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ABSTRACT
We consider the Maximum Integral Flow with Energy Con-
straints problem: given a directed graph G = (V, E) with
edge-weights {w(e) : e ∈ E} and node battery capacities
{b(v) : v ∈ V }, and two nodes r, s ∈ V , find a maximum
integral rs-flow f so that for every node v its energy con-
sumption

P

vu∈E
f(vu)w(vu) is at most b(v). Let k be the

maximum integral flow value. We give a polynomial time
algorithm that computes a flow of value at least bk/16c. As
checking whether k ≥ 1 can be done in polynomial time,
this gives an approximation algorithm with ratio that ap-
proaches 1/16 when k is large, and is not worse than 1/31.
This is the first constant ratio approximation algorithm for
this problem, which solves an open question from [2]. This
result is based on a bicriteria approximation algorithm for a
more general problem, in which we seek a minimum cost set
of k pairwise edge-disjoint rs-paths (that is, a k-flow) sub-
ject to weighted degree constraints. We give a polynomial
time algorithm that computes a flow of value k and violates
the weighted degrees by a factor at most 4. This result is of
independent interest.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory, Network problems

General Terms
Algorithms, Design

1. INTRODUCTION

1.1 Problem definition and motivation
In many Network Design problems we seek a subgraph

H with prescribed properties that minimizes/maximizes a
certain objective function. Such problems are vastly stud-
ied in Combinatorial Optimization and Approximation Al-
gorithms. Some known examples are Max-Flow, Min-Cost k-
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Flow, Maximum b-Matching, Minimum Spanning/Steiner Tree,
and many others. See, e.g., [17, 9].

Many of these problems are motivated by applications for
wired networks, but recently problems arising from wireless
networks received a lot of attention due to their extensive
applications. A wireless sensor contains a battery whose
energy is used to transmit messages to other sensors. As
the battery capacity of a sensor is limited, it is crucial to
use a strategy that maximizes the lifetime of the network.
We study the situation where sensors are deployed in the
field to gather data (e.g., military, medical, traffic, etc., c.f.,
Zhao and Guibas [21]) and then relay the data packets via
other sensors back to a base station s. It is desirable to get as
many data packets as possible from the sensors to the base
station, before some of the sensor batteries are depleted.

Many papers considered fractional flows when splitting
of packets into fractional portions is allowed. This version
admits an easy polynomial time algorithm via linear pro-
gramming, c.f., [3, 5, 10, 12, 16, 20]. As data packets are
usually quite small, there are situations where splitting of
packets into fractional ones is not desirable nor practical.
We consider a model where data packets are considered as
units that cannot be split, i.e., when the packet flows are of
integral values only.

We can augment the network with a super source node r
and connect it to all the source nodes with zero energy. We
can then view the network as having a single source r and
a single sink s. The goal is to maximize the rs-flow subject
to the battery energy constraints. Formally, we obtain the
following problem, which is the ”wireless variant”of the clas-
sic Max-Flow problem. For a graph H = (V, I) and a node
v ∈ V , let δH(v) = δI(v) denote the set of edges leaving v in
H, and let δin

H (v) = δin

I (v) denote the set of edges entering
v in H. An rs-flow in a graph G = (V, E) is a function f
that assigns to every edge e ∈ E a nonnegative real number
f(e) so that the flow conservation constraints hold:

X

e∈δin

E
(v)

f(e) =
X

e∈δE(v)

f(e) for all v ∈ V − {r, s} .

Namely, the flow entering v equals the flow leaving v. Assu-
ming no flow is entering r or leaving s, the value of a flow
f is the total amount

P

e∈δE(r) f(e) of flow leaving r, which

equals the total amount
P

e∈δin(s) f(e) of flow entering s. A

flow is integral if f(e) is integral for all e ∈ E. Henceforth
we consider integral flows only, hence “flow” means “integral
flow”. It is well known that any (integral) rs-flow f of value
k can be decomposed into k rs-paths so that f(e) is at least
the number of path containing e.



We consider the following problem:

Maximum Integral Flow with Energy Constraints
Instance: A directed graph G = (V, E) with edge-weights

{w(e) : e ∈ E}, battery capacities {b(v) : v ∈ V },
and two nodes r, s ∈ V .

