
Using Ghost Edges for Classification in
Sparsely Labeled Networks

Brian Gallagher† Hanghang TongF

†Lawrence Livermore National Laboratory
†{bgallagher, eliassi}@llnl.gov

Tina Eliassi-Rad† Christos FaloutsosF

FCarnegie Mellon University
F{htong, christos}@cs.cmu.edu

ABSTRACT
We address the problem of classification in partially labeled net-
works (a.k.a. within-network classification) where observed class
labels are sparse. Techniques for statistical relational learning have
been shown to perform well on network classification tasks by ex-
ploiting dependencies between class labels of neighboring nodes.
However, relational classifiers can fail when unlabeled nodes have
too few labeled neighbors to support learning (during training phase)
and/or inference (during testing phase). This situation arises in real-
world problems when observed labels are sparse.

In this paper, we propose a novel approach to within-network
classification that combines aspects of statistical relational learn-
ing and semi-supervised learning to improve classification perfor-
mance in sparse networks. Our approach works by adding “ghost
edges” to a network, which enable the flow of information from
labeled to unlabeled nodes. Through experiments on real-world
data sets, we demonstrate that our approach performs well across
a range of conditions where existing approaches, such as collective
classification and semi-supervised learning, fail. On all tasks, our
approach improves area under the ROC curve (AUC) by up to 15
points over existing approaches. Furthermore, we demonstrate that
our approach runs in time proportional to L · E, where L is the
number of labeled nodes and E is the number of edges.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing; I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern Recog-
nition]: Models - Statistical

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Statistical relational learning, semi-supervised learning, collective
classification, random walk.

1. INTRODUCTION
We address the problem of within-network classification in sparsely

labeled networks. Given a network of both labeled and unlabeled

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

nodes, our goal is to provide labels for the unlabeled nodes. Here,
labeling simply means assigning each node a class from among a
set of possible classes (see Figure 1).

+

+

+ –

i

?

?
?

??

?
?

?
+

+

+ –

i

?
?

??

?
?

(a) Problem:
Predict the label
(+ or –) for node i

(b) Our solution:
Generate “ghost edges”
for node i to existing
labeled nodes

Figure 1: Problem definition and our solution. We address the
problem of label sparsity in network classification by creating
“ghost edges” using random walks with restarts. These ghost
edges connect an unlabeled node to the most relevant labeled
nodes.

Suppose we want to identify fraudulent users of a cell phone
network. In this case, our set of possible classes for users is {fraud,
legit}. If a user is known to be involved in fraud, we assign a label
of “fraud." If a user is known to not be involved in fraud, we assign
a label of “legit." Otherwise, we leave the node unlabeled. Our goal
is then to assign labels (“fraud" or “legit") to the unlabeled users.

Cell phone fraud is an example where networks are often very
sparsely labeled. We have a handful of known fraudsters and le-
gitimate users, but the labels are unknown for the vast majority of
users. For such applications, it is reasonable to expect that we have
access to labels for fewer than 10%, 5%, or even 1% of the nodes.

In addition to being sparsely labeled, cell phone networks are
generally anonymized. That is, the nodes often contain no attributes
besides class labels. These sparsely labeled, anonymized networks
are the focus of this study. Put another way, our work focuses

on univariate within-network classification in sparsely labeled net-
works.

Techniques for statistical relational learning (SRL) have been
shown to perform well on network classification tasks because of
their ability to exploit dependencies between labels of related nodes
[18]. These techniques use labeled data to learn a model of the
dependencies between labels of neighboring nodes. The labels
of unlabeled nodes can then be inferred by propagating informa-
tion from labeled nodes throughout the network, according to this
learned dependency model (i.e., collective classification). Unfortu-
nately, sparse labels cause a number of problems for relational clas-
sifiers. First, collective classification techniques can fail without
sufficiently many labels to seed the inference process [15]. Second,
fewer labeled nodes means fewer training examples from which to
learn dependencies. Finally, even when a node is labeled, many of
its neighbors will not be. This is equivalent to having many miss-
ing attribute values in a traditional supervised learning setting. The
result is that it is very difficult to learn an accurate model of the
dependencies present in the data.

Within-network classification can also be viewed as a graph-
based semi-supervised learning problem since we have both la-
beled and unlabeled data available at training time. Although semi-
supervised learning (SSL) is generally applied to non-network data,
graph-based SSL approaches can be applied to within-network clas-
sification, as we show. SSL techniques have the advantage that they
do not rely as heavily on labeled training data and can make use
of unlabeled data as well. However, graph-based SSL approaches
generally do not learn dependencies from data, but instead assume
local label consistency (i.e., that nearby points tend to have the
same label). If the label consistency assumption is not met, SSL
techniques can perform extremely poorly. Figure 2 provides a pre-
view of our results. It plots classifier performance (measured by
area under the ROC curve, a.k.a. AUC) versus data set ID. The
data sets are ordered according to their local consistency (a.k.a. ho-
mophily score).1 Notice that the two proposed ghostEdge methods
are consistently at the top, while the competing methods may per-
form very poorly depending on the data set’s local consistency.

