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Abstract—In this paper, we present a ray tracing-based method for accelerated global illumination computation in scenes with low-

frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In

particular, we extend the irradiance caching scheme proposed by Ward et al. [1] to cache and interpolate directional incoming radiance

instead of irradiance. The incoming radiance at a point is represented by a vector of coefficients with respect to a hemispherical or

spherical basis. The surfaces suitable for interpolation are selected automatically according to the roughness of their BRDF. We also

propose a novel method for computing translational radiance gradient at a point.

Index Terms—Global illumination, ray tracing, hemispherical harmonics, spherical harmonics, directional distribution.
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1 INTRODUCTION

MONTE Carlo ray tracing is the method of choice for
computing images of complex environments with

global illumination [2]. Even for the radiosity method, high
quality images are created by final gathering, often using
Monte Carlo ray tracing [3].

Monte Carlo ray tracing is, however, expensive when it
comes to computing indirect illumination on surfaces with
low-frequency BRDFs (bidirectional reflectance distribution
functions). Too many rays have to be traced to get a
reasonably precise estimate of the outgoing radiance at a
point. Fortunately, a high degree of coherence in the
outgoing radiance field on those surfaces [1], [4], [5], [6]
can be exploited by interpolation [1], [7] to obtain a
significant performance gain.

Our goal is to accelerate Monte Carlo ray tracing-based
global illumination computation in the presence of surfaces
with low-frequency glossy BRDFs. We achieve it through
sparse sampling, caching, and interpolating radiance on
those surfaces. In particular, we extend Ward et al.’s
irradiance caching [1], [8] to glossy surfaces. Irradiance
caching is based on the observation that reflected radiance
on diffuse surfaces due to indirect illumination changes very
slowly with position. However, this applies to surfaces with
arbitrary low-frequency BRDFs. Motivated by this observa-
tion, we extend Ward et al.’s work to cache and interpolate
the directional incident radiance instead of the irradiance.
This allows us to accelerate indirect lighting computation
on surfaces with glossy BRDFs. We call the new method
radiance caching.

The incoming radiance at a point is represented by a
vector of coefficients with respect to spherical or hemi-
spherical harmonics [9]. Due to the basis orthogonality, the
illumination integral evaluation (1) reduces to a dot product
of the interpolated incoming radiance coefficients and the
BRDF coefficients. Radiance interpolation is carried out by
interpolating the coefficients. We enhance the interpolation
quality by the use of translational gradients. We propose
novel methods for computing gradients that are more
general than the method of Ward and Heckbert [8].

Radiance caching shares all the advantages of Ward
et al.’s work. Computation is concentrated on visible parts
of the scene; no restrictions are imposed on the scene
geometry; implementation and integration with a ray tracer
is easy. Our approach can be directly used with any BRDF
represented by (hemi)spherical harmonics, including mea-
sured BRDFs.

This paper extends the initial description of radiance
caching given in [9]. The main contributions of this paper
are the extension of irradiance caching to glossy surfaces, an
automatic method for selecting BRDFs suitable for radiance
caching, new methods for computing translational radiance
gradient, and integration of radiance caching in a ray tracer.

The rest of the paper is organized as follows: Section 2
summarizes the related work. Section 3 gives an overview
of how radiance caching works and how it is integrated in a
ray tracer. Section 4 details different aspects of radiance
caching. Section 5 presents the results. Section 6 discusses
various topics not covered in the algorithm description.
Section 7 concludes the paper and summarizes our ideas for
future work.

2 RELATED WORK

2.1 Interpolation

Interpolation can be used in global illumination whenever
there is a certain level of smoothness in the quantity being
computed. The radiosity method uses interpolation in the
form of surface discretization, e.g., [10], [11], [12]. In the
context of Monte Carlo ray tracing, approaches have been
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proposed for screen space interpolation [5], [13], [14], [15]. The
goal of these methods is to display an approximate solution
quickly. However, they do not accelerate the computation
of the final high quality solution, which is the objective of
our work. Object space interpolation has also been used for
the purpose of fast previewing [16], [17]. Sparse sampling
and interpolation for high quality rendering was used in [7],
[1]. The approach of Bala et al. [7] is suitable only for
deterministic ray tracing. Ward et al. [1] use interpolation
only for diffuse surfaces. Our approach extends this work to
support caching and interpolation of the directional incom-
ing radiance on glossy surfaces.

2.2 Caching Directional Distributions

Caching directional distributions has been used to extend
the radiosity method to support glossy surfaces, e.g., [18],
[19], [20], [21], [22], [23], [24], [25]. It has also been used in
Monte Carlo ray tracing on diffuse surfaces [6], [26], [27].
Slusallek et al. [6] and Kato [26] use reprojection of radiance
samples. Tawara et al. [27] selectively update a radiance
sample list in time to exploit temporal coherence. Storing
light particles in the scene can also be thought of as caching
a directional distribution [28], [29].