Objective: Find a maximum (integral) rs-flow f that satisfies
the energy constraints
X

e∈δE(v)

f(e)w(e) ≤ b(v) for all v ∈ V . (1)

We observe that for unit weights the problem is easily
reduced to a Max-Flow problem with node-capacities, and
thus is solvable in polynomial time. Furthermore, if for ev-
ery node v all the edges in δG(v) have the same cost, then
the problem is easily reduced to the case of unit weights,
and thus is also solvable in polynomial time. However, as
was shown in [2], the problem becomes APX-hard even if
the weights can take only two values. Furthermore, it was
also shown in [2] that the problem is strongly NP-hard for
geometric configurations on the real line, where w(uv) is the
square of the distance between u and v. Hence it seems that
a constant ratio approximation algorithm is the best one can
expect, namely, the problem is unlikely to admit a PTAS.

Maximum Integral Flow with Energy Constraints belongs to
a class of Maximum Network Lifetime problems. In these
problems, every node v has a limited battery capacity b(v),
and a transmission energy w(vu) to any other node u is
known. In transmission round i, we choose a subnetwork Hi

with given properties, and every node transmits one message
to each one of its neighbors in Hi; in many applications,
each Hi is an arborescence (see [4]), and in our case each Hi

is an rs-path. The goal is to maximize the lifetime of the
network, that is to find a maximum length feasible sequence
H1, H2, . . . , Hk of subnetworks; feasibility means that every
graph Hi satisfies the required properties, and that for every
node v the total transmission energy during all rounds is
at most b(v). This is the Multiple Topology version of the
problem. In the Single Topology variant, all the networks Hi

are identical, c.f., [4] for more details.

1.2 Our results
It was shown in [2] that Maximum Integral Flow with Energy

Constraints is APX-hard. We give the first constant ratio
algorithm for the problem, thus solving an open problem
from [2].

Theorem 1.1. For an instance of Maximum Integral Flow
with Energy Constraints problem let k be the maximum inte-
gral flow value. There exist a polynomial time algorithm that
checks if k ≥ 1 and finds a flow of value at least bk/16c.
Consequently, the problem admits an approximation algo-

rithm with ratio 1
k

for k ≤ 16, and 1
16

(1 − (k mod 16)
k

) ≥ 1
31

for any k ≥ 17; the ratio approaches 1/16 when k is large,
and is not worse than 1/31.

Theorem 1.1 is based on a bicriteria approximation algo-
rithm for a more general problem, in which we seek a min-
imum cost set of k pairwise edge-disjoint rs-paths (that is,
a k-flow) subject to weighted degree constraints. This prob-
lem is of independent interest. Given a graph H = (V, F )
with edge weights {w(e) : e ∈ F}, the weighted degree of a
node v ∈ V is w(δH(v)) =

P

e∈δH (v) w(e).

Weighted-Degree Constrained Min-Cost k-Flow
Instance: A directed graph G = (V, E) with edge-costs

{c(e) : e ∈ E}, edge-weights {w(e) : e ∈ E},
degree bounds {b(v) : v ∈ V }, two nodes r, s ∈ V ,
and an integer k.

Objective: Find a minimum cost subgraph H = (V, F ) of
G that contains k pairwise edge-disjoint rs-paths
and satisfies the weighted degree constraints

w(δH(v)) ≤ b(v) for all v ∈ V . (2)

Let τ∗ denote the optimal value of the natural LP-relaxa-
tion for Weighted Degree Constrained Min-Cost k-Flow that
seeks to minimize c · x over the following polytope Pk:

x(δin

E (S)) ≥ k for all s ∈ S ⊂ V − r
X

e∈δE(v)

x(e)w(e) ≤ b(v) for all v ∈ V

0 ≤ x(e) ≤ 1 for all e ∈ E

Theorem 1.2. Weighted-Degree Constrained Min-Cost k-
Flow admits a polynomial time algorithm that either correctly
establishes that the polytope Pk is empty, or computes a sub-
graph H of G with k pairwise edge-disjoint rs-paths of cost
c(H) ≤ τ∗ so that w(δH(v)) ≤ 4b(v) for all v ∈ V .