In this paper, we explore a novel approach to within-network
classification that capitalizes on the strengths of both statistical re-
lational learning (SRL) and semi-supervised learning (SSL), to pro-
duce a classifier that is robust in the face of both sparse labeling and
low label consistency. Our contributions are as follows:

• We propose a novel approach to within-network classifica-
tion, based on the creation of “ghost edges" that enable the
propagation of information from labeled to unlabeled nodes.

• We demonstrate that our approach is robust to both sparse
labeling and low label consistency, performing well consis-
tently across a range of real world classification tasks where
collective classification or semi-supervised learning fail.

• We demonstrate the scalability of our approach. Specifically,
we show that our methods run in time proportional to L · E
where L is the number of labeled nodes and E is the number
of edges in our graph.

The rest of the paper is organized as follows. In Section 2, we
review related work. We present our proposed methods in Sec-
tion 3. Sections 4 and 5 describe our experimental methodology
and results. Finally, we offer conclusions in Section 6.
1Note that throughout this paper, we use the terms ‘homophily’,
‘positive auto-correlation’, ‘local consistency’ and ‘smoothness’
interchangeably. We also use the terms ‘inverse relationship’, ‘neg-
ative auto-correlation’ and ‘lack of homophily’ interchangeably.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Enron HEP-TH Political Books RM In-Study

Data sets

A
U

C
 a

t 0
.5

 P
ro

po
rti

on
 o

f C
or

e
N

od
es

 L
ab

el
ed

GRF wvRN+RL logForest+ICA ghostEdgeNL ghostEdgeL

Local Consistency (lower)(higher)

Figure 2: A preview of our results: classification performance
of various approaches when half of the nodes in a graph data
set are unlabeled. The solid blue (square icon) and red (cir-
cle icon) lines on the top represent our ghostEdge approaches,
which perform consistently well regardless of the degree of lo-
cal consistency in the data set.

2. RELATED WORK
In recent years, there has been a great deal of work on models

for learning and inference in relational data [7, 10, 11, 16, 18]. For
within-network classification tasks where we have sparse labels,
we categorize the previous work into two main groups: collective
classification and graph-based semi-supervised learning.

Collective classification. Collective classification deals with la-
bel sparsity by simultaneously labelling a set of related nodes, al-
lowing estimates of neighboring labels to influence one another.
Representative work in this line started with the seminal paper of
Chakrabarti et al. on using hyperlinks to for hypertext classification
[2]. Sen et al. [17] provide a careful empirical study of the various
procedures for collective inference. Macskassy and Provost [12]
provide a nice case-study of previous work in learning attributes
of networked data. McDowell et al. [14] demonstrate that “cau-
tious” collective classification procedures produce better classifi-
cation performance than “aggressive" ones. They recommend only
propagating information about the top-k most confidently predicted
labels. One of the major advantages of collective classification lies
in its powerful ability to learn various kinds of dependency struc-
tures (positive vs. negative auto-correlation, different degrees of
correlation, etc). However, as pointed out in [15], when the la-
beled data is very sparse, which is quite common in the sparsely
labeled networks that we are particularly interested in, the perfor-
mance of collective classification might be largely degraded due to
the lack of sufficient neighbors. This is exactly one major advan-
tage of the proposed method, - we incorporate informative “ghost
edges” into the networks to deal with sparsity issues. From this
point of view, our method shares the similar spirit as the work by
Macskassy [13]. However, in [13], the additional edges are calcu-
lated based on attribute-similarity (specifically, text similarity). If
such information is not available (which is quite common in many
real applications and which is the case we are interested in), the
method in [13] is not applicable. On the other hand, we can always
leverage our “ghost edges” since they are based on the intrinsic

structure of the networks. Lastly, the algorithm proposed in [13]
does not learn the weights, instead it combines the weights through
a heuristic.

