corresponding registers R[k].

A crashed process p may have set S[p] in the snapshot object to its candidate, which now will store

its value S[p] throughout the execution. If such registers S[p] make an initial segment S[1..k], then

eventually the first k numbers in lists L stabilize and each of them is a list name assigned to a

crashed process. If the next k entries in the lists L stabilize as well, then these will forever stay

as the first k available indices never to be assigned as list names. Since there are at most n − 1

crashes and k ≤ n − 1, we have that up to n − 1 indices of registers dedicated for deposits may

never be used as list names. This means that up to 2n − 2 registers dedicated for depositing may

never store a deposited value. �

Theorem 12 For each non-blocking algorithm implementing a repository there exists an execution

in which n− 1 registers dedicated for depositing remain unused.

Proof: We argue that in each implementation of a repository, at least n−1 dedicated registers may

be never used for deposits in some execution. Namely, when a process p is to deposit by writing

to a register R[i], and a write event to store the value is enabled, we may “freeze” the write. At

this point, no other process q will want to deposit to R[i], because otherwise after ackq(i) happens,

the pending write of p to store at R[i] might occur as well, which results in overwriting R[i], in

contradiction of the definition of a repository. This means that if p crashed rather than merely

“freezed,” then the register R is never used for depositing by any other process. Up to n−1 crashes

can happen, so at least these many registers might never be used for deposits. �

By Theorem 11, algorithm Selfish-Deposit leaves O(n) registers dedicated for deposits that

remain unused. This combined with Theorem 12 shows that algorithm Selfish-Deposit leaves an

asymptotically optimum number of shared registers in the worst case in a perpetual state of not

storing a deposited value.

Next, we consider a wait-free implementation of a repository. We call the algorithm that

provides the implementation Altruistic-Deposit. The algorithm uses some of the mechanisms

in Selfish-Deposit and extends them. The difference between the two algorithms is what a

process p does with acquired list names. In algorithm Selfish-Deposit, a process acquiring list

names uses it selfishly as address of registers to deposit. In executions of algorithm Altruistic-

Deposit, processes share acquired list names with other processes to help in their deposits.

Algorithm Altruistic-Deposit consists of two threads. One auxiliary thread produces register

indices, and the other thread deposits values. The two threads are interleaved in a fair manner, in

that each process alternates invoking instructions from the two threads. Both threads work on an

n×n array Help[i, j], for 1 ≤ i, j ≤ n, of shared read-write registers. The processwa use a snapshot

object S to obtain new list names, similarly as in algorithm Selfish-Deposit. A process i writes

a verified list name into Help[i, j] to be used by process j for its deposits.

A process p in the producing thread keeps reading the registers in row Help[p, ∗] in a round-
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algorithm Altruistic-Repository : producing thread

column← p

repeat

1. if Help[p, column] 6= null then increment column in a round robin manner else

(a) update list L; list-name← null; candidate← L[1];

(b) repeat

i. S[p]← candidate

ii. obtain a view V from snapshot object S
iii. if candidate is unique in the view V then list-name← candidate else

A. r ← the rank of p in V

B. j ← the rth integer available in [1..2n − 1]
C. candidate← L[j]

until list-name 6= null

2. if R[list-name] = null then

(a) R[list-name]← reserved

(b) Help[p, column]← list-name

3. S[p]← null

Figure 3: Pseudocode of a producing thread in the altruistic repository, used by a process p to obtain
an index of a register available for depositing. Such an index gets stored as entry Help[p, column]
of the column Help[p, ∗] of the array Help.

robin manner starting from the diagonal entry. If p finds some register Help[p, c] equal to null

then p works to obtain a new list name. After successfully acquiring a list name i, process p verifies

if R[i] is empty, which means it has not been reserved yet. If this is the case then process p first

marks R[i] as reserved and then writes i into Help[p, c]. The value reserved is assumed to be

different from null. A pseudocode of the producing thread is in Figure 3.

Lemma 9 For each process p and an event it is involved, eventually some entry in the column

Help[∗, p] stores an index of a reserved register available for deposits.

Proof: Processes execute producing threads similarly as depositing selfishly in that this produces

new reserved registers in a non-blocking manner. As new entries in the array Help[∗, ∗] get reserved

written in them, the writers wrap around their rows in a round robin manner. The perpetual

existence of a column of the array Help[∗, p] with all entries null would contradict the non-blocking

progress achieved in the execution. If a process q obtains a new list-name in an execution of

producing thread, then this number is unique in the view provided by the snapshot object. This

means that no write to R[list-name] by some other process is pending when q reads R[list-name]

and finds it empty in instruction (2) in Figure 3, and so eligible to write reserved. �

A process p in the depositing thread keeps reading the column Help[∗, p] in a round-robin

fashion, starting from the diagonal entry. Once p finds an index j 6= null stored at Help[r, p],

then p deposits in R[j] and then writes null to erase value j in Help[r, p]. A pseudocode of the

depositing thread is in Figure 4.
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algorithm Altruistic-Repository : depositing thread

1. row← p

2. while Help[row, p] = null do increment row in a round robin manner
3. index← Help[row, p]
4. Help[row, p]← null

5. R[index]← v

6. Ack(index)

Figure 4: Pseudocode of a depositing thread, used by a process p to deposit a value v, implementing
an altruistic repository.

