
Replaying and Isolating Failing Multi-Object Interactions

Martin Burger
Dept. of Computer Science

Saarland University, Saarbrücken, Germany
mburger@cs.uni-sb.de

Andreas Zeller
Dept. of Computer Science

Saarland University, Saarbrücken, Germany
zeller@cs.uni-sb.de

ABSTRACT
When a program fails, there are typically multiple objects that con-
tribute to the failure. Our JINSI tool automatically captures the
failure-causing interaction between objects and isolates a sequence
of calls that all are relevant for reproducing the failure. In contrast
to existing work, JINSI also isolates relevant interaction within the
observed component and thus across all layers of a complex appli-
cation. In a proof of concept, JINSI has successfully isolated the
interaction for a failure of the COLUMBA e-mail client, pinpointing
the defect: “Out of the 187,532 interactions in the addressbook
component, two incoming calls suffice to reproduce the failure.”

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids;
General Terms: Algorithms
Keywords: Automated debugging, capture/replay

1. INTRODUCTION
When a program fails, developers need to solve two issues: (a)
reproducing the failure and (b) fixing the defect such that the failure
no longer occurs. Reproducing is crucial because one can examine
the problem and eventually decide whether it has been fixed. Fixing
is difficult because the developer needs to search the defect that
causes the failure—a search in space and time which becomes the
more difficult the larger the program state, and the distance between
defect and failure.

As an example of a failure involving both large space and time,
consider the following (real-life) problem. The COLUMBA e-mail
client1 offers a feature to import an address book from other sys-
tems. As one of us wanted to import his 473 contacts, though, this
import failed: An error dialog popped up (Figure 1)—apart from
that dialog box, neither an error log file with additional informa-
tion, nor a stack trace printed on the console is available.

What can we do to find the failure cause? There is no stack trace
to examine (which otherwise would give us hints of where to look).
Stepping through the program in an interactive debugger [17] is out

1www.columbamail.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA – Workshop on Dynamic Analysis, July 21, 2008
Copyright 2008 ACM 978-1-60558-054-8/08/07 ...$5.00.

Figure 1: COLUMBA error message. After trying to import an
address book, a nondescript error message pops up.

of the question for us non-experts. Backward slicing [14] (static
or dynamic) falls flat, too, because we would not know where to
start. We could compare code coverage [5] between a usual run
and the failing run, and thus isolate the code that takes care of im-
porting; but then again, where would we look? Finally, we could
use delta debugging to isolate the failure-inducing input [16]. But
delta debugging requires that the program in question be automat-
ically testable, which is not the case here. So we would have to
resort to do minimizing the input manually, which not only is a
slow and painful process, but also would not point us to the defect.

In earlier work [10], we had presented JINSI, a tool to assist de-
bugging by capturing and minimizing the interaction of a compo-
nent. As sketched in Figure 2, JINSI wraps around a component
and records its interaction with the environment for later replay.
By making an educated guess that the AddressbookImporter
component would be involved, we activated JINSI while importing
the address book. JINSI indeed recorded 20 interactions (which in-
cludes two incoming method calls) and was then able to replay the
failure at will.

The second aim of JINSI, though, is to automatically isolate the
failure-inducing interaction. The idea is to apply delta debugging
on the incoming method calls to isolate a subset of calls in which

component

logcaptured events

software system
component

software system

JINSI

1 – unmodified

2 – capture

external
services

interaction

external
services

Figure 2: Capturing interaction. JINSI intercepts and records the
interaction between a component and its environment.

every call would be relevant to reproduce the failure. Unfortu-
nately, with just two incoming calls, there would not be much to
minimize—and no insight to be gained, either, as the last method,
called wizardFinished(), evidently did all the work and thus
was relevant for the failure as well. What we wanted (and needed)
was a way to look at what is happening inside this component—
that is, identifying the objects involved in a complex method and
isolating the relevant interaction for these objects just as well. In
other words, we wanted to extend JINSI from a single component
to multiple objects, isolating relevant interactions at all levels of an
application.

In this paper, we report an early success with this approach.
These are our contributions:

1. A technique to automatically capture and replay object in-
teraction within a component rather than just the component
and its environment; and

2. A capture/replay approach based on observed objects rather
than observed code, allowing us to identify precisely the in-
teraction within a component.