Graph-based semi-supervised learning. The problem of within-
network classification can also be thought of as the graph-based
semi-supervised learning problem. Here, the basic idea is to es-
timate a function on the graph which satisfies two kinds of con-
strains: (1) the consistency with the label information and (2) the
smoothness over the whole graph. The methods in this area mainly
vary in the different ways to balance these two constraints. For ex-
ample, Zhu’s Gaussian random field (GRF) method [23] puts a hard
constraint on the label consistency and then achieves the smooth-
ness by the harmonic function. Zhou’s global and local consistency
method [21] combines the two kinds constraints by a regularization
parameter and solves a quadratic optimization problem. For more
on graph-based semi-supervised learning, we refer the reader to an
excellent survey by Zhu [22]. By exploring the global structure (i.e.
smoothness) over the whole graph, graph-based semi-supervised
learning methods usually outperform the traditional methods, par-
ticularly when there are very few labeled nodes in the networks.
However, the constraint on smoothness implicitly assumes positive
auto-correlation in the graph, that is nearby nodes tend to share
the same class labels (i.e., homophily). When such an underlying
assumption does not hold (negative auto-correlation, the degree of
auto-correlation being small, etc), the performance might be largely
affected. This is another advantage of our “ghost edge” method, - it
leverages the additional learning stage to recover the intrinsic cor-
relation structure.

3. PROPOSED METHOD
In this section, we explain the motivation behind using ghost

edges for within-network classification and discuss how ghost edges
are created. We then describe how we take advantage of ghost
edges to improve classification performance.

3.1 Motivation and General Approach
The power of statistical relational learning (SRL) lies in the fact

that networks generally exhibit predictable relationships between
class labels of related nodes. Therefore, labeled nodes provide a
great deal of information about their unlabeled neighbors. Suppose
we have an unlabeled node, u, and we have a good understanding
of the relationship between the class label of u and the class labels
of u’s neighbors, N . If all nodes in N are labeled, we should be
able to do a very good job of predicting the label of u. However,
suppose that very few nodes in N are labeled. There are two ways
of looking at this problem:

1. Node u shares edges with plenty of other nodes in the net-
work, but too few of those neighboring nodes are labeled.

2. There are plenty of labeled nodes in the network, but node u
shares edges with too few of them.

The first way of looking at the problem is addressed by techniques
such as collective classification. Our approach, based on ghost
edges, addresses the second way of looking at the problem.

The idea behind our approach is to add “ghost edges" between
labeled nodes and unlabeled nodes to allow the information from
labeled nodes to inform our predictions on unlabeled nodes. Of
course, in order for this to work, we must carefully select pairs of
nodes to connect via ghost edges. In particular, the success of our
approach relies on our ability to choose pairs of nodes with labels
that relate to each other in a predictable way. Our conjecture is
that nodes which are “closer" in a network will tend to have more

predictable relationships between their class labels, and that nodes
which are directly connected by an observed edge are simply a spe-
cial case of this.

Based on this conjecture, we create ghost edges as follows. We
create a single ghost edge between every 〈labeled, unlabeled〉 pair
of nodes in our graph. We then assign a weight to each ghost edge
based on the proximity of the nodes that the edge connects. A
higher weight indicates that the connected nodes are closer together
in the network (i.e., have higher proximity). The following subsec-
tion describes our approach to quantifying node proximity.

3.2 Quantifying Node Proximity Using Ran-
dom Walk with Restart

To calculate RWR scores between each pair of nodes, we use a
variation on the fast random walk with restart method proposed by
Tong et al. [19]. The end result is that the algorithm can quickly
give the proximity score ri,j , indicating how easy it is to reach node
j from node i. In more detail, ri,j gives the steady-state probability
to find a particle at node j, when this particle does a random walk
with restarts from node i. The score ri,j is high if there are several,
high-weighted, short paths from i to j. A random walk with restarts
(or, equivalently, personalized pageRank) works as follows: a par-
ticle starts at node i, moves randomly along the edges of the given
graph, and with probability 1− c (say, c = 0.90), the particle flies
back to the initial node i. For more details, see [19].

3.3 Handling Degrees of Label Consistency
There is a subtle, but very important step in our RWR algorithm.

The problem is to handle varying degrees of local label consistency,
including cases where labels of neighbors are inversely related. In
cases with high label consistency (i.e., nearby nodes have similar
labels), all methods tend to do well. In cases where consistency is
low, as in, say, a near-bipartite graph of dating relationships with
mostly male-female edges, the semi-supervised learning methods
will not work, exactly because they have the local consistency as-
sumption hardwired in their optimization functions.

Similarly, if we add ghost edges carelessly, we will add a lot of
incorrect edges. What are the right edges to add so that our method
can easily handle cases with varying degrees of label consistency?

The idea is to do RWR, but to insist on even-length paths. We
shall refer to it as the even-step RWR. Mathematically, this means
that we replace the adjacency matrix A with its square B = A ∗A.
Then, we compute the RWR scores using the B matrix.