Theorem 13 Depositing based on algorithm Altruistic-Deposit is a wait-free implementation

of a repository such that at most (n + 2)(n − 1) dedicated deposit registers will never be used for

depositing.

Proof: Consider an event in which a process q wants to deposit a value v. The process invokes the

depositing thread and so keeps reading entries in the column Help[∗, q] in a round-robin manner. By

Lemma 9, process q eventually reads Help[r, q] = j, for some row r and index j. The register R[j]

was verified to be empty by the process p that wrote j to Help[r, q], which occured when executing

line (2) in Figure 3. Process q can safely store the value v in R[j], because while the entry Help[r, q]

stays equal to index j, register R[j] stays equal to reserved, which is different from null. This

prevents the index j to be written at other locations of the array Help, by instruction (2) in Figure 3,

and so prevents multiple values to be possibly stored in succession at R[j].

Next, we estimate the number of registers dedicated for depositing that may never be used

to deposit a value. This number if maximized when n − 1 processes crash while many entries of

Help[∗, ∗] store indices of registers reserved for depositing. Let p be the only process that never

crashes. The worst case scenario occurs when each of the crashed processes q has a full column

of n indices reserved and it crashes when working to produce an index of a register to be placed in

column Help[∗, p]. Such a process q may have written some list name i to S[q] and verified that

R[i] = null but crashed before setting R[i] to reserved and so also did not reset S[q] to null.

Suppose all the lists L stabilized to the same sequence of entries, and further that such indices i

make the first n− 1 entries in the lists. Then the first n− 1 entries will never be removed from the

lists along with the first n−1 entries available in the lists L. The registers with theses 2n−2 indices

will stay equal to null forever. We have obtained n(n− 1) reserved registers and 2(n − 1) empty

registers never to be used for depositing. The total number of registers dedicated for depositing

that never store a deposited value could be n(n− 1) + 2(n − 1) = (n+ 2)(n − 1). �

It is an open problem if there exists a wait-free implementations of a repository that leaves out

o(n2) registers not used for depositing.

Mining names. Next, we consider the task to have processes work continuously to accumulate a

possibly unlimited collection of exclusive names. The distributed system consists of n processes

prone to crashes and a number of shared objects. We call designing an algorithm for this task the

Mining-Names problem. The complete specification is as follows.

A positive integer i is considered to be assigned to process p as a name when p exclusively
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commits to integer i by writing i in a dedicated local write-once memory variable. Exclusivity

means that no two processes ever commit to the same integer, so a name can be interpreted as

an exclusive reservation of a natural number. Committing to a name resembles committing to a

decision in solutions of Consensus. After committing to a name, a process can proceed to commit

to some other natural number as a name as well. A process participating in acquiring new names

never stops voluntarily.

An algorithm is a solution to Mining-Names if in each infinite execution the following two

properties are satisfied:

Naming: No two different processes ever commit to the same integer as a shared name.

Utilization: There are finitely many positive integers that never get acquired as names.

A mining names solution in a system with process crashes could be non-blocking or wait-free, which

is understood as follows.

Non-blocking: For each event in an execution, eventually a new name gets acquired.

Wait-free: For each process and any event in an execution, eventually this process acquires a new

name.

Algorithms implementing a repository can be adapted to mining names. Namely, let every

process keep invoking an operation to deposit a dummy value v. Rather than deposit v in a

register R[i], for some index i, the process commits to the name i. After a new name has been

acquired, the process invokes depositing a dummy value again. This transformation from depositing

to mining names requires the same distributed system that supports depositing. In particular, the

implementation of repository with properties summarized in Theorems 11 and 13 assumes that an

infinite array of shared read-write registers each initialized to null is available.

Theorem 14 The Mining-Names problem can be solved by n processes in a non-blocking fashion by

an algorithm that leaves at most 2n−2 nonnegative integers not assigned as names, or in a wait-free

manner by an algorithm that leaves at most (n+ 2)(n − 1) integers never assigned as names.

Proof: This follows from combining the general transformation of implementations of a repository

to mining names and Theorems 11 and 13. �

Mining names can be used to implement a repository by a general transformation, which works

as follows. Every process keeps mining names, and as soon as a new name i is acquired, this reserves

the register R[i] for depositing.

Theorem 15 For each non-blocking algorithm for Mining-Names, there exists an execution in which

n− 1 positive integers are not assigned as names to any process.

Proof: We apply the general transformation from an algorithm mining names to an implementaiton

of a repository. This transformation creates a non-blocking algorithms mining names from a non-

blocking implementation of a repository. If an algorithm for mining names could guarantee fewer

than n−1 positive integers never assigned as names then this could be converted into a non-blocking

solution for a repository that leaves out at most n− 1 registers never used for deposits. This would

contradict Theorem 12. �
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The implementations of repository we developed have processes use newly acquired list names

as indices of registers in an unbounded array of read-write registers. This works only if a distributed

system includes an unbounded array of shared read-write registers, each initialized to null. The

registers dedicated for depositing allow to keep track of indices of used registers, and to obtain next

registers still available for deposits by the operation of updating lists. It is an open problem if there

exist algorithmic solutions to Mining-Names in an asynchronous distributed system with finitely

many shared read-write registers and processes prone to crashes.
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