
Topical Query Decomposition

Francesco Bonchi
bonchi@yahoo-inc.com

Carlos Castillo
chato@yahoo-inc.com

Debora Donato
debora@yahoo-inc.com

Aristides Gionis
gionis@yahoo-inc.com

Yahoo! Research
Barcelona, Spain

ABSTRACT
We introduce the problem of query decomposition, where
we are given a query and a document retrieval system, and
we want to produce a small set of queries whose union of
resulting documents corresponds approximately to that of
the original query. Ideally, these queries should represent
coherent, conceptually well-separated topics.

We provide an abstract formulation of the query decompo-
sition problem, and we tackle it from two different perspec-
tives. We first show how the problem can be instantiated as
a specific variant of a set cover problem, for which we pro-
vide an efficient greedy algorithm. Next, we show how the
same problem can be seen as a constrained clustering prob-
lem, with a very particular kind of constraint, i.e., clustering
with predefined clusters. We develop a two-phase algorithm
based on hierarchical agglomerative clustering followed by
dynamic programming. Our experiments, conducted on a
set of actual queries in a Web scale search engine, confirm
the effectiveness of the proposed solutions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data
Mining
H.4.3 [Information Systems Applications]: Communications
Applications

General Terms
Algorithms

Keywords
Query recommendation, set cover, clustering.

1. INTRODUCTION
It has been consistently observed over the past years that

users typically enter short queries in search engines [15]. One
of the many reasons for typing short queries is perhaps the
fact that users are looking for information for which they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

Figure 1: Graphical representation of the query de-

composition problem.

do not have sufficient knowledge [5], and thus they may not
be able to specify precisely their information need. In order
to help the users locate information more effectively, most
large-scale Web search engines offer query recommendations
in response to the queries they receive. These recommen-
dations are typically queries similar to the original one, and
they are obtained by analyzing the query logs, for instance,
finding recommendations by clustering of queries [25], or by
identifying frequent re-phrasings [2].

In this paper we address the problem of assisting the user
in the information-seeking task from a novel point of view.
Our main intuition is to explore the fact that query logs
provide a wealth of queries, which are related to the original
query in many different ways. Motivated by this observation
we introduce a novel paradigm, namely topical query decom-
position, where the goal is to assist users in finding the infor-
mation they are looking for, by providing to them a suitable
set of queries as part of the results to their queries. Ideally,
these resulting queries should retrieve coherent, conceptu-
ally well-separated sets of documents, whose union should
cover almost all documents associated to the original query.
In other words, we aim at dissecting the different topical
groups underlying a query and presenting them to the user.

On a high level, topical query decomposition has simi-
lar goals with both query recommendation and clustering
of query results. However, it has important differences from
both of these tasks. Similar to query recommendation, given
a query, our objective is to return other queries. But while
the results in query recommendation are a set of queries or-
der by relatedness or frequency, in the case of topical query
decomposition we aim at returning a set of queries that cover

Figure 2: A possible solution to the problem illus-

trated in Figure 1.

the answer set of the original query. In other words, while
query recommendation can be seen as a clustering task at
the queries level, query decomposition may involve cluster-
ing as well, but at the documents level.

Query decomposition is also different from clustering the
results of a query and returning to the user the clusters: we
do not simply return sets of documents grouped by similar-
ity, but we group the documents in such a way that each
group pre-exists in the query log, given that it has been pre-
viously retrieved by other users using the query that repre-
sents that group.

A simple graphical representation of our problem is shown
in Figure 1. We consider a query log L, which is a list of
pairs 〈q, D(q)〉, where q is a query and D(q) is its result, i.e.,
a set of documents that answer query q. We denote with
Q(q) the maximal set of queries pi, where for each pi, the
set D(pi) has at least one document in common with the
documents returned by q, this is,

Q(q) = {pi|〈pi, D(pi)〉 ∈ L ∧ D(pi) ∩D(q) 6= ∅}.
In the example shown in Figure 1 we have that the issued

query is qi = q7 and Q(qi) = {q1, . . . , q14}. The goal is to
compute a cover, i.e., selecting a subcollection C ⊆ Q(qi)
such that it covers almost all of D(qi). As stated before, the
queries in C should represent coherent, conceptually well-
separated set of documents: they should have small over-
lap, and they should not cover too many documents outside
D(qi). One possible solution to the problem instance in Fig-
ure 1 is shown in Figure 2. What is missing in this graphi-
cal representation is the topical coherence of each query, i.e.,
how compact is the set of documents it retrieves in the space
of topics.

The problem we study in this paper, topical query decom-
position, has many potential applications:

query filtering: it can be applied to an existing query rec-
ommendation system (e.g., [25, 9, 4, 2, 28, 12] among
others) to filter out recommendations that are topi-
cally too close to each other;

query diversification: it can produce a diversified set of
recommendations, as some topical group needed to
produce a good cover may be not so immediately sim-
ilar to the given query (w.r.t. the similarity measures
used by query recommendation systems) but still rel-
evant for the user;

query-set model: it can be used for selecting terms to rep-
resent a document set, following the query-set model [19,
20];

query results presentation: it can be used to present the
results of a given query with a different structure, for
instance by picking the top document(s) from each rep-
resentative query in the cover.