Our early experiences, as presented in this paper, are very promis-
ing. In the case of COLUMBA, the approach successfully isolates
the two objects involved in the failure. Since it suffices to record
interaction at the source (e.g., user input), interactive programs still
show an acceptable performance while recording. Last but not
least, the approach is fully automatic, and, in the case of COLUMBA,
pinpoints the very method that is faulty.

The remainder of this paper is organized as follows. After sum-
marizing our earlier work on JINSI and call minimization (Sec-
tion 2), we describe how to capture intra-component interaction
(Section 3) and how to isolate the relevant inter-object interaction
(Section 4). Section 5 demonstrates the results of applying the ap-
proach to COLUMBA, effectively solving the initial problem. After
discussing related work (Section 6), we close with conclusion and
consequences (Section 7).

2. THE ORIGINAL JINSI APPROACH
To make this paper self-contained, let us give a brief overview of
the original JINSI technique at first, as described in [10] and [11].
JINSI works in two phases:

Capturing phase. The capturing phase uses instrumentation2 to
capture the interactions between a component and the rest of
the application. In the context of JINSI, a component is a set
of classes, defined by a list of class and/or package names.

Isolation phase. The isolation phase replays the recorded interac-
tions and isolates the set of failure-inducing interactions via
delta debugging.

Let us give some detail on these phases and finally discuss some
open issues of the original JINSI.

2.1 Capturing Interaction
To capture the interaction between a suspicious component and the
remainder of the application (the external code), JINSI implements
a capture/replay technique that (a) identifies all interactions be-
tween observed and external code, (b) correspondingly instruments
the application, and (c) captures interactions at runtime.
2We use JAVA bytecode instrumentation to modify existing classes
directly in binary form. In this way we can add new methods and
other features to the application’s code as soon as the JVM loads it.
In our case the tool of choice is JAVASSIST.

The instrumentation allows JINSI to capture all interactions in
the form of different events: method and constructor calls, return
values, field accesses, and exception flow. For each of these, JINSI
distinguishes incoming and outgoing events: Incoming events orig-
inate from the external part; outgoing events originate from the
component.

The concrete instrumentation depends on the event to be cap-
tured. To capture incoming method calls and their return values
(including exception flow), for instance, JINSI

• renames the observed method M itself to M ′;

• adds a logging proxy method P with the same signature as
M , which in turn calls M ′; and

• replaces all calls from observed code to M by calls to M ′.

While capturing, JINSI records two events: one describing the in-
coming method call itself, including attributes needed for replaying
like the given parameters (their types and unique IDs, see below);
and one representing the returned value (or the exception thrown).

When capturing data, the type of information ranges from sim-
ple scalar values to complex objects. While scalar values can be
captured inexpensively in terms of time and space, gathering infor-
mation about composite objects is much more expensive. In our
approach, we (1) only have to capture those objects that directly
affect the concrete computation, and (2) incrementally capture the
information at runtime as soon as it is required. Besides the events,
all we require to replay a program run are unique object IDs, their
types, and scalar values. This way, JINSI can dramatically reduce
the space and time costs of the capture phase.

2.2 Isolating Relevant Interactions
JINSI uses delta debugging to automatically isolate the failure-indu-
cing interactions by systematically testing subsets of the initial
sequence—until a set is found where every remaining call is rel-
evant for producing the failure. Applying delta debugging on in-
teractions has several advantages for debugging, in particular, over
earlier applications of delta debugging:

• It subsumes delta debugging on input [16] as a special case,
since all input-processing methods are part of the interaction
to be minimized; at the same time, it needs no knowledge
about input structure and does not need any specific scaf-
folding to manipulate the input.

• Compared to delta debugging on program states [2], it is
much more robust, scales to applications with non-accessible
state (e.g., native code or distributed applications), and natu-
rally exploits the abstraction layers available in the program.

2.3 Open Issues
The original JINSI technique, as described in [10] and [11], is not
without issues, though. In our introductory example, we applied
JINSI on the component that runs the import process—the (quite
obvious) AddressbookImporter class. The original JINSI is
indeed able to capture and replay the interactions between this com-
ponent and the rest of the application. There were 20 of them,
including one constructor and two method calls. Unfortunately,
the method that triggers the failure, the wizardFinished()
method, does not contain the actual bug, but in turn uses another
component that possibly contains the defect. So, although JINSI
was able to minimize the AddressbookImporter interaction,
we were not able to pinpoint the bug. Obviously, choosing the
proper component remains a burden for the developer.

component

JINSI

JINSI

1 – component as black box

2 – intra-component interactions

JINSI
on object-level object

Figure 3: JINSI extended by intra-component interactions. We
extended JINSI by the ability to capture and replay interactions be-
tween objects within the component itself. (For the sake of clarity
we omitted the event log.)