2.3 Spherical Function Representation

A representation of functions on a (hemi)sphere is
necessary for incoming radiance caching. Piecewise con-
stant representation [6], [24], [26], [27] is simple but prone to
aliasing and memory demanding. Unless higher order
wavelets are used, even wavelet representation [21], [22],
[23], [25], [30] does not remove the aliasing problems.
Nevertheless, wavelets are a viable alternative to the use of
spherical or hemispherical harmonics, especially for higher
frequency BRDFs.

Spherical Harmonics [18], [20], [31], [32], [33], [34], [35],
[36], [37] remove the aliasing problem and are efficient for
representing low-frequency functions. However, represen-
tation of sharp functions requires many coefficients and
ringing might appear. Hemispherical harmonics [9] are
better suited for representing functions on a hemisphere.
Basis functions similar to spherical harmonics are Zernike
polynomials [38], [39] and the hemispherical harmonics of
Makhotkin [40]. Unlike for spherical harmonics, the rotation
procedure is not available for these basis functions. We
choose hemispherical and spherical harmonics because they
are the only basis for which an efficient rotation procedure
is available. They also have good antialiasing properties,
low storage cost, and are easy to use.

2.4 Illumination Gradient Computation

Arvo [41] computes the irradiance Jacobian due to partially
occluded polygonal emitters of constant radiosity.
Holzschuch and Sillion [42] handle polygonal emitters with
arbitrary radiosity. Ward and Heckbert [8] compute
irradiance gradient using the information from hemisphere
sampling. Our gradient computation is also based on
hemisphere sampling. We use gradients to improve the
smoothness of the radiance interpolation. One of the
algorithms we use for gradient computation was indepen-
dently developed by Annen et al. [43].

2.5 Irradiance Caching

Ward et al. [1] propose irradiance caching as a means of
computing indirect diffuse interreflections in a ray tracer

[2]. They sample the irradiance sparsely over surfaces,
cache the results, and interpolate them. For each ray hitting
a surface, the irradiance cache is queried. If irradiance
records are available, the irradiance is interpolated. Other-
wise, a new irradiance record is computed by sampling the
hemisphere and added to the cache. In [8], the interpolation
quality is improved by the use of irradiance gradients.

We retain the basic structure of the original algorithm,
but each record stores the incoming radiance function over
the hemisphere. This allows us to apply the interpolation to
glossy surfaces.

3 ALGORITHM OVERVIEW

Radiance caching is a part of a ray tracing approach to
global illumination. At every ray-surface intersection, the
outgoing radiance is evaluated with the illumination integral:

Lð�o; �oÞ ¼Z 2�

0

Z �=2

0

Lið�i; �iÞfð�i; �i; �o; �oÞ cos �i sin �id�id�i;
ð1Þ

where L is the outgoing radiance, Li is the incoming
radiance, and f is the BRDF. The integral is split into parts
and each of them is solved by a different technique:

. Direct illumination uses a deterministic method for
point light sources and area sampling for area light
sources [44].

. Perfect specular reflections/refractions are solved by
tracing a single deterministic secondary ray.

. Ward’s irradiance caching computes the indirect
diffuse term for purely diffuse surfaces.

. Two different techniques may be used for glossy
surfaces.

- Low-frequency BRDF. Our radiance caching
computes the indirect glossy and diffuse terms.

- High-frequency BRDF. Monte Carlo importance
sampling computes the indirect glossy term
and irradiance caching computes the indirect
diffuse term.

Radiance caching is not used for high-frequency BRDFs
since many coefficients would be needed. Moreover, high-
frequency BRDFs are well-localized and importance sam-
pling provides good accuracy with a few secondary rays.
The distinction between low and high-frequency BRDFs is
done automatically, as described in Section 4.1. The steps of
the rendering algorithm related to radiance caching are
shown in Fig. 1.

The ith radiance cache record contains:

. position pi,

. local coordinate frame ðui;vi;niÞ,

. hemispherical harmonics coefficient vector �i repre-
senting the incoming radiance,

. two derivative vectors @�i

@x and @�i

@y representing the
translational gradient, and

. harmonic mean distance Ri of objects visible from pi.

� denotes a coefficient vector and �m
l denotes a coefficient,

that is, � ¼ f�m
l g. Each record stores the incident radiance

function in a view-independent manner so that it can be

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2005



reused for different viewpoints. The records are stored in an

octree, as described by Ward et al. [1].

4 RADIANCE CACHING DETAILS

4.1 BRDF Representation

We represent the BRDFs using the method of Kautz et al.