The Weighted Degree Constrained Min-Cost k-Flow prob-
lem belongs to a class of Degree Constrained Network Design
problems. In these problems, one seeks the cheapest sub-
graph H of a given graph G that satisfies both prescribed
connectivity requirements and degree constraints. One such
type are the matching/edge-cover problems, which are solva-
ble in polynomial time, c.f., [17]. For many other degree
constrained problems, even checking whether there exists a
feasible solution is NP-complete, hence one considers bicrite-
ria approximation when the degree constraints are relaxed.
See [7, 11, 8, 13, 14, 18, 1, 19, 6, 15] for literature on this
type of problems.

2. PROOF OF THEOREM 1.1
Here we prove Theorem 1.1 based on Theorem 1.2. We

may assume that we know the maximum flow value k, by
applying binary search in the range 0, . . . , nq, where

q = max
v∈V

b(v)

min{w(e) : e ∈ δE(v), w(e) > 0}
.

Indeed, if G contains an rs-path of weight 0, then k is infi-
nite. Otherwise, every flow path contains a node v that uses
an edge e ∈ δG(v) with w(e) > 0, which implies the bound
k ≤ nq. As an edge of G may be used several times, add
k− 1 copies of each edge of G. Equivalently, we may assign
to every edge capacity k, and consider the corresponding
”capacited” problems; this will give a polynomial algorithm,
rather than a pseudo-polynomial one. For simplicity of expo-
sition, we will present the algorithm in terms of multigraphs,
but it can be easily adjusted to capacited graphs.

It is easy to see that checking whether k ≥ 1 can be done
in polynomial time. We prove a slightly stronger statement,
that also shows that the Single Topology version of the Maxi-
mum Integral Flow with Energy Constraints problem, when all
the flow should be routed through a single rs-path P , can
be solved in polynomial time.



Lemma 2.1. Given an instance of Maximum Integral Flow
with Energy Constraints and an integer `, one can check in
linear time if there exists a path P so that a flow of value
at least ` can be routed via P . Consequently, an optimal
path that enables routing a maximum amount of flow can be
found in O(|E| log q) time.

Proof. Let G′ be obtained from G by deleting every edge
vu ∈ E with w(vu) > b(v)/`. It is easy to see that G con-
tains a path P as in the Lemma if, and only if, G′ contains
an rs-path. Clearly, constructing G′ and checking if G′ con-
tains an rs-path can be done in linear time.

We now describe how to find an optimal path P in time
O(|E| log q). Let k be an optimal flow through a path. Note
that k ≤ q or k = ∞. Indeed, if G contains an rs-path
of weight 0, then k is infinite. Otherwise, there is a node v
that uses an edge e ∈ δG(v) with w(e) > 0, which implies the
bound k ≤ q. The algorithm verifies that k is finite, and if so,
applies binary search in the range 0, . . . q, to find the largest
integer ` for which a flow of value ` can be routed through
a single path. For each candidate `, the time required is
linear. Hence the total time complexity is as claimed.

Now we observe that Theorem 1.2 implies the following
”pseudo-approximation” algorithm:

Corollary 2.2. For Maximum Integral Flow with Energy
Constraints there exists a polynomial time algorithm that ei-
ther correctly establishes that the polytope Pk is empty, or
finds an integral flow f of value at least k that violates the
energy constraints by a factor at most 4, namely

X

e∈δE(v)

f(e)w(e) ≤ 4b(v) for all v ∈ V . (3)

Proof. Use binary search in the range 0, . . . , nq to find
the largest integer ` for which the algorithm as in Theo-
rem 1.2 (with costs ignored) returns an `-flow f that satisfies
(3).

The algorithm in Theorem 1.1 is as follows:

1. Apply the algorithm as in Lemma 2.1 to determine
whether there exists a path P so that at least 1 flow
unit can be routed via P .
If no such P exists, then return “k = 0” and STOP.

2. Set b(v)← b(v)/4 for all v ∈ V and compute a flow f
using the algorithm as in Corollary 2.2.

3. If the value of f is at least 1, then return f ;
Else return P .

For the approximation ratio, all we need to prove is that if
the original instance admits a k-flow, then the new instance
with bounds b(v)/4 admits a flow of value bk/16c.