These are just few examples in the context of web search
applications, but we believe that topical query decomposi-
tion may find application in any information-seeking context
where the users must be helped in better specifying what
they are looking for.

Paper contribution and organization
The main contribution of this paper is the introduction of a
novel problem, i.e, topical query decomposition and its gen-
eral formulation. We also describe two alternative solutions
to this problem:

Top-down approach, based on set-covering. Starting
from the queries in Q(q), this approach tries to handle our
problem as a special instance of the weighted set covering
problem, where the weight of each query in the cover is given
by: its internal topical coherence, the fraction of documents
in D(q), the amount of documents it retrieves that are not in
D(q), as well as its overlap with other queries in the solution.

Bottom-up approach, based on clustering. Starting
from the documents in D(q), this approach tries to build
clusters of documents which are compact in the topics space.
Since the resulting clusters are not necessarily document sets
associated to queries existing in L, a second phase in needed,
in which the clusters found in the first phase are “matched”
to the sets that correspond to queries in the query log.

Finally we report the empirical analysis performed on a
real-world query log from a Web scale search engine, aimed
at assessing on the effectiveness of the proposed algorithms
for topical query decomposition.

The next section describes previous work related to ours.
Section 3 defines the problem which is tackled from the per-
spective of set cover in Section 4 and of clustering in Sec-
tion 5. Section 6 describes the empirical assessment of the
methods proposed, and the last section presents some con-
cluding remarks.

2. RELATED WORK
In the domain of our application, namely Web search en-

gines, our work builds upon previous research on query rec-
ommendation, expansion, and clustering of query results.
In the general formulation, we use ideas from set covering
and constrained clustering. These are all topics that have
attracted considerable attention in the research community.
In this section we discuss some of the work developed in each
of these topics.

Query recommendation is the task of suggesting to a user
a set of queries related to the query he has just issued.
Recently, researchers have used data mining techniques ap-
plied on the search engine query logs to build solutions for
this problem. In [25] queries are clustered, by means of the
density-based clustering algorithm DBSCAN [9] on the ba-
sis of four different notions of distance: based on keywords or

phrases of the query, based on string matching of keywords,
based on common clicked URLs, and based on the distance
of the clicked documents in some pre-defined hierarchy. Also
the work in [4] proposes a query clustering technique based
on common clicked URLs: the query log is represented as
a bipartite graph with the vertices on one side represent-
ing queries and on the other side URLs. An agglomerative
clustering is performed on the graph’s vertices to identify re-
lated queries and URLs. The algorithm is content agnostic,
as it makes no use of the actual content of the queries and
URLs, but instead it only focuses on co-occurrences in the
query log. As stated in [2], the distance measures discussed
above have real-world practical limitations when it comes to
identifying similar queries, because two related queries may
output different URLs in the first places of their answer sets,
thus inducing clicks in different URLs (given that the user
clicks are affected by the ordering of the URLs [8]). More-
over, as empirically shown e.g., in [15], the average number
of pages clicked per answer is very low. To overcome these
limitations, the work in [2] clusters queries by representing
them as term-weighted vectors obtained by aggregating the
term-weighted vectors of their clicked URLs.

A different approach to query clustering for recommenda-
tion is in [28], where two different methods are combined.
The first method is obtained by modeling search engine
users’ sequential search behavior, and interpreting this con-
secutive search behavior as client-side query refinement, that
should form the basis for the search engine’s own query
refinement process. The second method is a traditional
content-based similarity method used to compensate for the
high sparsity of real query log data, and more specifically,
the shortness of most query sessions. The two methods are
combined together to form a similarity measures for queries.
Association rule mining has also been used to discover re-
lated queries in [12]. The query log is viewed as a set of
transactions, where each transaction represents a session in
which a single user submits a sequence of related queries in
a time interval.

Our proposal is completely orthogonal to the body of re-
search discussed above. In fact, given a query we do not
recommend similar queries, nor we return the answer set of
documents, instead we return a set of queries that cover the
answer set of the original query. In our context clustering
is used but at the level of documents, not at the level of
queries.

Query expansion is another approach adopted by search
engines to suggest related queries [26, 13]. The idea here is
to reformulate the query such that it gets closer to the term-
weight vector space of the documents the user is looking for.
Also in this case our approach is different as we look for
other queries that are present in the query log, and thus
that have been issued by other users, while query expansion
methods construct artificial queries.

Clustering of query results is a common technique used
to organize the set of query results, usually the top-ranked
ones, into clusters. While query suggestion and query ex-
pansion have the ambitious goal of providing the users with
better formulated queries, the main application of this tech-
nique is to facilitate users’ browsing through search results.
This task is usually associated with the problem of extract-
ing meaningful phrases, i.e., snippets that summarize the
contents of each cluster. Various different approaches for

clustering search results have been proposed [14, 27, 17, 11].
Our work is substantially different from all these previous
approaches since our goal goes beyond a simple reorganiza-
tion of the pages on the base of their similarity: we aim at
dissecting a given query into topical “subqueries” by mining
a query log.

