
Transactional Memory Retry Mechanisms∗

Michael F. Spear, Andrew Sveikauskas, and Michael L. Scott

Technical Report #935

Department of Computer Science, University of Rochester
{spear, asveikau, scott}@cs.rochester.edu

June 2008

Abstract

Software Transactional Memory (STM) systems, if they support condition synchronization, typically
do so through a retry mechanism. Using retry, a transaction explicitly self aborts and deschedules itself
when it discovers that a precondition for its operation does not hold. The underlying implementation may
then track the set of locations read by the retrying transaction, and refrain from scheduling the transaction
for re-execution until at least one location in the set has been modified by another transaction.

While retry is elegant and simple, the conventional implementation has several potential drawbacks
that may limit both its efficiency and its generality. In this note, we present a retry mechanism based on
Bloom filters that is entirely orthogonal to TM implementation. Our retry is compatible with hardware,
software, and hybrid TM implementations, and has no impact on memory management or on the cache
behavior of shared locations. It does, however, serialize writer transactions after their commit point when
there are retrying transactions. We describe our mechanism and compare it to an optimized version of
the conventional implementation.
Keywords: Transactional Memory, Condition Synchronization, Bloom Filters

1 Introduction

Software Transactional Memory (STM) systems, if they support condition synchronization, typically do so
through a retry mechanism [6]. Using retry, a transaction explicitly self aborts and deschedules itself
when it discovers that a precondition for its operation does not hold. The underlying implementation may
then track the set of locations read by the retrying transaction, and refrain from scheduling the transaction
for re-execution until at least one location in the set has been modified by another transaction.

When a transaction TR calls retry after reading locations {l1 . . . lr}, the standard implementation
modifies the metadata of each location li to indicate that any transaction TW that subsequently writes li
must wake TR. After marking all such locations, TR double-checks its read-set validity (to avoid a timing
window) then yields the processor pending wakeup by some TW . While retry is elegant and simple, this
implementation has several potential drawbacks that may limit both its efficiency and its generality.

Cache Interference Explicitly marking each location li requires exclusive access to li’s metadata in the
cache coherence protocol, in a manner analogous to “visible reader” conflict detection. Previous work
suggests that the invalidation of lines in concurrent readers may have a substantial performance cost [13].

∗This work was supported in part by NSF grants CNS-0411127, CNS-0615139, CCF-0702505, and CSR-0720796; and by
financial support from Intel and Microsoft.

1

Memory Blowup A retrying transaction TR must remove itself from metadata retry lists after waking up.
When the lists are colocated with shared data (as in “object-based” STM), a transaction that deletes location
li cannot safely reclaim the associated memory if TR is waiting on its retry list. In a language with garbage
collection, TR prevents reclamation of only the locations it has marked. With epoch-based lazy reclamation,
however [8], the most straightforward implementation would delay the end of the epoch until every retrying
transaction has awoken at least once, thereby delaying the reclamation of any shared data. Refinements to
this scheme would seem to require extensive changes to the memory management system.

Virtualization Overhead While retry was initially proposed for software TM, something like it is
clearly needed for hardware TM (HTM) as well. In best-effort TM [2], support for retry using “visible read-
ers” appears to necessitate a fallback to software transactions; since hardware transactions cannot sleep and
resume, and cannot preserve their state (in particular, their read sets) after self-aborting, even transactions
that retry after accessing only a single location must first abort and restart in software mode, then abort,
update metadata to reflect the (software-mode) reads, and yield the processor.

Synchronization Overhead When a transaction wakes from sleeping, it must remove itself from retry
lists. In nonblocking STM [5, 7, 9], this necessitates a nonblocking implementation of the per-object retry
list. Alternatively, the STM may bound the number of retrying transactions, in which case an optimized
bit-vector retry implementation, similar to the RSTM visible reader mechanism [10], is appropriate.

In this technical report, we present a retry mechanism based on Bloom filters [1] that is entirely or-
thogonal to TM implementation. Our retry is compatible with hardware, software, and hybrid TM imple-
mentations, and has no impact on memory management or on the cache behavior of shared locations. It
does, however, serialize writer transactions after their commit point when there are retrying transactions. In
Section 2, we describe our Bloom retry mechanism. We then compare Bloom retry to the default imple-
mentation and a visible-reader style alternative in Section 3. Lastly, in Section 4 we draw conclusions and
outline future research directions.