Let λ(r, s; H) be the maximum number of pairwise edge-
disjoint rs-paths in a graph H. Clearly, if Hk is a graph
with λ(r, s; Hk) ≥ k then, for any ` ≤ k, Hk has a subgraph
H` with λ(r, s; H`) ≥ ` so that c(H`) ≤ c(Hk) · (`/k). We
prove that there exists H` so that the weighted degree of
every node v in H` is at most 4 times the ”expected” weight
w(δHk

(v)) ·(`/k); namely, H` has both low weighted degrees
and low cost. This result is of independent interest, but
for the proof of Theorem 1.1 we need only the existence of
H` with weighted degrees ≤ 4w(δHk

(v)) · (`/k) (namely, we
ignore the costs).

Lemma 2.3. Let Hk = (V, F ) be a graph with edge-costs
{c(e) : e ∈ E} and edge-weights {w(e) : e ∈ E}, so that
λ(r, s; Hk) ≥ k. Then for any integer ` ≤ k the graph Hk

contains a subgraph H` with λ(r, s; H`) ≥ ` so that c(H`) ≤
c(Hk) · (`/k) and w(δH`

(v)) ≤ 4w(δHk
(v)) · (`/k) for all

v ∈ V .

Proof. Consider the Weighted Degree Constrained Min-
Cost `-Flow problem on G = Hk with weighted degree bounds
b(v) = w(δH(v)) · (`/k). Clearly, x(e) = `/k for every e ∈ F
is a feasible solution of cost c(Hk)·(`/k) to the LP-relaxation
min{c ·x : x ∈ P`}. In particular, P` is non-empty, and thus
the algorithm as in Corollary 2.2 computes a subgraph H`

as required.

Substituting ` = bk/16c in Lemma 2.3 and ignoring the
costs we obtain:

Corollary 2.4. Let H be a graph with λ(r, s; H) ≥ k
and with weights {w(e) : e ∈ E}. Then H contains a sub-
graph H ′ with λ(r, s; H ′) ≥ bk/16c so that w(δH′(v)) ≤
w(δH(v))/4 for all v ∈ V .

Theorem 1.1 is now easily deduced from Lemma 2.1 and
Corollaries 2.2 and 2.4.

3. PROOF OF THEOREM 1.2

3.1 Weighted degree constrained network
design

The connectivity requirements can specified by a set func-
tion h on subsets of V , as follows.

Definition 3.1. For an edge set or a graph H and node
set S let δin

H (S) denote the set of edges in H entering S.
Given a set-function h on V and a graph H = (V, F ) we say
that H is h-connected if |δin

H (S)| ≥ h(S) for all S ⊆ V .

Directed Weighted Degree Constrained Network (DWDCN)
Instance: A directed graph G = (V, E) with edge-costs

{c(e) : e ∈ E}, set-function h on V , edge-weights
{w(e) : e ∈ E}, degree bounds {b(v) : v ∈ V }.

Objective: Find a minimum cost h-connected subgraph H of
G that satisfies (2).

We assume that h admits a polynomial time evaluation
oracle. In many cases, even checking whether there exists a
feasible solution is NP-complete, thus we consider bicriteria
approximation algorithms. An (α, β)-approximation algo-
rithm for DWDCN either computes an h-connected subgraph
H = (V, F ) of G of cost ≤ α · τ that satisfies w(δH(v)) ≤
β ·b(v) for all v ∈ V , where τ is the optimal solution value, or
correctly determines that the problem has no feasible solu-
tion. Note that even if the problem does not have a feasible
solution, the algorithm may still return a subgraph that vio-
lates the weighted degree constraints (2) by a factor of β.
Several types of h are considered in the literature, among
them the following known one:

Definition 3.2. A set function h on V is intersecting
supermodular if for any X, Y ⊆ V , X ∩ Y 6= ∅

h(X) + h(Y ) ≤ h(X ∩ Y ) + h(X ∪ Y ) . (4)

h is a ring function (or an s-ring function) if h is intersect-
ing supermodular and there exists s ∈ V so that h(S) > 0
implies s ∈ S.