[35] which we briefly describe here. We discretize the

hemisphere of outgoing directions. For each discrete

outgoing direction ð�o; �oÞ, we use hemispherical harmonics

to represent the BRDF over the hemisphere of incoming

directions. The nth order representation of a cosine

weighted1 BRDF fð�o;�0Þ for an outgoing direction ð�o; �oÞ is

fð�o;�oÞð�i; �iÞ �
Xn�1

l¼0

Xl

m¼�l

cml ð�o; �oÞHm
l ð�i; �iÞ; ð2Þ

where

cml ð�o; �oÞ ¼Z 2�

0

Z �=2

0

fð�o; �o; �i; �iÞHm
l ð�i; �iÞ sin �id�id�i:

ð3Þ

Hm
l are the hemispherical harmonics basis functions [9]. We

sample the outgoing hemisphere for ð�o; �oÞ using the

parabolic parametrization [45].

Adaptive BRDF Representation. Hemispherical harmonics
representation for all scene BRDFs is computed before the
rendering starts. For each outgoing direction, the adaptive
representation of fð�o;�oÞ uses the minimum order n
sufficient to avoid exceeding the user specified maximum
error, measured as described in [33] (see Fig. 2). If no order
n < nmax is sufficient for the specified error, the hemisphe-
rical harmonics representation is discarded: Radiance
caching will not be used for that BRDF and that outgoing
direction. After applying this procedure, only low-fre-
quency BRDFs are represented using the harmonics and
radiance caching is used for them. This constitutes an
automatic criterion for discerning low and high-frequency
BRDFs in our rendering framework. nmax is user specified;
we use nmax ¼ 10 for our examples. The aim is to have nmax

such that a BRDF is classified as low-frequency if and only
if radiance caching is more efficient than Monte Carlo
importance sampling. While nmax ¼ 10was a good value for
our scenes, it would not have to be so in other ones. Higher
nmax allows using radiance caching for higher frequency
BRDFs. The higher the frequency of the BRDFs, the more
rays will be needed to sample the hemisphere for a new
record and the less reuse will be possible for that record.

4.2 Incoming Radiance Computation

Whenever interpolation is not possible at a point p, a
new radiance record is computed and stored in the cache.
We represent the incoming radiance Li by a vector of
hemispherical harmonics coefficients � ¼ f�m

l g as
Lið�; �Þ �

Pn�1
l¼0

Pl
m¼�l �

m
l H

m
l ð�; �Þ, where n is the repre-

sentation order. The coefficients �m
l for an analytical Li

would be computed with the integral

�m
l ¼

Z 2�

0

Z �=2

0

Lið�; �ÞHm
l ð�; �Þ sin �d�d�:
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1. All BRDFs are multiplied by the cosine term cos �i before computing
the harmonics representation.

Fig. 1. Outline of the radiance caching algorithm. (HSH stands for

hemispherical harmonics.)

Fig. 2. Adaptive BRDF representation for (a) Phone BRDF with
exponent h ¼ 15 and (b) anisotropic Ward BRDF [46] with kd ¼ 0,
ks ¼ 1, �x ¼ 0:6, �y ¼ 0:25. The order of the hemispherical harmonics
representation adapts to the BRDF without ever exceeding the specified
maximum representation error (here, 5 percent). The color disks
represent BRDF representation error for different outgoing directions
ð�o; �oÞ. Directions are mapped on the disk with the parabolic
parametrization. (One can imagine the disks as looking at the
hemisphere from the top.) The graphs represent one scanline from the
disk images (i.e., fixed y and varying x component of the outgoing
direction). In the case of the Ward BRDF, radiance caching is not used
for some directions since the representation error would be too high.



Our knowledge of Li is based only on sampling (ray
casting). Hence, we compute �m

l by a Monte Carlo
quadrature with uniform sampling:

�m
l ¼ 2�

N

XN
k¼1

Lið�k; �kÞHlð�k; �kÞ; ð4Þ

where Lið�k; �kÞ is the incoming radiance coming from the
sampled direction ð�k; �kÞ and N is the number of sampled
directions. We use a fixed N , but adaptive hemisphere
sampling [47], [48] is desirable.

The order n for the incoming radiance representation is
equal to the order of the BRDF representation at p. This cuts
off high frequencies from the incoming radiance. The
approach is justified by a low-frequency BRDF acting as a
low-pass filter on the incoming radiance [34]. If incoming
radiance vectors with different number of coefficients are
interpolated, the shorter vectors are padded with zeros.

4.3 Translational Gradient Computation

We want to compute the translational gradient r�m
l for

each �m
l computed with (4). The gradient is used to improve

the interpolation smoothness. We did not succeed in
extending the gradient computation of Ward and Heckbert
[8] to handle our case since their method tightly couples the
cosine probability density and the cosine weighting used
for irradiance computation.

Instead, we have developed two new methods for

computing translational gradient r�m
l . The first, numerical,

displaces the center of the hemisphere. The second,

analytical, is based on differentiating the terms of (4). In

both cases, we compute the gradient r�m
l ¼ @�m

l

@x ;
@�m

l

@y ; 0
h i

by

computing the partial derivatives @�m
l =@x and @�m

l =@y. The

gradient is defined in the local coordinate frame at the point

p. The derivative with respect to z is not computed since

typical displacements along z are very small and using it

does not visually improve the interpolation quality. We

compute the gradients simultaneously with the computa-

tion of the coefficients �m
l during the hemisphere sampling.