In order to debug the actual defect, it may be required to repeat
the process of defining an estimated boundary and running JINSI
over and over again until the proper one is found. One could pro-
ceed in an incremental top-down approach, starting with the GUI
layer and proceed towards the system, but still, this would a te-
dious task. What is needed is an approach that not only captures
the inter-component interactions (between the component and the
external code), but the intra-component interactions as well: all the
interactions within this component. And, if we could replay these
intra-component interactions at will, we could again use delta de-
bugging to isolate the failure-inducing ones inside of the compo-
nent of interest.

This alternate approach is shown in Figure 3. By capturing all
interactions between instances of classes declared in the compo-
nent of interest, the component no longer is a black box, but what
happens inside the component is subject to capture/replay and min-
imization as well—thus providing a much finer-grained diagnosis.

In the following two sections, we describe our extensions to
the JINSI approach—extensions that preserve the advantages of the
original approach, while being able to minimize intra-component
interactions in form of inter-object ones.

3. CAPTURING INTRA-COMPONENT
INTERACTIONS

To observe intra-component behavior in form of interactions be-
tween all observed objects—instances of classes declared in the
component—we had to extend JINSI to enable it to also capture
these intra-component interactions.

In our previous approach, JINSI only observed code and thus cap-
tured and isolated interactions caused to happen by an executed
piece of JAVA code. As an example, consider the classes shown
in Figure 4. The class AdditionOperator is observed in the
component of interest, whereas its superclass BinaryOperator
is located in some external part of the application (unobserved). If
we run an application that uses these classes, we would only ob-
serve all interactions in AdditionOperator (i.e., the incoming
calls to operate()), but interactions with code inherited from
BinaryOperator would not be captured. In our extended ap-
proach, JINSI captures and replays the behavior of objects. Thus,

package world;
public abstract class BinaryOperator {

protected long a;
protected long b;

public void setA(long a) {
this.a = a;

}
public void setB(long b) {

this.b = b;
}
public abstract long operate();

}

package component.of.interest;
public class AdditionOperator extends BinaryOperator {

public long operate() {
return this.a + this.b;

}

}

Figure 4: Gathering information for replaying objects. When
observing instances of AdditionOperator, we have to instru-
ment methods in the super class BinaryOperator as well, oth-
erwise we could not replay the object’s original behavior because
the captured interaction would not include calls to setter methods.

all interactions of instances of class AdditionOperator would
be observed, even if its code is inherited.

Furthermore, while observing code, interactions will not be cap-
tured if they occur between code within the component. For ex-
ample, if a method call directly occurs between two fragments of
observed code, that call will not be captured, even if two different
objects are involved. When observing objects, this type of interac-
tions has to be captured and replayed as well. That results in the
following extensions to the original JINSI.

3.1 Capturing Calls
Our extension of the JINSI approach is straightforward: JINSI has
to set up a capturing boundary around every object defined in the
observed component as well as around the component itself. So, in
contrast to observed code, JINSI has to check at runtime whether an
interaction crosses an object boundary.

To capture these object interactions, we add runtime checks for
all interactions that possibly cross these boundaries; the actual de-
cision is made during the program run. Basically, we instrument
all classes declared in the component for possible outgoing and in-
coming interactions; we instrument external classes for possible
incoming interactions; and in the case of super classes of observed
ones but defined in external, we instrument for possible outgoing
interactions as well, see below. For instance, an outgoing method
call is eventually captured if it satisfies these conditions:

1. The interaction must come from an observed object.

2. The source object must be different from the target: If it is
the same object, the call does not leave the object at all.

Note that at the object level, a single interaction can be both in-
coming and outgoing if the source and target objects are both ob-
served, because it is an interaction between two different objects
within the component of interest.

For the other types of possible interactions, an analogous run-
time check is used in order to decide at runtime. JINSI extends the
captured and stored events by attributes that identify source and tar-

get objects (unique object ID and type); apart from this extension,
the set of captured attributes remains unmodified.