Set covering. As we mentioned in the introduction, one
of our approaches is based on the set cover problem. The
set cover formulations and the adaptations of the greedy
algorithm [7] we use are inspired by related variants of the
set cover problem in the literature, such as the red-blue set
cover problem [6, 18], and set cover with minimizing the
overlap of sets [16].

Constrained clustering is a relatively new field of research,
that is receiving a great deal of attention (see [3, 23] for an
overview of the field). However, the kind of constraints usu-
ally taken in consideration are instance-based constraints,
such as must-link (two objects must be placed into the same
cluster) and cannot-link (two objects must not be placed
into the same cluster) [24]. To the best of our knowledge,
the problem of clustering by picking clusters from a set of
predefined clusters has not been studied before.

3. PROBLEM STATEMENT
In this section we provide an abstract, general, formula-

tion of our problem.
Each instance of the problem consists of a set U of base

points, formed by n blue points B = {b1, . . . , bn}, and m red
points R = {r1, . . . , rm}, that is, U = {b1, . . . , bn, r1, . . . , rm}.
We write p ∈ U when we do not want to make the distinction
if the point p of U is blue or red.

A collection S of l sets over U is provided, so that S =
{S1, . . . , Sk}, with Si ⊆ U . For every set Si ∈ S, we denote
by SB

i the blue points in Si, and by SR
i the red points, that

is, SB
i = Si ∩B and SR

i = Si ∩R. As in [6], one part of our
goal is to find a subcollection C ⊆ S that covers many blue
points of U without covering too many red points.

In our application, as will be explained in Section 6, there
are weights associated with the set of blue points; each blue
point b ∈ B has a weight w(b) that indicates the relative
importance of covering point b. Accordingly, we define the
weighted cardinality of sets to be the total weight of the blue
points they contain: for each set S with blue and red points
we define |S|w =

P

{b∈SB} w(b).
Another characteristic of our problem setting is that we

consider a distance function d(u, v), defined for any two
points u, v ∈ U . A special case is when U ⊆ R

t, and the
distance function d is the Euclidean distance or any other
Lp-induced distance.

We use the distance function d in order to define the no-
tion of scatter sc(S) for the sets S ∈ S. Given a S, we define
the scatter of S to be

sc(S) = min
u∈S

X

v∈S

d(u, v)2 .

The above definition of scatter corresponds to the notion of
1-mean. Additionally, one can also define scatter using the
notions of 1-median, diameter, radius, or others. For our
discussion we are also using the concept of coherence, which
we do not define formally, but informally we refer to it as
being the opposite of scatter. A set of high scatter has small
coherence, and vice versa.

Our goal is to find a subcollection C ⊆ S that covers al-
most all the blue points of U and has large coherence. More
precisely, we want that C satisfies the following properties:

cover-blue: C covers almost all blue points. The fraction
of blue points covered is measured using the weights
w(b), defined on the blue points b ∈ B.

not-cover-red: C covers as few red points as possible.

small-overlap: The sets in C have small overlap among
themselves.

coherence: The sets in C have small scatter (large coher-
ence).

At an intuitive level, the property of coherence im-
plies both small-overlap and not-cover-red. To give
a geometric argument for the fact that coherence implies
small-overlap and not-cover-red, let us visualize the
sets in S as balls in an euclidean space, and consider that
coherence translates to balls of small size, e.g., radius. Then
covering a predefined space X with balls of small radius
forces the balls to have small overlap and not to cover much
space outside X . However, we explicitly state the properties
of small-overlap and not-cover-red. The reason is that
they are intuitive properties for the problems we consider,
and second, trying explicitly to satisfy these properties can
lead to solutions of better quality.

4. SET-COVER BASED METHOD
From the problem definition given in the previous section,

it is clear that there is a mapping of our problem to the set-
cover problem. Two of the most well-studied methods for
solving many variants of the set-cover problem are the greedy
approach and Linear Programming (LP). In this section, we
discuss how to adapt these two general approaches for the
particular problems we consider. In our experimental evalu-
ation we have used only the greedy algorithm, however, we
also discuss the LP-based algorithm, since we find it to be
of theoretical interest.

4.1 Greedy algorithms
There is a simple and intuitive greedy algorithm for the

set-cover problem [7], which can be adapted for many vari-
ants of it, and which achieves a O(log n) approximation ratio
that matches the hardness of approximation lower bound [10].

The basic greedy algorithm forms the cover solution by
adding one element at a time. At the i-th iteration, if not
all elements of the base set have been covered, the algorithm
maintains a partial solution consisting of (i− 1) sets, and it
adds an i-th set by selecting the one that is locally optimal
at that point. Local optimality is measured as a function of
the costs of the candidate sets and the elements that have
not been covered so far.

In order to instantiate such general algorithm to the topi-
cal query decomposition problem, we must take into account
the fact that our set of points consists of blue and red points,
that the blue points are weighted, the scatter scores sc(S) of
the sets, as well as the requirements of cover-blue, not-

cover-red, small-overlap, and coherence. Given the
above considerations, we reformulate the basic greedy algo-
rithm as shown in Algorithm 1.