Why does this approach work regardless of the degree of label
consistency? The reasons are subtle: For the case of inverse class-
label relationship, the immediate neighbors are exactly the ones
we want to avoid, which is exactly what the even-step RWR does.
For the case of high local consistency, social networks typically
have triangles and high “clustering coefficient." Thus, even if we
only focus on even step paths, our random walk will still give high
scores to nodes that are well-connected. In practice, we find that the
even-step approach works well for intermediate consistency values
as well.

In conclusion, with the subtle technique of even-step RWR, our
GhostEdge methods can handle varying degrees of local label con-
sistency, as we show in the experiments section.

3.4 Classifier Design
We propose two novel approaches to within-network classifi-

cation: the ghost edge non-learning classifier (ghostEdgeNL) and
the ghost edge learning classifier (ghostEdgeL). Both approaches
are based on propagating class labels throughout a network using
ghost edges created via random walk with restart (namely, even-

step RWR). However, the two classifiers make use of ghost edges
in different ways. There are two ways in which the approaches
differ:

1. Use of available labels. GhostEdgeNL is a non-learning
method. It simply assumes that neighbors connected by a
ghost edge will tend have the same class labels and that this
tendency is stronger across edges with higher weights. Ghost-
EdgeL, on the other hand, uses the labeled nodes in a network
as training examples to learn the dependencies between class
labels of both observed neighbors and ghost neighbors.

2. Use of RWR scores. GhostEdgeNL makes use of all ghost
edges, although it puts more weight on edges with higher
proximity scores. GhostEdgeL bins ghost edges based on
their proximity scores and then uses labeled data to learn
weights on each bin, based on the predictiveness of its edges.

3.4.1 The GhostEdgeNL Classifier
Ghost edges can be added to any relational classifier. For Ghost-

EdgeNL, we chose to use a simple relational neighbor classifier
[11]. This classifier predicts the class of a node based entirely on
the class labels of neighboring nodes and performs no learning.
It estimates the probability of node u belonging to class c as the
weighted proportion of neighboring nodes that belong to class c.
GhostEdgeNL uses the proximity score on the ghost edge between
nodes as a weight. GhostEdgeNL ignores observed edges.

3.4.2 The GhostEdgeL Classifier
For GhostEdgeL, we chose a learning link-based classifier [10].

This classifier uses logistic regression (LR) to build a discrimina-
tive model of node i’s class given the class labels of nodes directly
connected to i. Since LR expects a fixed-length feature vector, the
set of neighboring class labels is summarized by a statistic such as
the count or proportion of neighbors of each class.

We initially implemented GhostEdgeL using a standard LR model.
However, we found that LR often failed to appropriately weight
features based on their predictiveness. We achieved better results
using an ensemble of LR models we refer to as logForest. The
logForest model is inspired by Breiman’s Random Forest classifier
[1]. We use a bag of LR classifiers, where each is given a subset of
log(M) + 1 of the M total features. For this study, our logForest
model uses 500 LR classifiers.

GhostEdgeL divides ghost edges into six bin as follows: A con-
tains ghost edges with scores in the top 3%, B gets edges scoring
between the top 3%-6%, C between 6%-12%, D between 12%-
25%, E between 25%-40%, and F between 40%-80%. There is no
overlap between bins.

The GhostEdgeL classifier uses the following features: (1) count
of neighbors of each class across observed edges and (2) count of
neighbors of each class across ghost edges for each bin. So, for a
binary classification problem with six bins, we have 14 features.

Like any relational learning method, GhostEdgeL learns the de-
pendencies between class labels of neighboring nodes. However,
in addition, the model learns how much weight to put on observed
edges vs. ghost edges with different proximity scores, and the
model can potentially learn different dependencies for each of these
edge types.

3.5 Scalability
In even-step RWR, the ranking vector ~ri = [ri,j] for a given

labeled node i is defined as:

~ri(t + 1) = cA2~ri(t) + (1− c)~ei

where ~ei is the starting vector for the node i, c is the fly-out prob-
ability, t is the iteration number, and A is the normalized graph
Laplacian [3].2

We can use the following iterative strategy:

~ri(1) = ~ei (1)

For t = 2, 3, ..., do the following two steps:

~ri(t) = A~ri(t− 1) (2)
~ri(t)← cA~ri(t) + (1− c)~ei (3)

The complexity for each step t is clearly O(E). So, to get one
ranking vector, the complexity is O(t̃ ·E), where t̃ is the maximum
number of iteration needed to reach the steady state. Overall, we
need L such ranking vectors (so that we will get all U×L proximity
scores). Therefore, the overall complexity is O(L·E) (omitting the
constant t̃).

Next, we will justify that the above iterative procedure will actu-
ally converge. To see this, we can re-write ~ri(t) as:

~ri(t) =

∞X
t=1

(ct)A(2t)~ei

Since A is normalized graph Laplacian, we have −1 ≤ λ(A) ≤
1, where λ(A) is the eigenvalue of A [3]. Therefore, A(2t) is
bounded. On the other hand, ct → 0 with t → infinity. Thus,
‖(ct)A(2t)~ei‖ goes to 0 as t goes to infinity, which completes the
proof.