3.2 Observing Objects
Besides this additional runtime check extension, JINSI now instru-
ments super classes of observed class instances as well, because
calls to an object could be targeted at a super class —in contrast
to observing code as discussed above. When we observe code, we
only instrument the code directly defined in the component of in-
terest; if a super class (of a class declared in the component) is
external, we do not instrument that super class for capturing inter-
actions. In the case of observed code that approach is absolutely
fine3. However, in order to be able to replay object behavior, we
have to capture the behavior that is defined in super classes as well,
even if declared outside of the component of interest.

Hence, JINSI also instruments super classes for potentially in-
coming and outgoing interactions. In these super classes, the run-
time check accordingly decides whether an interaction is incoming,
outgoing, or both: (1) If the concrete object is an instance of a class
declared in the component of interest, the interaction can be incom-
ing as well as outgoing; (2) if it is an instance of a class declared
outside of the component, the interaction can be incoming only.

3.3 Performance
All these additional run-time checks are expensive. Therefore, we
implemented a staged approach: Instead of capturing all intra-com-
ponent interactions directly, we add an intermediate phase. As we
can replace the external code with JINSI replaying the component
with the recorded executable events, we can use these events to
replay the run and to capture interactions of all objects within the
component of interest at the same time in a separate phase (see 1
and 2 in Figure 5). This way, we can apply the leaner capture of
observed code, which has a small overhead, in the field; the finer-
grained but slower capture of object behavior can be done offline
within JINSI.

4. ISOLATING INTRA-COMPONENT
INTERACTIONS

After capturing the intra-component interaction, we can now replay
it at will—and we can replay subsets to determine which subsets are
relevant. This is the main idea of delta debugging. However, due to
the large number of calls involved, we found it useful to first reduce
the set by applying a slicing technique similar to dynamic slicing.

4.1 Object Slice
Before applying delta debugging, we compute an object slice which
eliminates all objects and their corresponding events that are not re-
lated to the failure [7]: We start with the objects that are most likely
related to the failure—if an exception is thrown from a specific
method call, for instance, we would choose its target as a starting
point. Now, we include all events where these initial objects are
involved: either as source or target of an interaction (e.g. other
incoming calls). All these events are added to the list of possible
relevant events, in addition to the initial ones.

This way, we obtain a list of possible relevant interactions that
describes the constructions and usages of all objects that are in-
volved in the interactions that reproduce the failure. Because we
iterate only once over the initial event log, the complexity of the
slicing algorithm is linear.

3If we are interested in interactions of that code as well, we include
the super class in the observed code.

component

captured events

JINSI

1 – replay

JINSI

2 – replay and capture objects

object log

log

log

JINSI

3 – minimize object interaction

object log

minimized

Figure 5: Isolating intra-component interactions. The captured
interaction can be (1) replayed to reproduce the failure, (2) replayed
to capture detailed interaction on object level, and (3) isolated to
create a minimal test case.

One drawback of this approach is that the developer has to man-
ually determine the initial objects of interest. However, for a given
event log with recorded object interactions, JINSI can suggest an
initial set of objects. Currently, this automated suggestion is based
on exceptions only, so that it does not work for non-crashing bugs
where no exceptions are thrown. In that case, the developer has to
choose the objects on his own, or she could apply delta debugging
with the help of JINSI on the whole set of interactions directly.

In our introductory example, COLUMBA shows no thrown ex-
ception (for example, printed on the console). Actually, an excep-
tion is thrown within the faulty component as we will see in Sec-
tion 5. Indeed, the import wizard catches all exceptions that are
thrown while importing and instead displays a generic error mes-
sage (see Figure 1). Thus, the GUI absorbes all exceptions and its
stack traces, so the actual hint for the location of the defect. Be-
cause JINSI captures the exception flow while observing objects, it
is able to suggest a suspicious object as described above.

4.2 Delta Debugging
After reducing the number of events using object slicing, JINSI uses
delta debugging to isolate the failure-inducing interactions within
the component of interest.

Because the worst-time complexity of the algorithm is quadratic,
the algorithm may take a long time in order to minimize a large
set of interactions. In a complex object oriented application like
COLUMBA or in a long-running server program, you would expect
many of these interactions; however, as in [7], the earlier slicing
phase takes care of reducing the sequence length (and thus the ex-
ecution time for delta debugging.)