2 Retry with Bloom Filters

Our retry mechanism maintains a global set of retrying transactions, each represented by a Bloom filter and
a handle object (such as a semaphore) for wakeup. The set implementation is orthogonal to the correctness
of the algorithm; when the underlying STM is nonblocking, a nonblocking set can be used. Transactions
interact with the set of retrying transactions when retrying and immediately after committing writes.

2.1 The Retry Operation

A transaction TR wishing to retry constructs a Bloom filter representing the locations it has read and adds
this filter, together with its handle, to the global set. In STMs that use ownership records [3, 4, 7, 9, 10],
the address of the ownership record can be used to approximate a range of locations. When ownership
records are not used by the underlying STM [11, 14], the individual addresses of the read set must be used.
In workloads where retry is common, the O(r) overhead of building the filter can be spread across the
transaction’s execution.

After adding to the set, TR re-validates its read set. If validation fails, TR removes its filter from the
global set and restarts; otherwise, it yields the CPU and awaits notification that it can resume. The validation
step, which is also required with visible-reader style retry, avoids a window in which the only transaction
that can signal wakeup commits between when TR calls retry and when it ultimately posts its filter. When
TR wakes, it removes its filter from the global set and restarts.

2

Immediately prior to yielding, TR can safely update its memory management epoch, thus avoiding
memory blow-up. Concurrent threads can reclaim shared memory even when it lies in TR’s read set.

Transactions in a hardware or hybrid TM can interact with this mechanism without substantial modifica-
tion: when retry is called, the hardware transaction can pass its read set to a software handler that creates
the filter and adds it to the global list.

2.2 The Commit Operation

At commit time, a writing transaction TW must wake any transaction whose read set intersects TW ’s write
set. It does so by inspecting the Bloom filters in the global set. When the set is empty, the overhead is a
small constant. In contrast, visible-reader retry requires logging during execution, with constant overhead
per location written even in the absence of retrying transactions. Bloom filter operations can be performed
after all writes are physically committed and all locks are released, so that overhead during the wakeup
phase does not delay concurrent transactions.

When the global set is nonempty, Bloom filter retry may be less efficient than visible readers due to (a)
the need to inspect all filters and (b) false positives within a given filter. With visible readers, TW interacts
only with retrying transactions that have explicitly marked the metadata of locations written by TW . (Of
course, this may still entail false conflicts in “word-based” systems, when ownership records are located via
hashing.)

To support Bloom-based wakeup, hardware and hybrid TM systems require a single modification: after
the transaction commits, it must pass its write set to a software handler. To keep the overhead of this
operation low, it is possible to encode the write set as a Bloom filter, and then use a handler that intersects
filters, rather than probing individual locations. In this manner, hardware transactions will cause more
spurious wakeups, but with overhead linear only in the number of retrying transactions (instead of overhead
linear in the number of writes and the number of retrying transactions). STMs may also opt to use this
intersect-only mechanism at commit time.

2.3 An Alternative Implementation with Polling

In STMs that broadcast the write sets of committed transactions, such as RingSTM [14], Bloom retry can
be implemented via a polling operation that requires no additional global metadata. A retrying transaction
need only create a filter of its reads and then compare that filter against published write sets as transactions
commit. To reduce the overhead of polling, retrying transactions may choose to sleep for brief periods
before checking for new transactions, or to use alert-on-update [15] if available.

Such a polling mechanism is also possible without Bloom filters: a retrying transaction can simply
release all locations it has written, and then continuously check its read set validity, restarting the transaction
once any read becomes invalid. In STMs such as TL2 [3], where timestamps and ownership records are used,
the storage requirements of such a mechanism are minimal.

With polling, writers incur no overhead, as they are not required to identify descheduled transactions
whose reads they invalidate. However, the polling operation consumes CPU resources, does not virtualize,
and may allow notifications to be missed (for example, during ring overflow in RingSTM). When a missed
notification is possible, the retrying transaction can conservatively resume. While there may exist workloads
in which polling is advantageous (such as frequent retry transactions with very infrequent wakeup), we do
not in general expect it to match the performance of Bloom retry with a global set of retrying transactions.

3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Tr
an

sa
ct

io
ns

/s
ec

on
d

Threads

VisRead
Bloom

Default

(a) Transactions updating a data structure in phases

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Ba
rri

er
s/

se
co

nd

Threads

VisRead
Bloom

Default

(b) Throughput for a barrier implemented as two transactions

Figure 1: Comparison of Bloom-based retry to optimized visible-reader retry in RSTM. Up to 64 retry
transactions are supported via per-object visible reader bitmaps. Bloom filters are configured with 1024 bits
and 3 hash functions.