4. EXPERIMENTAL DESIGN
Our problem setting is within-network classification in sparsely

labeled networks. We compare several approaches to overcome
label sparsity: (1) collective classification, (2) graph-based semi-
supervised learning methods, and (3) our “ghost edge" label prop-
agation approach (ghostEdge). The experiments are designed to
answer the following research questions:

• How do the proposed GhostEdge methods do against the
competition?

• What is the impact of local label consistency (i.e., homophily)
and lack of it?

4.1 Data Sets
We present results on four real-world data sets: political book

co-purchases [9], Enron emails [4], Reality Mining cell-phone calls
[5], and high-energy physics citations from arXiv (a.k.a. HEP-TH
[8]). Our tasks are to identify neutral political books, Enron execu-
tives, Reality Mining study participants, and HEP-TH papers with
the topic “Differential Geometry,” respectively.

Figure 3 summarizes our prediction tasks. The Sample column
describes the method used to obtain our experimental subset of data
from the full data set: use the entire set (full), use a time-slice
(time), or sample a continuous subgraph via breadth-first search
(BFS). The Task column indicates the class label we are trying to
predict. The |V |, |L|, and |E| columns indicate counts of total
nodes, labeled nodes, and total edges in each network, respectively.
The P (+) column indicates the proportion of labeled nodes that
have the class label of interest (e.g., 12% of the political books are
neutral).
2The normalized graph Laplacian A = D−1/2WD−1/2, where I
is the identity matrix, D is the diagonal degree matrix, and W is
the weighted adjacency matrix.

Note that for the Enron and HEP-TH tasks we have labels for
only a subset of nodes (which we refer to as “core” nodes) and
can only train and test our classifiers on these nodes. However,
unlabeled nodes and their connections to labeled nodes may still be
exploited for label propagation.

Data Set Sample Task |V | |L | |E | P(+)
Enron Full Executives? 3081 1055 34902 0.02

HEP-TH Time Diff. Geometry? 2999 342 36014 0.06
Political Books BFS Neutral? 105 105 441 0.12
Reality Mining BFS In Study? 1000 1000 31509 0.08

Figure 3: Summary of data sets and prediction tasks.

4.2 Competing methods
From our methods, we use the two versions: (a) ghostEdgeNL

which is the non-learning ghostEdge-based approach as described
in Section 3.4.1 and (b) ghostEdgeL which is the learning ghostEdge-
based approach described in Section 3.4.2.

The competing methods fall under two categories: (1) collective
classification, and (2) graph-based semi-supervised learning meth-
ods. Both categories of methods were designed to handle label
sparsity.

4.2.1 Competing methods
On each classification task, we ran seven individual classifiers:

1. logForest, an ensemble logistic link-based model without
collective classification

2. logForest+ICA, an ensemble logistic link-based model, which
uses the iterative classification algorithm to perform collec-
tive classification

3. wvRN, a relational neighbor model without collective clas-
sification

4. wvRN+RL, a relational neighbor model, which uses relax-
ation labeling for collective classification

5. GRF, the SSL Gaussian random field model

6. ghostEdgeNL, our ghostEdge-based classifier without learn-
ing

7. ghostEdgeL, our ghostEdge-based classifier with learning

We describe each of the competing classifiers next.
logForest is an ensemble of logistic regression classifiers as de-

scribed in Section 3.4.2. The model takes two features as input:
the count of unique neighbors of the positive class and the count of
unique neighbors of the negative class. Our base logForest classi-
fier does not use collective classification. Therefore, any neighbors
with missing class labels are simply ignored.

logForest+ICA uses the base logForest classifier, but performs
collective classification using the ICA algorithm described in Sec-
tion 4.2.2. We tried the logForest classifier with both the ICA and
RL collective classification algorithms across our range of classifi-
cation tasks. The performances of the two algorithms were compa-
rable, but ICA performed slightly better overall. This is consistent
with previous results [12].

wvRN is the weighted-vote relational neighbor classifier [11].
Given a node i and a set of neighboring nodes, N , the wvRN clas-
sifier calculates the probability of each class c for node n as:

P (c | n) =
1

Z

X
{nj∈N|label(nj)=c}

w(n, nj) (4)

where N is the set nodes that neighbor n, Z =
P

ni∈N w(n, ni),
and w(n, m) is the weight on the edge between n and m. For the
baseline wvRN model, w(n, m) is simply the number of observed
edges between n and m.