5. PROOF OF CONCEPT: COLUMBA
Let us now demonstrate JINSI on a real bug in a real program—

the failing address book import in COLUMBA described in the in-
troduction. COLUMBA is a free software e-mail client written in
JAVA, developed since June 2001 (first release) until August 2007.
Since COLUMBA is a large (about 1,700 JAVA classes) and complex
software system (it includes support for different e-mail protocols,
cryptographic protocols, spam filter, address book, and more), it is
an appropriate subject for an initial proof of concept.

In order to trigger the failure shown above, we imported an ad-
dress book file with 100 records in an existing COLUMBA address
book that already contains 300 entries. All addresses were gen-
erated (random name, etc.); however, we regard the type and the
amount of data as realistic.

We defined org.columba.addressbook.model as com-
ponent of interest because it implements the address book’s data
model. That package contains 19 JAVA classes. Given that bound-
ary and the original application to JINSI, we triggered the failure
manually while JINSI captured the whole interaction between the
component and the external code. After this run, the event log file
contained 166,130 inter-component interactions, thereof 49,855 in-
coming constructor and method calls.

In order to obtain the intra-component interactions, we had JINSI
replay the component interactions while recording the object inter-
actions within the component. In this second step, JINSI captured
187,532 interactions, containing 62,558 incoming calls. Compared
to the first step, the amount of calls increased by about 25%. That is
not as much as expected, however the actual amount of interactions
highly depends on the concrete component and its structure. In our
example, the observed component directly interacts with the rest
of COLUMBA, so the number of intra-component calls that do not
leave the component is about 13,000—compared to about 50,000
calls captured in the first step. Nevertheless, we successfully cap-
tured the interactions on object level within the component.

Within the previously captured object interactions, JINSI exactly
classified one object as suspicious: An incoming method call to
that object caused an exception being thrown. After slicing for that
object, the event log only contained 32 interactions, including one
constructor call and seven method calls. Thus, JINSI is able to re-
produce the original failure by replaying 32 out of 187,532 interac-
tions; as in [7], we found that slicing is a very effective alternative
to delta debugging when it comes to minimizing call sequences.

To minimize the remaining 32 interactions, we used delta de-
bugging. Eventually, the simplified interactions contained only
20 events, including one incoming constructor and one incoming
method call. This means that constructing the object and call-
ing that method causes the original failure. Figure 6 depicts the
failure-inducing interactions. First, the empty constructor is called
in order to construct an instance of class ContactModel; within
that constructor four empty vectors are instantiated and an univer-
sally unique identifier (UUID) is obtained. Second, the method
getPreferredEmail() is called.

With the simplified failure-inducing interactions at hand, JINSI
could create an executable minimal unit test case as shown in Fig-
ure 7. Running these two JAVA-statements, the developer would
be able to reproduce the original failure easily—and immediately
focus on getPreferredEmail() as obvious failure cause.

Figure 8 shows the original code of class ContactModel, in-
cluding the suspicious getPreferredEmail() method. The
error is easy to spot. If a ContactModel is created, the attribute
emailAddressVector contains an empty vector of e-mail ad-
dresses. Accessing the e-mail via getPreferredEmail() re-
turns the first element of the contact. If there is none, the code is
supposed to return null, as indicated by the “backwards compat-
ibility” comments. Unfortunately, this code is never reached. If

1. INCALL ContactModel()
2. OUTCALL Vector()
3. OUTCALLRET Vector #13828
4. OUTCALL Vector()
5. OUTCALLRET Vector #13829
6. OUTCALL Vector()
7. OUTCALLRET Vector #13830
8. OUTCALL Vector()
9. OUTCALLRET Vector #13831

10. OUTCALL UUIDGenerator()
11. OUTCALLRET UUIDGenerator #13832
12. OUTCALL #13832.newUUID()
13. OUTCALLRET String #13833
14. INCALLRET ContactModel #13827
15. INCALL #13827.getPreferredEmail()
16. OUTCALL #13828.iterator()
17. OUTCALLRET Iterator #13837
18. OUTCALL #13837.next()
19. OUTCALLTHROW NoSuchElementException
20. INCALLTHROW NoSuchElementException

Figure 6: Simplified interaction. Out of 187.532 recorded
interactions within the org.columba.addressbook.model
component, JINSI has isolated 20 which suffice to reproduce the
failure. #n means object with id n

public void testContactModel() throws Exception {
ContactModel model = new ContactModel();
model.getPreferredEmail();

}

Figure 7: Minimal test case. The getPreferredEmail()
method has a defect, causing an exception being thrown.

the contact has no e-mail address, the iterator it.next() will
not return null, as obviously assumed in the code. Instead, it will
throw a NoSuchElementException exception, thus causing
the import to fail and resulting in the error message in Figure 1.
The “backwards compatibility” code is in fact unreachable.