For an edge set I, let x(I) =
P

e∈I
x(e). Let τ∗ denote

the optimal value of the natural LP-relaxation for DWDCN
that seeks to minimize c · x over the following polytope:

Ph : x(δin

E (S)) ≥ h(S) for all ∅ 6= S ⊂ V
X

e∈δE(v)

x(e)w(e) ≤ b(v) for all v ∈ V

0 ≤ x(e) ≤ 1 for all e ∈ E

Fukunaga and Nagamochi [6] and the author [15] were the
first to consider weighted-degree constrained network design
problems. Fukunaga and Nagamochi [6] considered undi-
rected graphs, and gave a (1, 4)-approximation algorithm for
minimum spanning trees and a (2, 7)-approximation algo-
rithm for weakly supermodular h. For directed graphs, the
best known ratio for DWNC with intersecting supermodu-
lar h [15] computes a solution of cost ≤ 2 · τ ∗, so that the
weighted degree of every v ∈ V is at most 6b(v).

The Weighted Degree Constrained Min-Cost k-Flow prob-
lem is a special case of DWDCN obtained by setting

h(S) =



k if s ∈ S ⊆ V − r
0 otherwise

This h is an s-ring function. Thus Theorem 1.2 will be
proved if we can prove:

Theorem 3.1. DWDCN with ring function h admits a
polynomial time algorithm that either correctly establishes
that Ph is empty, or computes an h-connected graph H of
cost ≤ τ∗ so that the weighted degree in H of every v ∈ V
is at most 3b(v).

Note again that in this case, h is not only intersecting
supermodular, but it is also an s-ring function; this enables
to obtain a better algorithm than the one given in [15].

3.2 The algorithm
During the algorithm, F denotes the partial solution, I are

the edges to add to F , and B is the set of nodes on which
the outdegree bounds constraints are still present. The algo-
rithm starts with F = ∅, B = V and performs iterations. In
any iteration, we work with the ”residual problem”polytope
Ph(I, F, B) (α ≥ 1 is a fixed parameter, which we eventually
set to α = 1):

x(δin

I (S)) ≥ h(S)− |δin

F (S)| for all ∅ 6= S ⊂ V
X

e∈δI (v)

x(e)w(e) ≤ b(v)− w(δF (v))/α for all v ∈ B

0 ≤ x(e) ≤ 1 for all e ∈ I

Recall some facts from polyhedral theory. Let x belong
to a polytope P ⊆ Rm defined by a system of linear in-
equalities; an inequality is tight (for x) if it holds as equality
for x. x ∈ P is a basic solution for (the system defining)
P if there exist a set of m tight inequalities in the system
defining P such that x is the unique solution for the cor-
responding equation system; that is, the corresponding m
tight equations are linearly independent. It is well known
that if min{c ·x : x ∈ P} has an optimal solution, then it has
an optimal solution which is basic, and that a basic optimal
solution for {c · x : x ∈ Ph(I, F, B)} can be computed in
polynomial time, c.f., [1].

Definition 3.3 ([6]). Ph(I, F, B) is (α, ∆)-sparse for
α, ∆ ≥ 1 if any basic solution x ∈ Ph(I, F, B) has an edge
e ∈ I with x(e) = 0, or satisfies at least one of the following:

x(e) ≥ 1/α for some e ∈ I (5)

|δI(v)| ≤ ∆ for some v ∈ B (6)

The following general statement was proved in [15]:

Theorem 3.2 ([15]). If for any I, F so that Ph(I, F, B)
is non-empty the polytope Ph(I, F, B) is (α, ∆)-sparse, and
if Ph = P (E, ∅, V ) is nonempty, then DWDCN admits an
(α, α+∆)-approximation algorithm w.r.t. the LP-relaxation
min{c · x : x ∈ Ph(E, ∅, V )}.

Thus to prove Theorem 3.1, it is sufficient to prove the
following statement:

Theorem 3.3. For any ring set function h, if Ph(I, F, B)
is non-empty, then it is (1, 3)-sparse.

3.3 Proof of Theorem 3.3
Note that if x ∈ Ph(I, F, B) is a basic solution so that

0 < x(e) < 1 for all e ∈ I, then every tight equation is
induced by either:

• cut constraint x(δin

I (S)) ≥ h(S) − |δin

F (S)| defined by
some set ∅ 6= S ⊂ V with h(S)− |δin

F (S)| ≥ 1.

• degree constraint
X

e∈δI (v)

x(e)w(e) ≤ b(v)−w(δF (v))/α

defined by some node v ∈ B.