Note that in cases where a node has no labeled neighbors, we
will end up with P (Ci = c) = 0 for all c. In such cases, we simply
assign probabilities to each class based on priors observed in the
training data. Our base wvRN classifier does not use collective
classification. Therefore, any neighbors with missing class labels
are simply ignored.

wvRN+RL uses the base wvRN classifier, but performs collec-
tive classification using the RL algorithm described in Section 4.2.2.
We tried the wvRN classifier with both the ICA and RL collective
classification algorithms across our range of classification tasks.
The RL algorithm performed better overall. This is consistent with
previous results [12].

GRF uses the Gaussian random field approach of Zhu et al. [23].
We ported Zhu’s MATLAB code3 for use in our experimental frame-
work and double checked our results with the original MATLAB
code. We made one small modification to Zhu’s original code to
allow it to handle disconnected graphs. Zhu computes the graph
Laplacian as L = D − cW , where c = 1. We set c = 0.9 to
ensure that L is diagonally dominant and thus invertible. We found
that our change had no substantial impact on classification perfor-
mance.

4.2.2 Collective Classification
To perform collective classification, we use both the iterative

classification algorithm (ICA) and relaxation labeling (RL) [12].
We also ran preliminary experiments using Gibbs sampling [6],
which yielded results comparable to ICA. This is consistent with
findings of other researchers [12, 17]. In our experiments, the log-
Forest classifier performed better overall using ICA and the wvRN
classifier performed better using RL. Therefore, we report results
only for these combinations.

ICA initially assigns labels to unlabeled nodes, U , based on what
is known in each unlabeled node’s local neighborhood. Nodes
with no labeled neighbors are temporarily assigned a label of null.
Then, until either all class labels have stabilized or a certain number
of iterations have elapsed, a new label is assigned to each ui ∈ U ,
based on the current label assignments of ui’s neighbors. RL is
similar to ICA except that instead of each ui having a current label
assignment, ui has a current probability distribution on the set of
labels. Thus, the uncertainty associated with a label assignment is
retained until the algorithm terminates and a final label is assigned.
Unlabeled nodes are initially assigned the prior distribution, ob-
served in the training data. We perform simulated annealing to cat-
alyze convergence.

4.3 Experimental Methodology
For all results presented here, the basic experimental setup is the

same. Each data set contains a set of core nodes for which we
have ground truth (i.e., we know the true class labels). In all cases,
classifiers have access to the entire data graph during both training
and testing. However, not all of the core nodes are labeled. We vary
3See http://pages.cs.wisc.edu/ jerryzhu/pub/harmonic_function.m.

the proportion of labeled core nodes from 10% to 90%. Classifiers
are trained on all labeled core nodes and evaluated on all unlabeled
core nodes.

Our methodology is as follows. For each proportion of core
nodes labeled, we run 20 trials and report the average performance.
For each trial and proportion labeled, we choose a class-stratified
random sample containing (1.0− proportion labeled)% of the core
instances as the test set and the remaining core instances become
the training set. Note that for proportion labeled less than 0.9 (or
greater than 10 trials), this means that a single instance will neces-
sarily appear in multiple test sets. The test sets cannot be made to be
independent because of this overlap. However, we carefully choose
the test sets to ensure that each instance in our data set occurs in the
same number of test sets over the course of our experiments. This
ensures that each instance carries the same weight in the overall
evaluation regardless of the proportion labeled. Labels are kept on
the training instances and removed from the test instances. We use
identical train/test splits for each classifier.

Our experimental framework sits on top of the open source Weka
system [20]. We implement our own network data representation
and experimental code, which handles tasks such as splitting the
data into training and test sets, labeling and unlabeling of data, and
converting network fragments into a Weka-compatible form. We
rely on Weka for the implementation of logistic regression and for
measuring classifier performance on individual training/test trials.

We use the area under the Receiver Operating Characteristic (ROC)
curve (AUC) as a performance measure to compare classifiers. We
chose AUC because it is more discriminating than accuracy. In
particular, most of our tasks have a hight class-skew and accuracy
cannot adequately differentiate between the classifiers.

5. EXPERIMENTAL RESULTS
In this section, we discuss the results of our experiments. We

assessed significance of the results using paired t-tests4 (p-values
≤ 0.05 are considered significant).

5.1 Effects of Ghost Edges
Figures 4 and 5, respectively, compare the performance of wvRN

(with and without RL) to ghostEdgeNL and logForest (with and
without ICA) to ghostEdgeL. We see a consistent and often dra-
matic increase in performance over the baseline wvRN and log-
Forest models due to the use of ghost edges. GhostEdgeNL sig-
nificantly outperforms wvRN on Enron ≤ 0.7, Political Books
0.3 − 0.7, and HEP-TH and Reality Mining for all proportions la-
beled. GhostEdgeL significantly outperforms logForest on Enron
and Reality Mining ≤ 0.7, Political Books ≥ 0.3, and HEP-TH at
all proportions labeled.