To trigger this failure, one needs to create a contact without e-
mail address. This is what happens during the import: If any con-
tact has no e-mail address, the import fails. We could thus filter out
contacts without e-mail addresses before importing them—or fix
the COLUMBA code such that getPreferredEmail() returns
null if there is no e-mail address. And this is how we eventually
were able to use COLUMBA after all.

To measure performance, we did some early time measurements:
We stopped the time from starting the import process by clicking on
“Import” until the error message (Figure 1) pops up. We measured
the JINSI overhead in four scenarios:

Without capturing. This means running the original COLUMBA.

Code, but no written events. This means to observe code (JINSI
instruments COLUMBA and intercepts interactions during its
run); however, the recorded events are not written to the event
log on disk.

Code. Here, JINSI observes and captures inter-component interac-
tions, and writes the event log file on-the-fly. Until the event
is written to disk, JINSI blocks the application under observa-
tion. Currently, JINSI uses a small buffer, but implementing
the producer-consumer pattern (events are given to a long

public class ContactModel implements IContactModel {

private Vector emailAddressVector = new Vector();
private Vector phoneVector = new Vector();
private Vector instantMessagingVector = new Vector();
private Vector addressVector = new Vector();

public ContactModel() {
this.id = new UUIDGenerator().newUUID();

}
public Iterator getEmailIterator() {

return emailAddressVector.iterator();
}
public String getPreferredEmail() {

Iterator it = getEmailIterator();
// get first item
IEmailModel model = (IEmailModel) it.next();
// backwards compatiblity -> its not possible
// anymore to create a model without email
if (model == null) return null;
return model.getAddress();

} ...
}

Figure 8: The actual defect. Iterator.next() never returns
null. Instead, a NoSuchElementException will be thrown
if the iteration has no more elements.

Importing the faulty address book Runtime [sec]
Without capturing (no instrumentation) � 1.0
Capturing code but no written events ' 1.0
Capturing code and writing to hard disk ' 5.0
Capturing objects and writing to hard disk ' 7.0

Table 1: Performance of capturing. At the moment, writing cap-
tured events to disk is still too expensive. When capturing is en-
abled but no events are written to disk, the overhead is acceptable.

queue and picked up in a separate Thread) should be very
helpful.

Objects. This is the same as “code”, but JINSI observes objects
within the component. So, all runtime checks are executed.

The plain capture takes about 1 second, compared to the origi-
nal COLUMBA where the addresses are imported instantly (stopped
time is much smaller than 1 second). Hence, the overhead caused
by JINSI to intercept all interactions is acceptable. However, our
current implementation causes some overhead when writing the
captured events to disk.

6. RELATED WORK
This paper contains two core ideas: recording and replaying on
both component- and object-level, and isolating relevant method
calls by applying object slicing and delta debugging. Earlier work
has explored each of these ideas in isolation. However, the present
paper is the first to combine all of them.

Efficient Test Case Minimization. The work closest to ours is the
minimization approach of Leitner et al. [7]. They apply a
static slicing technique and delta debugging to efficiently iso-
late the set of method calls that is relevant for a failure. The
two main difference to our work are: (1) As their approach is
based on random unit testing, they minimize a set of random
method calls rather than a set of previously recorded inter-
action, as in JINSI; (2) they directly minimize the code of
a random test case by applying static slicing minimization,

a method based on static program slicing, and delta debug-
ging, whereas JINSI applies both slicing and delta debugging
on recorded object interactions. Based on these minimal in-
teractions JINSI could create a minimal test case as illustrated
in Figure 7. Leitner et al. again improve the minimization
approach of Lei and Andrews [6].