4.3.1 Numerical Gradient Computation

To compute the derivative @�m
l =@x numerically, we dis-

place the point p, along the local x-axis, by �x to p0 (Fig. 3).
For each Monte Carlo sample Lið�k; �kÞ, we:

1. Compute the new direction ð�0k; �0
kÞ at p0 as

ð�0k; �0
kÞ ¼

qk�p0

r0
k

. Here, qk is the point hit by the ray

from p in direction ð�k; �kÞ and r0k ¼ kqk � p0k. We

will also denote rk ¼ kqk � pk. See Fig. 3 for the

various terms used here.
2. Compute the solid angle �0

k associated with the new

direction ð�0k; �0
kÞ. The solid angle �k associated with

each direction in (4) is uniform and equal to 2�=N .

With the displacement of the point p, the solid

angles no longer remain uniform. The change in

solid angle is due to the change in distance rk ¼
kqk � pk and orientation of the surface at qk, as seen

from the hemisphere center p or p0. The solid angle

before the displacement is �k ¼ �Ak
cos �k
r2
k

¼ 2�
N ,

where �k is the angle between the surface normal

at qk and the vector from qk to p. The area �Ak ¼
2�
N

r2
k

cos �k
is the part of the environment visible through

�k. It does not change with the displacement

because we assume that the environment visible

from p and p0 is the same. After the displacement,

the solid angle subtended by �Ak becomes

�0
k ¼ �Ak

cos �0k
r02k

¼ 2�

N

r2k
r02k

cos �0k
cos �k

:

We now estimate the coefficient �m
l
0 at p0 as

�m
l
0 ¼ 2�

N

XN
k¼1

r2k
r02k

cos �0k
cos �k

Lið�k; �kÞHm
l �0k; �

0
k

� �
;

and, finally, we compute @�m
l =@x ¼ ð�m

l
0 � �m

l Þ=�x.
The computation of @�m

l =@y proceeds in a similar way.

This completes the numerical estimation of the translational

gradient r�m
l at the point of interest.

4.3.2 Analytical Gradient Computation

We rewrite (4) as

�m
l ¼

XN
k¼1

�kLið�k; �kÞHlð�k; �kÞ; ð5Þ

with �k ¼ 2�
N for uniform hemisphere sampling. We have

seen that �k does not remain constant with displacement of

p and, therefore, it has to be included in the sum and

differentiated.
The partial derivative @�m

l =@x is computed by differ-

entiating the terms of the sum in (5):
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Fig. 3. Gradient computation by displacing the hemisphere center from p
to p0 ((a) before and (b) after the displacement). The quantities changing
with the displacement are (shown in red): sample ray direction ð�k; �kÞ,
the solid angle �k associated with this sample, and the angle �k between
the sample direction and the surface normal at the hit point qk. Neither
the hit point qk nor the area �Ak visible through �k change with the
displacement.



@�m
l

@x
¼

XN
k¼1

@

@x

�
�kLið�k; �kÞHm

l ð�k; �kÞ
�
¼

XN
k¼1

Lið�k; �kÞ
@�k

@x
Hm

l ð�k; �kÞ þ �k
@Hm

l ð�k; �kÞ
@x

� �
:

ð6Þ

The derivative of the basis function is

@Hm
l ð�k; �kÞ
@x

¼ @�k
@x

@Hlð�k; �kÞ
@�k

þ @�k

@x

@Hm
l ð�k; �kÞ
@�k

; ð7Þ

with [49]

@�k=@x ¼ � cos �k cos�k=rk;

@�k=@x ¼ sin�k=ðrk sin �kÞ:
ð8Þ

Those derivatives with respect to y would be

@�k=@y ¼ � cos �k sin�k=rk;

@�k=@y ¼ � cos�k=ðrk sin �kÞ:
ð9Þ

Derivatives @Hm
l =@�k and@Hm

l =@�k are given inAppendixA.
The derivative of the solid angle �k is

@�k

@x
¼ @

@x
�Ak

cos �k
r2k

¼ �Ak
@

@x

cos �k
r2k

:

The area�Ak ¼ 2�
N

r2
k

cos �k
is the part of the environment visible

through �k. It does not change with the displacement. The
change of cos �k=r

2
k with the displacement of p is opposite to

its change with the displacement of qk ¼ ðqx; qy; qzÞ, i.e.,

@

@x

cos �k
r2k

¼ � @

@qx

cos �k
r2k

:

The derivative @
@qx

cos �k
r2
k

can be computed with the assump-

tion that p lies at the origin because only the relative

position of p and qk matters (see Fig. 4). Since cos �k ¼
� nk�qk

rk
and rk ¼ kqkk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2k þ q2y þ q2z

q
, we have

@

@qx

cos �k
r2k

¼ � @

@qx

nxqx þ nyqy þ nzqz

ðq2x þ q2y þ q2zÞ
3=2

¼ � rknx þ 3qx cos �k
r4k

:

ð10Þ

Here, nk ¼ ðnx; ny; nzÞ is the surface normal at qk. Combin-

ing this result with �Ak ¼ 2�
N

r2k
cos �k

, we get

@�k

@x
¼ 2�

N

rknx þ 3qx cos �k
r2k cos �k

: ð11Þ

Plugging (11) and (7) into (6), we get the complete formula
for @�m

l =@x. The formulas for @�m
l =@y are similar; only (8)

must be replaced by (9).
A similar gradient calculation was also proposed in [29].

This method disregards the change of �k and, hence, does
not provide good results. The analytical method was also
independently developed by Annen et al. [43]. A code
fragment evaluating one term of the sum in (6) is given in
the accompanying material [50].

4.3.3 Discussion

For the derivation of both numerical and analytical
methods, we assumed:

. The radiance Lið�k; �kÞ from the point qk incident at
p does not change with the displacement of p.

. The visibility of �Ak, the small area around qk, does
not change with the displacement of p.

Though none of these assumptions is necessarily valid in all
scenes, they are reasonable for small displacements.

The numerical and analytical methods are equivalent,
their results are indistinguishable. The numerical method is
easier to implement since we do not need to evaluate the
basis function derivatives. The analytical method is nu-
merically more stable near edges and corners and also
slightly faster to evaluate.

4.3.4 Irradiance Gradient Computation

Note that both methods we propose can still be used if Hm
l

is replaced by any other hemispherical function. We also do
not rely on uniform hemisphere sampling. Any probability
density pð�; �Þ can be used for sampling. The only change is
that the solid angle becomes �k ¼ 1

Npð�k;�kÞ instead of
�k ¼ 2�

N , used for the uniform sampling.
As an example, we compute the irradiance gradient rE

with a cosine-weighted hemisphere sampling. Hm
l ð�; �Þ is

replaced by cos �, the probability density of sampling in
direction ð�; �Þ is pð�; �Þ ¼ cos �

� and, therefore, �k ¼ �
N cos �k

.
The resulting formula for the analytical method is

@E

@x
¼

XN
k¼1

Lið�k; �kÞ
@�k

@x
cos �k �

�

N

sin �k
cos �k

@�k
@X

� �
with

@�k

@x
¼ �

N cos �k

rknx þ 3qx cos �k
r2k cos �k

:

We implemented this irradiance gradient computation
method and that of Ward and Heckbert [8] and we
compared them on a sample scene (Fig. 5). The results
were similar for both methods. Ward and Heckbert’s
method gives better results when some surfaces are seen
at very sharp grazing angles from the sampling point p.
Otherwise, our method gives slightly smoother results.

Even though the quality of Ward and Heckbert’s method
is subtly superior to ours, our method provides many
advantages. It works with any sampling distribution and
with any function used to weight the radiance samples. The
contribution of radiance samples to the gradient is
independent of each other and, therefore, our method is
more easily amenable for parallelization or hardware
implementation. We do not assume any stratification of

KRIV�AANEK ET AL.: RADIANCE CACHING FOR EFFICIENT GLOBAL ILLUMINATION COMPUTATION 5

Fig. 4. Quantities in the computation of @
@qx

cos �k
r2
k

.



the hemisphere. This allows us to use our gradient

computation with different sampling strategies, e.g., quasi

Monte Carlo sampling.

4.4 Radiance Interpolation

If a query to the radiance cache succeeds, the incoming

radiance is interpolated as described in this section.We use a

weighted interpolation scheme similar to the oneproposed in

[8] for interpolating the coefficient vectors �i at any required

surface pointp. Thedifference is thatwe replace theuse of the

rotational gradient by truly rotating the incident radiance

function. This aligns the coordinate frame at the positionpi of

the cache record and the frame at p (see Fig. 6). The weight

wiðpÞ of record iwith respect to p is

wiðpÞ ¼
kp� pik

Ri
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n � ni

p� ��1

;

where n is the surface normal at p, ni is the surface normal

at pi, and Ri is the harmonic mean distance to objects visible

from pi. The coefficient vector of the interpolated radiance

is computed as a weighted average:

�ðpÞ ¼
P

S Ri �i þ dx
@�i

@x þ dy
@�i

@y

� �
wiðpÞP

S wiðpÞ
; ð12Þ

where the set S of radiance records used for interpolation at

p is defined as S ¼ fijwiðpÞ > 1=ag and a is a user-defined

desired accuracy. The definition of the set S effectively

represents the criterion used to decide which radiance cache

records can be used for interpolation. If S is nonempty,

interpolation (or extrapolation) is possible. dx and dy are the

displacements of p� pi along the x and y axes of record i’s

local coordinate frame. Displacement along z is not taken

into account for the gradient-enhanced interpolation since it

is typically very small. Ri is the hemispherical harmonics

rotation matrix [9] that aligns the coordinate frame at pi

with the frame at p.
The interpolation scheme is borrowed from Ward et al.