In many cases, the ghostEdge classifiers also outperform collec-
tive classification. GhostEdgeNL significantly outperforms wvRN+RL
on Enron ≤ 0.5, HEP-TH ≤ 0.7, and Reality Mining for all pro-
portions labeled. GhostEdgeL significantly outperforms logFor-
est+ICA on Enron ≤ 0.7, HEP-TH at all proportions labeled, Po-
litical Books ≥ 0.3, and Reality Mining ≤ 0.5.

Figure 2 (previewed in Section 1) compares the performance of
various approaches to handle label sparsity with 50% of core nodes
labeled: ghost edges, collective classification, and Gaussian ran-
4It is an open issue whether the standard significance tests for com-
paring classifiers (e.g., t-tests, Wilcoxon signed-rank) are applica-
ble for within-network classification, where there is typically some
overlap in test sets across trials. It remains to be seen whether the
use of such tests produces a bias and the extent of any errors caused
by such a bias. This is an important area for future study that will
potentially affect a number of published results.

dom fields. This figure demonstrates the robustness of the ghost-
Edge methods across a range of data sets with varying degrees of
local consistency among labels (see Figure 8). Both ghostEdgeNL
and ghostEdgeL are consistently high performers across all tasks.
All of the other methods perform poorly (i.e., ≥ 30 AUC points
from the top) on at least one of the data sets.

Figure 6 presents a more complete comparison of the approaches
as the proportion of labeled nodes varies. Here, we see that the
ghostEdge methods perform well in comparison to other approaches,
regardless of the proportion of nodes labeled. For all data sets and
proportions labeled, one of the ghostEdge classifiers is always the
top performer (or tied at the top). We note that there are occasion-
ally substantial differences in performance between ghostEdgeL
and ghostEdgeNL. We present a more detailed discussion of learn-
ing and non-learning methods in Section 5.2.

5.2 Effects of Learning
Figure 6 reveals a couple of interesting things about learning vs.

non-learning classifiers. First, learning methods in general are hurt
more than non-learning methods by a smaller proportion of labeled
nodes because learning methods rely on training examples to gen-
erate an accurate dependency model. Figure 7 shows the average
number of training examples available for each data set at each pro-
portion labeled. The Political books and HEP-TH data sets have
very few training examples available at the lower proportions of
labeled nodes (11 and 33, respectively at 0.1 labeled). Correspond-
ingly, it is on these data sets that we see a dip in the learning meth-
ods relative to the non-learning methods at lower proportions of
labeled data.

The second thing to note is that the performance of both GRF
and wvRN+RL on the Reality Mining task actually decreases as
more labels are made available. This is because there is an inverse
relationship between class labels of neighbors (see auto-correlation
scores in Figure 8). So, these non-learning methods take whatever
truth they are given and use it to make exactly the wrong decision.
The more information they get, the worse they perform. We see
this same effect in Figure 4 with wvRN. GhostEdgeNL overcomes
this problem by using even-step RWR, as described in section 3.3.
The relative performance of logForest+ICA increases with respect
to GRF and wvRN+RL as label consistency decreases since the
logForest model is able to learn dependencies among neighboring
labels (Figure 2).

5.3 Effects of Collective Classification and Semi-
Supervised Learning

Figures 2 and 6 allows us to compare the performance of the
collective classification approaches (i.e., wvRN+RL and logFor-
est+ICA) and the GRF semi-supervised approach across data sets.
On all tasks, the performance of wvRN+RL and GRF is essen-
tially equivalent, although GRF does perform significantly better
than wvRN+RL in terms of AUC on all data sets except HEP-
TH. We do not report results for wvRN+ICA, but we found that
wvRN+RL performed much better than wvRN+ICA overall. On
the other hand, the logForest classifier demonstrated roughly equiv-
alent performance regardless of the collective inference procedure
used. These results are consistent with previous findings [12].