3 Evaluation

We implemented Bloom-based retry as an extension to the RSTM system [16]. In this section we present
results on an 8-core (32-thread), 1.0 GHz Sun T1000 (Niagara) chip multiprocessor running Solaris 10. All
benchmarks are written in C++ and compiled with g++ version 4.1.1 using –O3 optimizations. Data points
are the average of five 5-second trials. Bloom filters are configured with 1024 bits and 3 hash functions.

Systems Compared We contrast Bloom-based retry with two other implementations. The default RSTM
retry uses oblivious polling. When retry is called, the transaction aborts, calls usleep(50) (50µs is
the shortest observable yield interval supported by the OS), and then restarts. We also compare against a
“visible-reader” retry implementation that marks the metadata of objects in a retrying transaction’s read set
and then yields the CPU pending semaphore-based wakeup. Like RSTM visible readers, the retry marks are
implemented as a bitmap in the object header. This implementation requires no dynamic memory allocation,
supports simple removal upon wakeup, and facilitates low-cost filtering of duplicates when a retryer has
marked multiple objects in a committing transaction’s write set. When the maximum number of transactions
is small (64 in our experiments) and statically known, we believe this technique provides a lower bound on
the overhead of visible reader-style retry.

Transactions updating a data structure in phases: In the “phase” experiment of Figure 1(a), two groups
of threads take turns interacting with a list. The first group adds elements to the list to make it contain
the set {0 . . . 63}, at which point the second group wakes and removes all entries from the list in order.
The exact contents of the list determine which thread group is active, and thus retrying transactions often
have large read sets. The benchmark admits many spurious wakeups (whenever the list changes without
reaching a full or empty state), and the number of threads woken is linear in the number of total threads in
the experiment. Neither mechanism should have a significant advantage, but there is considerable memory
management since every transaction allocates or frees a list node. In the visible-reader code, RSTM’s epoch-
based memory management results in a slight additional overhead since all memory reclamation is deferred
whenever a transaction sleeps. Since Bloom retry does not impede epoch-based reclamation, there is less
memory blowup, which translates to slightly less run-time overhead for the RSTM allocator.

4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Tr
an

sa
ct

io
ns

/s
ec

on
d

Threads

VisRead
Bloom

Default

(a) Single Token Passed randomly

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Tr
an

sa
ct

io
ns

/s
ec

on
d

Threads

VisRead
Bloom

Default

(b) Multiple tokens passed in-order

Figure 2: Bloom-based and visible-reader retry used to pass tokens between threads. When the thread count
is close to the token count, the final validation after calling retry() results in an abort, rather than a
semaphore post.

Non-composable Barrier: The “barrier” experiment of Figure 1(b) employs a non-composable barrier
patterned after the experiments of Smaragdakis et al. [12]. The barrier consists of two transactions: in the
first, each thread increments a counter; in the second, each thread calls retry until the counter reaches a
threshold. The benchmark results in a pathological O(n2) overhead from spurious wakeups, since each of
n counter increment transactions causes O(n) threads to wake in the body of the second transaction. (This
is a stress test, not a reasonable way to implement a barrier.) Performance of default (usleep) retry is
substantially worse than that of the other two methods, but otherwise the overhead of waking transactions
dominates, and is equal for visible readers and Bloom retry.

Token Passing: In Figure 2(a), transactions wait to receive a token that is passed randomly between
threads. Similarly, in Figure 2(b), transactions use retry to wait for one of four tokens that are passed
between threads in a fixed order. In both cases, read sets are small, and for low thread levels, visible-reader
and Bloom transactions abort and restart in their final validation after calling retry. Consequently, they do
not yield the CPU, resulting in substantial improvement over the default implementation. At higher thread
counts, the likelihood of a transaction yielding rather than aborting during its final validation increases. Up
until this point, Bloom performs best because its overhead is lowest in the absence of retryers. However, at
high thread levels, transactions do yield the CPU, and visible readers perform best since they do not scan a
list of all sleeping transactions at commit time.

Bounded Buffer: We also consider a bounded buffer with variable producer and consumer counts. Our
buffer maintains an initialization field in each bucket to prevent conflicts over centralized counters. In
Figure 3 we see that across a variety of producer/consumer combinations, Bloom filters outperform visible
readers. Since all retrying transactions (either producers or consumers) retry on the same location, visible
readers have higher cache contention since they require two atomic read-modify-write operations on that
location by each retryer. Even on the Niagara, with its shared L2 cache and write-through policy, the cost
is noticable. As the buffer size increases, the likelihood of imbalance decreases, and the incidence of retry
decreases. Thus with 1024 entries, retry is rare enough that the default implementation rarely calls usleep,
and thus ceases to perform an order of magnitude worse. Even so, retry is frequent enough that the benefits
of Bloom retry over both visible readers and the default mechanism remain.