A family F of sets is laminar if for every S, S′ ∈ F , either
S ∩ S′ = ∅, or S ⊆ S′, or S′ ⊆ S. We use the following
statement observed in [15].

Lemma 3.4 ([15]). Let h be an intersecting supermo-
dular set function. For any basic solution x to Ph(I, F, B)
with 0 < x(e) < 1 for all e ∈ I, there exist a laminar family
L on V and T ⊆ B such that x is the unique solution to the
linear equation system:

x(δin

I (S)) = h(S)− |δin

F (S)| for all S ∈ L
X

e∈δI (v)

x(e)w(e) = b(v)− w(δF (v))/α for all v ∈ T

where h(S) − |δin

F (S)| ≥ 1 for all S ∈ L. In particular,
|L| + |T | = |I| and the characteristic vectors of δin

I (S) for
all S ∈ L are linearly independent.

Let L and T be as in Lemma 3.4 In the particular case
when f is a ring function, L must be nested, namely, there
exists an ordering S1, S2, . . . , S` of L so that S1 ⊂ S2 ⊂ · · · ⊂
S`. Define a child-parent relation on the members of L+ T
as follows. For S ∈ L or v ∈ T , its parent is the inclusion
minimal member of L properly containing it, if any. Note
that if v ∈ T and {v} ∈ L, then {v} is the parent of v, and
that no members of T has a child. Since L is nested, every
member of L except the smallest one has exactly one child
in L (but may have several children in T ).

We prove that if x ∈ Ph(I, F, B) is a basic solution so
that 0 < x(e) < 1 for all e ∈ I, then there exists v ∈ B
with |δI(v)| ≤ 3. Suppose to the contrary that this is not
so. Then we must have:



• |δin

I (S)| ≥ 2 for all S ∈ L.

• |δI(v)| ≥ 4 for all v ∈ T .

Assign one token to each endnode of an edge in I. The
number of tokens is thus 2|I|. A token contained in S is an
S-token. Assuming Theorem 3.3 is not true, we obtain the
contradiction |I| > |L| + |T | by showing that given S ∈ L,
we can assign the S-tokens so that:

The 2-Scheme:
S and every descendant of S gets 2 S-tokens.

The contradiction |I| > |L| + |T | is obtained as follows.
Any member of L+ T gets 2 tokens, and we exhibit at least
one more token as follows. If there is v ∈ T that is not
contained in the maximal member of L, then v gets 3 tokens,
which gives one spare token. Otherwise, the tail tokens of
edges entering a maximal set in L are not assigned, and in
this case we have at least 2 spare tokens. Thus all we need
to prove is that the 2-Scheme above is feasible.

Initial assignment:
For every v ∈ T , we assign some 3 tail-tokens of the edges
in δI(v).

The rest of the proof is by induction on the number of
descendants of S ∈ L. If S has no children/descendants, it
contains at least |δin

I (S)| ≥ 2 head-tokens, as claimed.

Lemma 3.5. Suppose that 0 < x(e) < 1 for all e ∈ E,
and let S ∈ L with child R ∈ L. Then

|(δin

I (S)− δin

I (R)) ∪ (δin

I (R)− δin

I (S))| ≥ 2 .

Proof. We cannot have δin

I (R) = δin

I (S) as this con-
tradicts the linear independence in Lemma 3.4. Hence at
least one of the edge-sets δin

I (S) − δin

I (R), δin

I (R) − δin

I (S)
is nonempty. If one of these sets is empty, say δin

I (S) −
δin

I (R) = ∅, then x(δin

I (R)) − x(δin

I (S)) must be a positive
integer. Thus |δin

I (R) − δin

I (S)| ≥ 2, as otherwise there
is an edge e ∈ δin

I (R) − δin

I (S) with x(e) = 1. The case
δin

I (R)− δin

I (S) = ∅ is identical.

Lemma 3.6. The 2-Scheme is feasible.

Proof. If (S−R)∩T = ∅ (namely, if S has no child in T )
then S can get 2 S-tokens not assigned to R, by Lemma 3.5.
If (S − R) ∩ T 6= ∅ (namely, if S has a child v ∈ T ) then S
can get 2 tokens from v. In both cases, we get an assignment
as claimed.

The proof of Theorem 3.3 is complete.
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