The cover parameter α controls the fraction of blue points
that the algorithm aims at covering, and is measured in

Algorithm 1 Greedy

Input: Base set U = B∪R, weights w(b) of the blue points
b ∈ B, set collection S = {S1, . . . , Sl}, scatter costs
sc(S1), . . . , sc(Sl), cover parameter α

Ouput: A cover C ⊆ S
1: V B ← ∅
2: V R ← ∅
3: C ← ∅
4: while |V B ∩B|w < α|B|w do

5: Select S ∈ (S \ C) that minimizes s(S, V B , V R)
6: C ← C ∪ {S}
7: V B ← V B ∪ SB

8: V R ← V R ∪ SR

9: end while

10: Return C

terms of the weights of the blue points. The score func-
tion s(S, V B , V R) is used to evaluate each candidate set S
with respect to the elements covered so far by the current
solution. For the score function s(S, V B , V R), we propose a
function that combines three terms:

s(S, V B , V R) =
λC · sc(S) + λR · |SR|w + λO · |SB ∩ V B |w

|SB \ V B |w
,

where λC , λR, λO are parameters that weight the rela-
tive importance of the three terms. Our score function
s(S, V B , V R) is motivated by the requirements of our prob-
lem and from approximation algorithms for the-set cover
algorithm.

It is interesting to consider the three cases, where one
of the parameters λ is equal to 1 and the other two equal
to 0. For λC = 1 the problem corresponds to weighted set-
cover, where the weight of each cost is the scatter sc(S).
In this case, the goal is only to minimize the cost of the
sets selected in the cover. For λR = 1 the problem becomes
finding a cover of the blue points while introducing as few

red points as possible. The use of ratio |SR|

|SB\V |
in this case is

motivated by the approximation algorithm of Peleg [18] for
the red-blue set cover problem. Finally, when λO = 1 the
objective is to minimize the overlap among the sets in the

solution. Again, the use of the ratio |S∩V |
|S\V |

is motivated by

the approximation algorithm of Johnson [16], who considers
set cover with minimizing the intersection of the sets selected
in the solution.

Other combinations of the parameters λC , λR, and λO

can be used to control the contribution of the three terms in
the score function and fine-tune the results according to the
application domain. In practice, for specific applications,
a good combination of the parameters λC , λR, λO may be
learned from training data, if available.

4.2 LP-based algorithms
We start by considering an Integer Programming (IP) for-

mulation of the set cover problem: for each set S ∈ S we
introduce a 0/1 variable xS , and the task is to

minimize
P

S∈S xS · sc(S) (1)

subject to
P

S∋p
xS ≥ 1, for all p ∈ B, (2)

where xS ∈ {0, 1} for all S ∈ S. (3)

The above integer program expresses the weighted version
of set cover. A solution can be obtained by relaxing the

integrality constraints (3) to (3′): {0 ≤ xS ≤ 1}, solving the
resulting linear program, and then rounding the variables xS

obtained by the fractional solution. The resulting solution is
a O(log n) approximation to the weighted set cover problem,
see, e.g., [22].

One way to allow small overlaps among the sets belonging
to the solution, is to require that each one of the blue points
is covered by only a few sets. Such a constraint can be
written as

X

S∋p

xS ≤ c, for all p ∈ B, (4)

for some constant c ≥ 2, enforcing that each point will be
covered by at most c sets.

It can be shown that by solving the linear program {(1), (2),
(4)} and performing randomized rounding to obtain an in-
tegral solution provides again an O(log n) approximation al-
gorithm, in which the constraint (4) is inflated by a factor
of log n, that is, each point in the final solution belongs to
at most c log n sets. The proof, omitted due to space limi-
tations, is an easy adaptation of the basic proof that shows
the O(log n) approximation for the set cover problem via
randomized rounding.

We also consider adding constraints to satisfy the not-

cover-red property: for each red point r ∈ R, we introduce
a 0/1 variable yr. We then require that at most d red points
are covered by

X

r∈R

yr ≤ d, (5)

ensuring that whenever a set S is selected, the variables yr

for all red point r ∈ SR are set to 1, by

yr ≥ xS , for all r ∈ SR. (6)

The program {(1), (2), (4), (5), (6)} can be either solved di-
rectly by an IP-solver, or again, relax the integrality con-
straints, solve the corresponding LP, and round the frac-
tional solution.

5. CLUSTERING-BASED METHOD
Another approach to the topical query decomposition prob-

lem is based on clustering. At a high level of description,
our clustering-based method is a two-phase approach. In
the first phase, all points in the set B are clustered using a
hierarchical agglomerative clustering algorithm. During this
clustering phase, the points in B are clustered with respect
to the distance function d, while the information about the
sets in the collection S, as well as the information about
points in R is ignored. At any given level of the hierarchy
the induced clustering intuitively satisfies the requirements
of our problem statement: the clusters are non-overlapping,
they have high coherence, they are covering the points in
B, and no points in R. The problem, of course, is that
those clusters are not necessarily corresponding to the sets
of the collection S. Thus, in the second phase our method
attempts to match the clusters of the hierarchy produced by
the agglomerative algorithm with the sets of S.