5

 0

 100000

 200000

 300000

 400000

 500000

 600000

 P
16

-C
2

 P
4-

C4

 P
2-

C1
6

 P
16

-C
1

 P
8-

C1

 P
4-

C1

 P
2-

C1

 P
1-

C1
6

 P
1-

C8

 P
1-

C4

 P
1-

C2

 P
1-

C1

To
ta

l T
ra

ns
ac

tio
ns

/S
ec

on
d

VisRead
Bloom

Default

(a) Bounded Buffer with 64 entries

 0

 100000

 200000

 300000

 400000

 500000

 600000

 P
16

-C
2

 P
4-

C4

 P
2-

C1
6

 P
16

-C
1

 P
8-

C1

 P
4-

C1

 P
2-

C1

 P
1-

C1
6

 P
1-

C8

 P
1-

C4

 P
1-

C2

 P
1-

C1

To
ta

l T
ra

ns
ac

tio
ns

/S
ec

on
d

VisRead
Bloom

Default

(b) Bounded buffer with 1024 entries

Figure 3: Bounded buffer experiments with varying producer (P) and consumer (C) counts.

4 Conclusions and Future Work

Our results are clearly mixed: both Bloom-filter and (optimized) visible-reader retry outperform the default
usleep-based polling, but neither consistently outperforms the other. Since our visible reader retry im-
poses a limit on the number of retrying transactions, we are hopeful that Bloom retry may ultimitely offer
higher performance, especially for CPUs that provide vector instructions to accelerate Bloom operations.

As we continue to experiment with new transactional workloads, we hope to clarify the tradeoff between
retry mechanisms, or to identify application characteristics that favor a particular implementation. Certainly
Bloom retry is more orthogonal to the rest of the STM system than visible readers are; it can easily be
applied to hardware and hybrid TMs, as well as TMs that do not use ownership records.

Our implementations and microbenchmarks are available as a patch to RSTM, available from the project
website [16].

References
[1] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications of the ACM,

13(7):422–426, 1970.

[2] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid Transactional Memory.
In Proceedings of the 12th International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, Oct. 2006.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Proceedings of the 20th International Symposium
on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[4] P. Felber, C. Fetzer, U. Müller, T. Riegel, M. Süßkraut, and H. Sturzrehm. Transactifying Applications using an
Open Compiler Framework. In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Computing,
Portland, OR, Aug. 2007.

[5] K. Fraser. Practical Lock-Freedom. Technical Report UCAM-CL-TR-579, Cambridge University Computer
Laboratory, Feb. 2004.

[6] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable Memory Transactions. In Proceedings of
the 10th ACM SIGPLAN 2006 Symposium on Principles and Practice of Parallel Programming, pages 48–60,
Chicago, IL, June 2005.

6

[7] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional Memory for Dynamic-sized
Data Structures. In Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing,
Boston, MA, July 2003.

[8] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg. A Scalable Transactional Memory Allocator. In
Proceedings of the 2006 International Symposium on Memory Management, Ottawa, ON, Canada, June 2006.

[9] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional Memory. In Proceedings of
the 19th International Symposium on Distributed Computing, Cracow, Poland, Sept. 2005.

[10] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L. Scott. Lowering the
Overhead of Nonblocking Software Transactional Memory. In Proceedings of the 1st ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional Computing, June 2006.

[11] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic Binary-Rewriting Approach to Software
Transactional Memory. In PACT ’07: Proceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques (PACT 2007), Brasov, Romania, Sept. 2007.

[12] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Transactions with Isolation and Cooperation. In OOPSLA
’07: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object Oriented Programming Systems and
Applications, Montreal, Quebec, Canada, Oct. 2007.

[13] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict Detection and Validation Strategies for
Software Transactional Memory. In Proceedings of the 20th International Symposium on Distributed Computing,
Stockholm, Sweden, Sept. 2006.

[14] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable Transactions with a Single Atomic In-
struction. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, June 2008.

[15] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L. Scott. Nonblocking Transactions Without
Indirection Using Alert-on-Update. In Proceedings of the 19th ACM Symposium on Parallelism in Algorithms
and Architectures, San Diego, CA, June 2007.

[16] Univ. of Rochester. Rochester Software Transactional Memory. http://www.cs.rochester.edu/research/
synchronization/rstm/.

7