[1]. They derived it from the “split sphere” model that

estimates an upper bound on the magnitude of the change

of irradiance. Although this model does not apply for

radiance caching, the results are satisfying. We observe that

a lower a has to be used for higher frequency BRDFs and

interpolation errors are more apparent when surfaces are

viewed from grazing angles. In future work, we want to

devise an interpolation scheme suitable for radiance

caching based on these observations.

4.5 Outgoing Radiance Computation

The incoming radiance obtained by interpolation or hemi-

sphere sampling is integrated against the BRDF to compute

the outgoing radiance. With an orthonormal basis, the

integral evaluation reduces to the dot product [51]:

Lð�o; �oÞ ¼
Xn�1

l¼0

Xl

m¼�l

�m
l c

m
l ð�o; �oÞ: ð13Þ

�m
l is an interpolated incoming radiance coefficient and

cml ð�o; �oÞ is a BRDF coefficient at p for the outgoing

direction ð�o; �oÞ.
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Fig. 5. Comparison of irradiance gradient computation. The scene is a
diffuse Cornell box; only first bounce indirect illumination is computed.
The color-coded images show the difference between the gradient-
based interpolation and the reference solution (10,000 samples per
hemisphere at each pixel). RMS error of the images is 0.125 for Ward’s
method and 0.131 for our method. The graph shows the relative error of
the interpolation along a single scanline as compared to the reference
solution. Ward’s method gives better results when there are surfaces
seen at very sharp grazing angles from the sampling point. Otherwise,
our method gives a slightly lower error.

Fig. 6. Rotation Ri aligns the coordinate frame at pi with that at p to

make interpolation possible.



5 RESULTS

Fig. 7 gives the breakdown of rendering times for the the
three scenes we used to test radiance caching (Cornell Box,
Walt Disney Hall, Flamingo). The timings were measured
on a 2.2GHz Pentium 4 with 1 GB RAM running Windows
XP. The resulting renderings are shown in Figs. 8, 9, and 10
and in the accompanying video [50]. The maximum
hemispherical harmonics order for radiance caching was
set to n ¼ 10, which corresponds to approx. 3:6 kB sized
radiance cache records.

We compared the solutions obtained by radiance caching
with those obtained by Monte Carlo importance sampling.
Importance sampling uses the surface BRDF as the
importance function. The two rendering methods exhibit
artifacts with very different characteristics: high-frequency
noise for importance sampling (“specks” in images) and
low-frequency error in radiance caching (uneven illumina-
tion gradients). It is therefore difficult to compare rendering
times needed to attain the same visual quality. Instead, we

have chosen to fix the rendering time and compare the

image quality delivered by the two methods.

5.1 Cornell Box

Fig. 8 shows renderings of a Cornell Box with a glossy back

wall (Phong BRDF, exponent 22), taken from two view-

points at resolution 1; 280� 1; 280. Except for the back wall,

all objects are Lambertian. Only direct lighting and first

bounce indirect glossy lighting for the back wall were

computed.
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Fig. 7. Timing breakdown for the test scenes. “RC filling” is the time spent on computing and adding radiance cache records. “RC interpolation” is the

time spent on looking up the existing radiance cache records and interpolating the radiance. “Total” is the total rendering time. The difference

between the total time and the time spent by radiance caching consists of primary ray casting, direct lighting, specular reflections (in Office Space),

and irradiance caching (in Disney Hall and Flamingo). All times given in seconds.

Fig. 8. Two views of a Cornell Box with glossy back wall rendered using

radiance caching (top) and Monte Carlo importance sampling (bottom).

Fig. 9. Rendering of a simple model of Walt Disney Hall in Los Angeles.

The top and the middle images, compared with radiance caching, show

the building from two different viewpoints. The bottom image was

computed with Monte Carlo importance sampling.



Images in the top row were computed using radiance
caching with the caching accuracy set to a ¼ 0:15 and the
number of rays cast to sample each hemisphere set to
N ¼ 6; 000. The indirect glossy term took 33:3 seconds to
compute for the left image; total rendering time was 82:9 sec
(direct illumination uses eight samples per pixel to sample
the area source). The number of radiance cache records was
600. The time spent on the indirect glossy term computation
in the right image was only 13:8 sec since the records from
the left rendering were retained and only 164 additional
records were required.

The indirect glossy term for each of the two bottom
images was computed in 35 seconds using Monte Carlo
importance sampling with 12 reflected rays per pixel on a
glossy surface. Those rendering methods exhibit a high
noise level whose perception is even amplified in the
temporal domain, as shown in the video.