A graphical representation of the two-phase method is
shown in Figure 3. Next we describe the algorithm in more
detail.

For the hierarchical clustering phase we adopt the method
introduced in [29] (and available in the Cluto toolkit1),
1http://glaros.dtc.umn.edu/gkhome/views/cluto

Figure 3: Depiction of the clustering-based method.

that has been shown to outperform the traditional agglom-
erative algorithms when clustering document datasets. In
this method, the agglomeration process is biased by a hi-
erarchical divisive clustering solution that is initially com-
puted on the dataset. This is done with the aim of reduc-
ing the impact of early-stage errors made by the agglom-
erative method, thus producing higher quality clustering.
The method starts with a divisive clustering until

√
n clus-

ters are formed, where n is the number of objects to be
clustered. Then, it augments the original feature space by
adding

√
n new dimensions, one for each cluster. Each ob-

ject is then assigned a value to the dimension corresponding
to its own cluster, and this value is proportional to the sim-
ilarity between that object and its cluster-centroid. Now,
given this augmented representation, the overall clustering
solution is obtained by using the traditional agglomerative
paradigm with the upgma (Unweighted Pair Group Method
with Arithmetic mean) clustering criterion function [21].

Once this method has been performed over the set of
points B, it produces a dendrogram T whose leaves are the
points in B and every node T ∈ T corresponds to a cluster.
Let T (B) be the set of points in B that correspond to the
cluster associated with node T ∈ T , or in other terms, the
leaves of the subtree rooted in T . Moreover, we denote by
child of(T) the list of children of T in T .

The objective of the second phase of our method is to
select the sets C ⊆ S according to the requirements of our
original problem statement — large coverage of B, small
coverage of R, small overlap of sets in C, and large coher-
ence. We do this by exploiting the clustering produced in
the first phase in to order to facilitate the selection of the
sets C. The main idea is to match sets of S into clusters of
T . In the following we describe how the matching is actually
performed. For sake of simplicity, we first describe how to
perform the matching in order to achieve complete coverage
of B by means of dynamic programming. Then we modify
the dynamic programming algorithm to handle the case of
partial coverage.

Complete coverage. For each set S ∈ S and each node
T ∈ T we define the matching score m(T, S) between S and
T to be as follows:

m(T, S) =



sc(S) if T B ⊆ SB

∞ otherwise,

that is, we match clusters T of T only to sets S that properly
contain the clusters, and the cost is the scatter cost of S.
Then given a cluster T ∈ T , we denote by m∗(T) the score
of the best matching set in S In other words, we define:

m∗(T) = min
S∈S
{m(T, S)}

Now we solve the assignment problem from nodes of T
to sets in S by dynamic programming on the tree T in a
bottom-up fashion. Let M(T) be the optimal cost of cover-
ing the points of T B with sets in S. We have

M(T) = min{m∗(T),
X

R∈child of(T)

M(R)}.

The meaning of the above equation, is that for each cluster
T that we consider in a bottom-up fashion in T , we either
match T to a new covering set S—the one with the least
cost—or we use the solutions obtained for the children of T
to make up the covering for T . Among the two options, the
one with the least cost is selected.

The motivation of the algorithm, in terms of the require-
ments of our problem statement, is as follows:

cover-blue By assigning infinite costs to sets that do not
contain clusters, any complete cover has lower cost
than any partial cover.

not-cover-red: This requirement is achieved since sets that
cover many red points tend to have higher scatter cost.

small-overlap: Again, sets with large overlap tend to con-
tribute more to the scatter cost objective function.

coherence: The objective function of the matching tries
to minimize explicitly the total scatter cost.

Partial coverage. In almost all of the problem instances
encountered in our dataset, it is not possible to cover all of
the original set of blue points B, with the sets in S. Further-
more, even if a complete cover was possible, it might not be
the case that the clusters in the hierarchy tree T are covered
by the sets in S. Therefore, we need to adjust the matching
algorithm in order to make it work with partial coverage.

The main idea is to relax the constraint that each cluster
should be properly contained in the sets of S by adding a
penalization term for the z points that are left uncovered.
In particular, we define

m(T, S) = sc(S) + λU ·
“

|T B \ SB |
”2

,

for all sets T ∈ T and S ∈ S. For the cases of proper
containment, T B ⊆ SB , the above matching score gives
m(T, S) = sc(S), as in the case of complete coverage. How-
ever, if T B 6⊆ SB , the above score function penalizes grad-
ually for the points of T B not covered by SB . Penalizing
according to the square of the number of uncovered points
was chosen among other choices by subjectively reviewing
the results of the algorithm on our dataset. The parameter
λU weights the relative importance between the two terms,
the scatter cost of the sets S and the number of uncovered
points. Again, as for the parameters λ· of the greedy set
cover algorithm, the value of λU needs to be selected heuris-
tically, ideally to be learned via training data for a specific
application at hand. In our experiments we study the be-
havior of the algorithm for various measures of interest as a
function of the control parameter λU .

Given the modified definition of m(T, S), the dynamic
programming algorithm for the case of partial coverage is
identical to the case of complete cover.