ReCrashJ. Artzi et al. presented RECRASHJ [1] that reproduces
crashes from JAVA programs. In contrast to our work, it does
not use a log of events, but an in-memory record of stack
elements created by checkpoints at each method entry. Fi-
nally, RECRASHJ generates a test for each stack frame. Both
approaches can generate test cases that reproduce a failure,
whereas JINSI can additionally reproduce the relevant steps
in the execution trace that lead to that failure.

Cause-Effect Chains in Computer Systems. In [9], Neuhaus et
al. presented MALFOR, a system that isolates the processes
that cause an intrusion. MALFOR records interactions at
system level and after the intrusion has been detected, the
recorded interactions are replayed to isolate the relevant pro-
cesses. In contrast to JINSI, MALFOR isolates the interplay
of multiple programs.

Mock Objects. In [13], Saff and colleagues introduce the idea of
using mock objects, which automatically reproduce part of
the environment, to improve the efficiency of re-testing—
JINSI also relies on mock objects to allow for replaying with-
out a complete environment, but for different goals; JINSI
uses mock objects to pass proper objects when replaying in-
coming calls, however, the actual outgoing calls are redi-
rected to JINSI and not to the passed mock.

Omniscient Debugging. Bil Lewis’ ODB debugger records an en-
tire JAVA program run. It then allows the programmer to
interactively explore the recorded states, thus accessing all
aspects of a run [8]. As JINSI reduces the recorded run to
the relevant calls, the remaining run could easily be observed
using ODB-like techniques.

Delta Debugging. Besides minimizing method calls, as in [6] and
this paper, delta debugging has been used to isolate various
failure-inducing circumstances [15]. As discussed above, we
find JINSI more general and more versatile than simplifying
input; we also find it more light-weight and more robust than
isolating state differences.

Selective Capture-Replay. SCARPE [11] is a technique and a tool
for selective capture/replay. Given an application, the tech-
nique allows for capturing and replaying a part of the ap-
plication specified by the user. JINSI leverages some of the
technology behind SCARPE, especially when capturing and
isolating inter-component interactions.

7. CONCLUSION AND FUTURE WORK
Capturing and replaying interaction is not only a helpful tool for re-
producing failures; it can also be helpful for isolating those events
that were relevant for the failure. By combining capture/replay with
isolation of relevant events, JINSI kills two birds with one stone. It
is easy to deploy even in production code, since initially, only in-
coming events for the top-level components need to be recorded.
At the same time, JINSI can provide relevant diagnoses, because
computationally expensive techniques such as delta debugging can
be offset to the offline replay of recorded interactions. Finally, fo-
cusing on method calls allows us to exploit abstractions as provided
by the programmer—both in the search for relevant events as in the
presentation of the final diagnosis.

All of this has to be taken with a grain of salt, as we still need
to substantiate these claims. Yet, we are confident to gain more

1. INCALL ContactModel()
2. OUTCALL Vector()
3. OUTCALLRET Vector #13828
4. INCALLRET ContactModel #13827
5. INCALL #13827.getPreferredEmail()
6. OUTCALL #13828.iterator()
7. OUTCALLRET Iterator #13837
8. OUTCALL #13837.next()
9. OUTCALLTHROW NoSuchElementException

10. INCALLTHROW NoSuchElementException

Figure 9: Minimal interaction. After eliminating irrelevant ob-
jects, only ten interactions and two incoming calls remain.

experience in the upcoming months. This is what our future work
will focus upon:

Scalability and stability. Right now, JINSI can be applied to me-
dium-sized programs like COLUMBA. To make it work on
large JAVA programs like ECLIPSE, we need to fix some is-
sues with the instrumentation that fails on some complex
classes. One of these issues is caused by JAVASSIST, the class
library used for the actual byte code manipulation. However,
we are in contact with its developer in order to fix that bug4.

Improving isolation performance. In addition to object slicing,
we want to use additional analyses in order to reduce the
search space. In particular, we want to include a side-effect
analysis [12] to eliminate all calls to pure methods; thus,
methods that do not change the object’s state (except for
method calls that cause the failure, e.g. by throwing an ex-
ception). A capable tool implementing a dynamic side-effect
analysis may be JDynpur5.

Minimizing outgoing interactions. Currently, we simply let out-
going events occur since incoming return events require cor-
responding outgoing interactions. However, the simplified
interaction as shown in Figure 6 could be minimized further
by removing objects that are not connected to the actual fail-
ure. In that way, JINSI could classify more interactions as
irrelevant; the possible outcome is illustrated in Figure 9.