The average time spent on radiance caching for a
180 frames long animation with the camera moving
between the position in the left and right images was just
4:9 sec per frame. Most of this time is spent on interpolation
since only a few records are needed for additional frames.
The average frame time with Monte Carlo importance
sampling is 35 seconds since this method does not reuse any
information from the previous frames. Even though this
time is seven times longer than for radiance caching, the
quality is much lower.

5.2 Walt Disney Hall

Fig. 9 shows renderingsof a simplemodelofWaltDisneyHall
in Los Angeles. The curved walls of the real building are
covered with brushed metal tiles, whose BRDF we approx-
imate by a three-lobe Lafortune model [52]. The illumination
is due to the sun (modeled as a directional light), the sky
(modeledasa constantblue light), and the surroundingurban
environment (modeled as a constant brownish light).
Similarly to the real building (see [50]), walls reflect the sky
or the surroundings depending on their normals and the
viewpoint (compare the top and the middle image).

A full global illumination solution with one ray per pixel
was computed at resolution 1; 440� 840 and then scaled
down. Indirect illumination and the illumination coming
from the sky and from the surroundings was computed in
the same way: with irradiance caching on diffuse surfaces,
with radiance caching on glossy surfaces in the top and the
middle image, and with Monte Carlo sampling on glossy
surfaces in the bottom image.

To capture the high indirect illumination variations on
the metal walls, the caching accuracy was set to a ¼ 0:1,
leading to as many as 38,000 radiance cache records. We
used 800 rays for hemisphere sampling. The rendering time
was 357.8 s and 295.6 s for the top and the middle images,
respectively. Monte Carlo importance sampling in the
bottom image used 15 reflected rays on each visible glossy
pixel (fist bounce) and one ray for other bounces. The
rendering time was similar to that for radiance caching, but
the quality of radiance caching results is higher.

TheBRDFweused for themetallicwalls [53]was relatively
sharp; the Lafortune lobes had exponents of 16, 88, and 186. It
is impossible to represent such a BRDF accurately using
hemispherical harmonics of order 10—the average represen-
tation error was over 20 percent. Nonetheless, radiance
caching renderings showno serious distortion of thematerial
appearance compared to Monte Carlo sampling.

5.3 Glossy Flamingo

Fig. 10 shows three frames from the Flamingo animation.
The bird was assigned the Phong BRDF (exponent 7) and all
other surfaces are purely diffuse. The rendering resolution
was 1; 280� 1; 280 pixels. Full global illumination up to four
bounces was computed. Irradiance caching was used to
compute indirect lighting on diffuse surfaces.

First bounce indirect lighting on glossy surfaces for the
images in the top row was computed using radiance
caching; path tracing was used for deeper recursion levels.
The caching accuracy was set to a ¼ 0:15 and the number of
rays for hemisphere sampling was N ¼ 1; 000. Fig. 7 gives
the rendering times for the three images when rendered
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Fig. 10. Frames from the Flamingo animation rendered using radiance caching (top row) and Monte Carlo importance sampling (bottom row).



independently, without retaining radiance cache records
from previous renderings. Fig. 11 shows the time spent on
radiance caching in a 280 frames long animation with
camera moving between the shown images (see the
accompanying video).

The images in the bottom row use Monte Carlo
importance sampling instead of radiance caching. In order
to keep the rendering time the same as for radiance caching,
the number of reflected rays per pixel on a glossy surface
was set to 12, 4, 6, respectively (from left to right).

This scene is particularly challenging for radiance
caching since the glossy surface is curved. On such a
surface, radiance cache records cannot be used for inter-
polation at as many pixels as on a flat surface. Moreover,
costly alignment is required before each interpolation. In
the left image, the flamingo occupies only a small part of the
screen and, therefore, one does not take advantage of
radiance caching’s independence on image resolution. The
quality advantage of radiance caching over Monte Carlo
importance sampling can be seen only by a very close
inspection (see the images in the accompanying material
[50]). However, in the other two images, the noise
introduced by Monte Carlo sampling is more obvious.
Notice also that, for the animation rendering, the average
time for radiance caching is 15 seconds per frame.
Rendering the same animation using Monte Carlo impor-
tance sampling with only two reflected rays on a glossy
pixel leads to 27 seconds per frame spent on indirect glossy
lighting computation. Notice, in the accompanying video,
that the quality obtained by radiance caching is consider-
ably better.

6 DISCUSSION

6.1 Rotation Loss

There is a loss of informationwhen radiances are interpolated
on a curved surface (Fig. 12).Apart of the radiance incident at
pi should disappear under the surface (marked “a” in Fig. 12)
and should not contribute to the interpolated radiance atp. A
part of the radiance actually incident at p is not represented
by the radiance record at pi (marked “b” in Fig. 12) and is
missing in the interpolated radiance.