6. APPLICATION TO QUERY
DECOMPOSITION

In this section we describe how to apply the methods in-
troduced in this paper to a real query log. We use a sample
from an in-house query log L including 2.9 million distinct
queries. A majority of users only looks at the first page of
results (as observed by [15] among others), while few users
request more result pages. For each query q we record the
maximum result page to which any user asking for q in the
query log navigated, and consider the set of result documents
for the query, which we denote by D(q), We emphasize that
in contrast to most of the research on query log mining, we
use all the documents that are shown to the users, and not
only the ones they click upon.

Overall, we have 24 million distinct documents seen by the
users. This means that there is certain overlap between the
result sets of different queries; otherwise, given that users
see at least 10 documents per query, we would have at least
29 million distinct documents if there were no overlap.

6.1 Candidate queries for the cover
For each query q, we build a set of candidate queries for q.

The candidate queriesQk(q) are the ones that have sufficient
overlap with the original query, namely:

Qk(q) = {pi|〈pi, D(pi)〉 ∈ L ∧ |D(pi) ∩D(q)| ≥ k}.
In the following, we set k = 2 meaning that each candidate

query pi should have at least 2 documents in common with
the original query q.

A first question is whether there are enough candidates
in the query log L for a given query q. In practice, the
answer depends basically on the size of |D(q)|, as shown in
Figure 4. The figure shows the average number of candidate
queries in the data, for a sample of 200 queries having a
certain number of documents seen by users. We observe that
there are about |D(q)|/2 candidates for each query returning
|D(q)| documents. In practice this is sufficiently large to
represent different topical aspects on each query.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

C
an

di
da

te
 s

ub
qu

er
ie

s
|Q

k(
q)

|

URLs seen by users |D(q)|

Figure 4: Number of candidates available for queries

having different number of documents seen.

We also checked the size of the maximum cover attainable
with this set of candidates. According to our observations,
this is a fairly stable fraction of about 60%-70% across all
queries that have at least 20 documents seen.

6.2 Costs for the candidate queries
Next we compute for each candidate query pi its scatter

sc(D(pi)) as

sc(D(pi)) = min
u∈D(pi)

X

v∈D(pi)

d(u, v)2 .

For defining the distance between two documents d(u, v)
in the result set of a candidate query there are many choices.
Given that there is a potentially large set of candidate queries
pi for any query q, each one of them having potentially many
documents, and given that we are interested only on an ag-
gregate of the distances, we decided to use a coarse-grained
metric. Our choice was to use a text classifier to project
each document into a space of topics (100 distinct topics),
and then use as d(·, ·) the Euclidean distance between the
topic vectors.

For the distance between two documents d(u, v) in the re-
sult set of the original query q, we use a more fine-grained
metric. We remove stopwords, do stemming, and compute
tf·idf weights for each term in each document [1]. Using
this document representation, we use the standard cosine
measure for measuring document similarity during the ag-
glomerative clustering process.

Finally, the weight w(d) of a document d ∈ D(q) is given
by the number of clicks the document has received when
presented to the users in response to query q. The distribu-
tion of clicks is very skewed [8] and many documents that
are seen by the users have no clicks, so we used the following
weighting function:

w(d) = log2 (1 + clicks(q, d)) + 1,

where clicks(q, d) is the number of clicks received by docu-
ment d when shown in the result set of query q.

6.3 Results
Next we picked uniformly at random a set of 100 queries

out of the top 10,000 queries submitted by users, and ran
the algorithms proposed in this paper over those queries.
Given that the greedy algorithms stops when it reaches the
maximum coverage possible and queries have different cover
sizes, we fixed a cover set size k and evaluated the results
of the top-k queries picked by each algorithm, using the
following measures:
• Cost at k: sum of costs of the k queries in the cover.
• Red points at k: the number of documents included

outside the set D(q) in the solution, as a fraction of
the total number of documents outside the set D(q).
• Overlap at k: average number of queries covering each

element in the solution.
• Coverage at k: coverage after the top k candidates

have been picked.
The average results for the set cover method described in

Section 4 are summarized in Table 1 for several parameter
settings.

From the results of set-cover shown in Table 1, we observe
that penalizing only the overlap does not yield good results,
and either the scatter of the queries or the red points have
to be taken into account.

For the clustering-based method described in Section 5,
results are summarized in Table 2. Here, the size of the cover
varies with the parameter λU . For small values of λU , there
is not sufficient penalization for partial coverage, and thus

Table 1: Average results for the greedy algorithm

at cover size |C| = 5.
Parameters Sum of Red Inter-query

λC λR λO costs fraction overlap Coverage

0 0 1 0.11 0.15 1.07 0.47
0 1 0 0.06 0.04 1.53 0.48
0 1 1 0.06 0.06 1.11 0.44
1 0 0 0.03 0.06 1.32 0.43
1 0 1 0.04 0.08 1.10 0.40
1 0 10 0.05 0.09 1.09 0.39
1 1 0 0.05 0.04 1.41 0.47
1 1 1 0.05 0.07 1.13 0.44
1 10 0 0.06 0.04 1.51 0.47
1 10 10 0.05 0.06 1.12 0.44
10 0 1 0.04 0.08 1.17 0.42
10 1 0 0.03 0.05 1.33 0.44
10 1 1 0.04 0.07 1.16 0.43

max. 0.61

Table 2: Average results for the clustering-based

algorithm.