Tracking dependencies. When minimizing interactions, JINSI
does not leverage any hierarchy or other structure in the in-
volved objects. We are experimenting with various strategies
on where to start minimization. One promising approach
is inspired by dynamic backward slicing: Starting with the
failing method, we apply JINSI to minimize the interaction
with its arguments (and their arguments recursively). Such
a strategy would effectively mimic extracting the dynamic
backward slice, except that many more irrelevant calls and
objects could by eliminated.

Synthesizing fixes. One important issue in all automated debug-
ging approaches is the missing statement problem: One can
only isolate and focus on what is there, but not suggest what
should be there. We are currently experimenting with gener-
ated method calls in the style of AutoTest [7] to learn where
and how missing statements can be generated.

4http://jira.jboss.com/jira/browse/
JASSIST-43
5http://www.st.cs.uni-sb.de/models/jdynpur/

Evaluation. Once we can apply JINSI to a large body of programs,
we want to evaluate its efficiency and effectiveness as applied
to real-life bugs. In particular, we want to apply JINSI to
the iBugs repository [3] and compare its effectiveness and
efficiency to other automated debugging approaches.

Information about JINSI is available at

http://www.st.cs.uni-sb.de/jinsi/.

Acknowledgments
This work was supported by grant Ze509/2-1 from Deutsche For-
schungsgemeinschaft to Saarland University. Our work was greatly
facilitated by recent open-source JAVA programming frameworks,
such as JAVASSIST [4]. Valentin Dallmeier and David Schuler pro-
vided valuable comments on earlier revisions of this paper.

8. REFERENCES
[1] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software failures

reproducible by preserving object states. In ECOOP, 2008. To
appear.

[2] H. Cleve and A. Zeller. Locating causes of program failures. In ICSE
’05: Proceedings of the 27th international conference on Software
engineering, pages 342–351, New York, NY, USA, 2005. ACM.

[3] V. Dallmeier and T. Zimmermann. Extraction of bug localization
benchmarks from history. In Proc. of the 22nd IEEE/ACM Intl.
Conference on Automated Software Engineering, November 2007.

[4] Javassist home page. http:
//www.csg.is.titech.ac.jp/~chiba/javassist/.

[5] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE ’02: Proc. of the 24th
Intl. Conference on Software Engineering, pages 467–477, New
York, NY, USA, 2002. ACM.

[6] Y. Lei and J. H. Andrews. Minimization of randomized unit test
cases. In Proc. 16th IEEE Intl. Symposium on Software Reliability
Engineering (ISSRE’05), Chicago, Illinois, Nov. 2005.

[7] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient unit
test case minimization. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, pages 417–420, New York, NY, USA, 2007. ACM.

[8] B. Lewis. Debugging backwards in time. In M. Ronsse, editor, Proc.
Fifth Int. Workshop on Automated and Algorithmic Debugging
(AADEBUG), Sept. 2003.

[9] S. Neuhaus and A. Zeller. Isolating cause-effect chains in computer
systems. In Software Engineering, volume 105 of LNI, pages
169–180. GI, 2007.

[10] A. Orso, S. Joshi, M. Burger, and A. Zeller. Isolating relevant
component interactions with JINSI. In WODA ’06: Proc. of the 2006
Intl. Workshop on Dynamic Analysis, pages 3–10, New York, NY,
USA, 2006. ACM.

[11] A. Orso and B. Kennedy. Selective Capture and Replay of Program
Executions. In Proc. of the Third Intl. ICSE Workshop on Dynamic
Analysis (WODA 2005), St. Louis, MO, USA, May 2005.

[12] A. Rountev. Precise identification of side-effect-free methods in Java.
In IEEE International Conference on Software Maintenance, pages
82–91, 2004.

[13] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic Test
Factoring for Java. In Proc. of the 20th IEEE/ACM Intl. Conference
on Automated Software Engineering (ASE 2005), Nov 2005.

[14] F. Tip. A Survey of Program Slicing Techniques. Centrum voor
Wiskunde en Informatica, 1994.

[15] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, 1st edition, 2005.

[16] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng., 28(2), 2002.

[17] A. Zeller and D. Lütkehaus. DDD—a free graphical front-end for
unix debuggers. SIGPLAN Not., 31(1):22–27, 1996.