This problem is not due to using a hemispherical
basis for representing the incoming radiance, but due to
the fact that the incident radiance at a surface point is a
hemispherical function. Using spherical, instead of

hemispherical, harmonics would not solve this problem.
In practice, the error introduced by this problem is very
small because the difference between the normal at p
and the normal at any record used for interpolation at p
is small. Note also that Ward et al.’s irradiance caching
suffers from the same problem.

6.2 Global versus Local Coordinates

Incoming radiance at a point can be represented either in
the local frame at that point or in the global frame. This
influences how the interpolation at p is performed:

. Incoming radiance in the global frame

for (each available record i) do
Update the interpolation sums in (12).

end for

Align the result with the local frame at p.

Compute the dot product.

. Incoming radiance in the local frame

for (each available record i) do
Align the frame at pi with the frame at p.

Update the interpolation sums in (12).

end for

Compute the dot product.

The final dot product (13) is always carried out in the local
frame at p. On curved surfaces, fewer rotations are needed
if the incoming radiance is represented in the global frame.
On the other hand, if the incoming radiance is represented
in the local frame, no alignment (even with the BRDF) is
needed on flat surfaces. The lowest number of rotations is
obtained if the incoming radiance is represented in the local
frame on flat surfaces and in the global frame on curved
surfaces. Note that full spherical function representation
(e.g., using spherical harmonics) is needed to represent the
incoming radiance in the global frame.

6.3 Suitability of Hemispherical Harmonics

We use (hemi)spherical harmonics since they are simple,
computationally efficient (manipulations of vectors of
floats), avoid aliasing, and rotation is available for them.
The essential disadvantage is the lack of directional
localization. When we create a new radiance cache record,
the full hemisphere must be sampled, whatever the
incoming ray direction is. The more directional the BRDF
is, the more this approach becomes wasteful. With a basis
that localizes in directions, only the required part of the
hemisphere would need to be sampled. For this purpose,
one can use piecewise constant representation [6], [26], [27],
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Fig. 11. Time spent on radiance caching for the Flamingo animation (see

the accompanying video). Cached records are shared between the

frames.

Fig. 12. Information loss when radiances are interpolated on a curved

surface.



but it would presumably introduce aliasing. The use of
spherical wavelets [30] is probably a good choice, and is left
for further investigation.

6.4 General Limitations

The BRDF frequencies used in the example scenes are near
the limit of what our technique can currently handle. The
restriction to low-frequency BRDFs is the main limitation of
our technique because we use hemispherical harmonics. We
believe that higher frequency BRDFs can be handled within
the presented framework by using a localized basis such as
wavelets. Additionally, the radiance caching, as a gathering
technique, cannot solve certain types of light transfer
phenomena, such as caustics. Those have to be solved by
a more adapted technique.

7 CONCLUSION AND FUTURE WORK

We have presented radiance caching, a method for
accelerating the computation of the indirect illumination
on surfaces with low-frequency glossy BRDFs. Radiance
caching is based on sparse sampling, caching, and
interpolating incoming radiance on those surfaces. Radi-
ance is represented by hemispherical or spherical harmo-
nics in our approach. The interpolation quality is enhanced
by the use of translational gradients that can be computed
with two novel methods we have presented in this paper.
We have also proposed an automatic criterion to decide for
which BRDFs radiance caching is suitable. We have shown
in several examples that radiance caching is more efficient
than pure Monte Carlo sampling at every surface point and
delivers images of superior quality.

In future work, wewould like to use adaptive hemisphere
sampling to compute the incoming radiance coefficients [29],
[48], [54], use a different representation for the incoming
radiance that localizes better in directions, and devise
interpolation criteria better suited for glossy surfaces. In the
long term,wewish to investigate the relationshipbetween the
frequency content of a BRDF and the suitability of interpolat-
ing radiance on surfaces with that BRDF.

APPENDIX

DERIVATIVES OF SPHERICAL AND HEMISPHERICAL

HARMONICS

Partial derivatives for spherical harmonics are:

@Y m
l

@�
ð�; �Þ ¼

�
ffiffiffi
2

p
Km

l cosðm�Þ sinð�Þ dP
m
l

dx ðcos �Þ if m > 0

�
ffiffiffi
2

p
Km

l sinð�m�Þ sinð�Þ dP
�m
l

dx ðcos �Þ if m < 0

�K0
l sinð�Þ

dP 0
l

dx ðcos �Þ if m ¼ 0;

8>><>>:
@Y m

l

@�
ð�; �Þ ¼

0 if m ¼ 0

�mY �m
l ð�; �Þ otherwise:

�
The derivative of the associated Legendre polynomials can
be found from the recurrence formula:

dPm
l

dx
ðxÞ ¼

1
x2�1

�
xlPm

l ðxÞ � ðmþ lÞPm
l�1ðxÞ

�
if m < l

�ð�1Þmxð2m� 1Þ!!ð1� x2Þ
m
2�1 if m ¼ l;

(

where x!! is the double factorial (product of all odd integers

less than or equal to x).
The partial derivatives for hemispherical harmonics are:
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