Parameter Size Sum of Red Inter-query
λU |C| costs fraction overlap Coverage

20 1.00 0.00 0.01 1.00 0.06
26 2.15 0.01 0.02 1.13 0.12
27 2.78 0.01 0.03 1.21 0.14
28 3.56 0.01 0.03 1.25 0.16
29 4.52 0.02 0.04 1.31 0.20
210 5.63 0.02 0.05 1.38 0.23
211 7.70 0.03 0.07 1.55 0.29
212 10.11 0.05 0.09 1.68 0.34
213 14.48 0.08 0.14 1.90 0.43
214 18.06 0.13 0.18 2.06 0.50

max. 0.61

the resulting solutions tend to involve only few queries that
do not cover well the set D(q). As the value of λU increases
more sets are selected in the cover solution. We observe
that the results of the clustering method are worse than
the ones obtained by the set-cover method. If we observe
Table 2 for average cover sizes |C| between 4.52 and 5.63,
the coverage reached is about half of the coverage than the
set-cover method at 5 obtains in Table 1, at a comparable
level of cost for the solution.

Real examples of the queries returned by the algorithms
are shown in Table 3. In the table we have included the
top 10 queries returned by the algorithms, as well as they
original position in the list ordered by overlap with respect
to the issued query. The table provides a qualitative idea of
the kind of anatomical dissection of a query obtained with
our methods.

As a general observation, the results show that the query
decomposition algorithms do not simply follow the original
ordering by overlap, but pick queries in various positions.
Also, extreme settings for the set-cover algorithm that con-
sider only one aspect of cost at a time tend to be reflected
qualitatively in the result set. For instance, if the scatter of
the queries is given all the cost (λC = 1, λR = 0, λO = 0),
the queries tend to be more narrow and specific.

Table 3: Example results showing the top 10 queries selected by the algorithms. The numbers on the left are

the position of the candidate query in the original list of candidates when sorted by overlap with the given

query.

Decomposition of query “border collie”

Clustering Set cover λC = 0 λR = 0 λO = 1
λU = 214 (Low-overlap queries)

1 border collie rescue 1 border collie rescue
2 border collie pedigree 2 border collie pedigree
4 breeding border collie 9 border collie allergies
9 border collie allergies 14 border collie puppies
8 border collie rescue uk 12 caring for a border collie
7 border collie to good home 20 border collies skin problems
6 information on blue eyed border collies 16 nice of you to come bye∗

5 rescue collies 4 breeding border collie
18 border collies free to good home 26 border collie association
12 caring for a border collie 23 border collie puppies cornwall

Set cover λC = 0 λR = 1 λO = 0 Set cover λC = 1 λR = 0 λO = 0
(Few documents outside original set) (More specific queries)

2 border collie pedigree 4 breeding border collie
4 breeding border collie 2 border collie pedigree
9 border collie allergies 1 border collie rescue
1 border collie rescue 6 information on blue eyed border collies
6 information on blue eyed border collies 22 border collie pups for sale
14 border collie puppies 9 border collie allergies
12 caring for a border collie 14 border collie puppies
16 nice of you to come bye 12 caring for a border collie
25 border collie boards 25 border collie boards
8 border collie rescue uk 11 collie

∗This is the name of well-known border collie breeders.

Decomposition of query “coffee tables”

Clustering Set cover λC = 0 λR = 0 λO = 1
λU = 214 (Low-overlap queries)

3 glass side tables uk 1 oak coffee tables
6 coffee tables modern 2 contemporary coffee table
7 designer coffee tables 3 glass side tables uk
9 coffee tables, large 11 contemporary glass coffee tables
11 contemporary glass coffee tables 29 london furniture coffee table shop
16 glass and wood coffee table 36 large coffee tables
18 glass table 41 reproduction mahogany nest of tables
21 beech coffee tables 26 aquarium tables
23 oak tables 39 handmade garden tables
24 coffee tables, large, wooden 58 chinese coffee dvd

Set cover λC = 0 λR = 1 λO = 0 Set cover λC = 1 λR = 0 λO = 0
(Few documents outside original set) (More specific queries)

6 coffee tables modern 6 coffee tables modern
7 designer coffee tables 61 contemporary white dining table uk
2 contemporary coffee table 7 designer coffee tables
12 glass coffee table 41 reproduction mahogany nest of tables
9 coffee tables, large 50 coffee table ergonomic
16 glass and wood coffee table 32 contemporary tv tables
29 london furniture coffee table shop 3 glass side tables uk
21 beech coffee tables 2 contemporary coffee table
4 oak coffee table 11 contemporary glass coffee tables
41 reproduction mahogany nest of tables 16 glass and wood coffee table

7. CONCLUSIONS
We introduced topical query decomposition, a novel prob-

lem that stands in between query recommendation and clus-
tering the results of a query, while having similarities and
important differences with both. We provided a general for-
mulation and two elegant solutions, namely red-blue metric
set cover, and clustering with predefined clusters. The set-
cover formulation provides solutions of better quality, and
we are currently exploring methods of improving the results
of the clustering-based algorithm, by employing other clus-
tering algorithms and/or using queries from query logs over
larger periods of time. We are currently investigating the
applicability of our proposal in other contexts such as tag-
based querying of pictures and multimedia. We also consider
performing large-scale experiments involving user studies in
order to tune the parameters of the algorithms.

Code and data for reproducing the results shown in Ta-
ble 3 is available at http://www.yr-bcn.es/querydecomp/.

Acknowledgments: The authors thank Vassilis Plachouras
for his valuable help.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison Wesley, 1999.

[2] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Query recommendation using query logs in search
engines. In Proc. of EDBT Workshops, pp. 588–596,
2004.

[3] S. Basu, I. Davidson, and K. Wagstaff, editors.
Constrained Clustering: Advances in Algorithms,
Theory and Applications. Chapman & Hall/CRC
Press, Data Mining and Knowledge Discovery Series,
2008. (In press).

[4] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proc. of ACM Int.
Conf. on Knowledge Discovery and Data Mining
(KDD), 2000.

[5] N. J. Belkin. The human element: helping people find
what they don’t know. Communications of the ACM,
43(8), 2000.

[6] R. D. Carr, S. Doddi, G. Konjevod, and M. V.
Marathe. On the red-blue set cover problem. In Proc.
of Symposium on Discrete Algorithms, 2000.

[7] V. Chvátal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research,
4:233–235, 1979.

[8] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models.
In Proc. of Int. Conf. on Web Search and Web Data
Mining (WSDM), 2008.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. of ACM
Int. Conf. on Knowledge Discovery and Data Mining
(KDD), 1996.

[10] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–652, 1998.

[11] P. Ferragina and A. Gulli. A personalized search
engine based on web-snippet hierarchical clustering. In
Proc. of World Wide Web Conf. (WWW), 2005.

[12] B. M. Fonseca, P. B. Golgher, E. S. de Moura,
B. Pôssas, and N. Ziviani. Discovering search engine

related queries using association rules. Journal of Web
Engineering, 2(4), 2004.

[13] B. M. Fonseca, P. B. Golgher, B. Pôssas, B. A.
Ribeiro-Neto, and N. Ziviani. Concept-based
interactive query expansion. In Proc. of ACM Int.
Conf. on Information and Knowledge Management
(CIKM), 2005.

[14] M. A. Hearst and J. O. Pedersen. Reexamining the
cluster hypothesis: Scatter/gather on retrieval results.
In Proc. of ACM Int. Conf. on Information Retrieval
(SIGIR), 1996.

[15] B. J. Jansen and A. Spink. How are we searching the
world wide web? a comparison of nine search engine
transaction logs. Information Processing &
Management, 42(1):248–263, January 2006.

[16] D. Johnson. Approximation algorithms for
combinatorial problems. In Proc. of the ACM
Symposium on Theory of Computing, 1973.

[17] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and
R. Krishnapuram. A hierarchical monothetic
document clustering algorithm for summarization and
browsing search results. In Proc. of World Wide Web
Conf. (WWW), 2004.

[18] D. Peleg. Approximation algorithms for the
label-covermax and red-blue set cover problems.
Journal of Discrete Algorithms, 5(1):55–64, 2007.

[19] B. Poblete and R. Baeza-Yates. Query-sets: Using
implicit feedback and query patterns to organize web
documents. In Proc. of World Wide Web Conf.
(WWW), 2008.

[20] B. Pôssas, N. Ziviani, W. Meira, and B. Ribeiro-Neto.
Set-based model: a new approach for information
retrieval. In Proc. of ACM Int. Conf. on Information
Retrieval (SIGIR), 2002.

[21] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley, 2005.

[22] V. Vazirani. Approximation Algorithms. Springer,
2004.

[23] K. Wagstaff, S. Basu, and I. Davidson. When is
constrained clustering beneficial, and why? In Proc. of
AAAAI’06, 2006.

[24] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl.
Constrained k-means clustering with background
knowledge. In Proc. of Int. Conf. on Machine
Learning (ICML), 2001.

[25] J.-R. Wen, J.-Y. Nie, H.-J. Zhang, and H.-J. Zhang.
Clustering user queries of a search engine. In Proc. of
World Wide Web Conf. (WWW), 2001.

[26] J. Xu and W. B. Croft. Improving the effectiveness of
information retrieval with local context analysis. ACM
Transact. on Information Systems, 18(1):79–112, 2000.

[27] H. Zeng, Q. He, Z. Chen, and W. Ma. Learning to
cluster web search results. In Proc. of ACM Int. Conf.
on Information Retrieval (SIGIR), 2004.

[28] Z. Zhang and O. Nasraoui. Mining search engine
query logs for query recommendation. In Proc. of
World Wide Web Conf. (WWW), 2006.

[29] Y. Zhao and G. Karypis. Evaluation of hierarchical
clustering algorithms for document datasets. In Proc.
of ACM Int. Conf. on Information and Knowledge
Management (CIKM), pp. 515–524, 2002.