6. CONCLUSIONS
We focus on the problem of predicting node labels in a large

graph, when (a) there are few labeled nodes and (b) local consis-
tency (a.k.a. homophily) does not necessarily hold. To address the
first problem, we introduce ‘ghost edges’, by judiciously adding
edges between nodes, according to RWR proximity. To address the

S

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Enron: Proportion of Core Nodes Labeled

A
U

C

wvRN
wvRN+RL
ghostEdgeNL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

HEP-TH: Proportion of Core Nodes Labeled

A
U

C

wvRN
wvRN+RL
ghostEdgeNL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Political Books: Proportion of Core Nodes Labeled

A
U

C

wvRN
wvRN+RL
ghostEdgeNL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Reality Mining In-Study: Proportion of Core Nodes Labeled

A
U

C

wvRN
wvRN+RL
ghostEdgeNL

Figure 4: Comparisons of wvRN, wvRN+RL, and ghostEdgeNL. Adding ghost edges boosts performance on all data sets.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Enron: Proportion of Core Nodes Labeled

A
U

C

logForest
logForest+ICA
ghostEdgeL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

HEP-TH: Proportion of Core Nodes Labeled

A
U

C

logForest
logForest+ICA
ghostEdgeL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Political Books: Proportion of Core Nodes Labeled

A
U

C

logForest
logForest+ICA
ghostEdgeL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Reality Mining In-Study: Proportion of Core Nodes Labeled

A
U

C

logForest
logForest+ICA
ghostEdgeL

Figure 5: Comparisons of logForest, logForest+ICA, and ghostEdgeL. Adding ghost edges boosts performance on all data sets.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

Enron: Proportion of Core Nodes Labeled

A
U

C
GRF
wvRN+RL
logForest+ICA
ghostEdgeNL
ghostEdgeL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

HEP-TH: Proportion of Core Nodes Labeled

A
U

C

GRF
wvRN+RL
logForest+ICA
ghostEdgeNL
ghostEdgeL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.3 0.5 0.7 0.9

Political Books: Proportion of Core Nodes Labeled

A
U

C

GRF
wvRN+RL
logForest+ICA
ghostEdgeNL
ghostEdgeL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.3 0.5 0.7 0.9

Reality Mining In-Study: Proportion of Core Nodes Labeled

A
U

C

GRF
wvRN+RL
logForest+ICA
ghostEdgeNL
ghostEdgeL

Figure 6: Comparisons of our approaches (ghostEdgeL and ghostEdgeNL) to a purely semi-supervised approach (GRF), and two
collection classification approaches (logForest+ICA and wvRN+RL) as the proportion of labeled nodes varies.

second problem, we propose to bypass all the activation-spreading
methods (which implicitly assume homophily), and instead we use
a classifier on a carefully chosen set of features from observed, as
well as ‘ghost-edge’ neighbors. A subtle, but vital point is that we
consider RWR not on the original matrix, but on its square. This
change makes our method robust, regardless of the degree of ho-
mophily. In other words, our method does well even when the local
consistency assumption is not met.

We performed experiments on several real, publicly available
data sets, measuring the AUC. The competitors were carefully cho-
sen to be the state of the art. Our method is very robust, performing
as well as or better than the best competitor across tasks. All other
classifiers we evaluated perform poorly in some cases, depending
on the degree of homophily. We also showed that the complex-
ity of our approach is O(L · E), where L is the number of labeled
nodes and E is the number of edges. Therefore, the approach is
suitable for large data sets, provided that known labels and edges
are sufficiently sparse.

7. ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory un-
der contract DE-AC52-07NA27344 (LLNL-CONF-404625), and
based upon work supported by the National Science Foundation un-
der Grant No. IIS-0534205. This work is also partially supported
by the Pennsylvania Infrastructure Technology Alliance (PITA), an
IBM Faculty Award, a Yahoo Research Alliance Gift, with addi-

tional funding from Intel, NTT and Hewlett-Packard. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation, or other funding par-
ties.

8. REFERENCES
[1] L. Breiman. Random forests. Machine Learning, 45(1):5–32,

2001.
[2] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext

categorization using hyperlinks. In SIGMOD, pages
307–318, 1998.

[3] F. Chung. Spectral graph theory. Number 92 in CBMS
Regional Conference Series in Mathematics. American
Mathematical Sociaty, 1997.

[4] W. W. Cohen. Enron email data set.
http://www.cs.cmu.edu/ enron/, 2004.

[5] N. Eagle and A. Pentland. Reality mining: sensing complex
social systems. Personal and Ubiquitous Computing,
10(4):255–268, 2006.

[6] S. Geman and D. Geman. Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 6:721–741, 1984.

[7] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning
probabilistic models of link structure. Journal of Machine
Learning Research, 3:679–707, 2002.

0

100

200

300

400

500

600

700

800

900

1000

0.1 0.3 0.5 0.7 0.9
Proportion of Core Nodes Labeled

of

 T
ra

in
in

g
Ex

am
pl

es

Enron HEP-TH Political Books Reality Mining In-Study

Figure 7: Number of training examples vs. proportion of core nodes labeled for each data set used in our experiments.

Data Task |L |/|V |
Avg Degree for

a Node in L
Avg Degree for

a Node in V
Label

Consistency Auto-correlation P(+)
Enron Executives? 0.34 4.31 9.10 0.94 0.21 0.02

HEP-TH Diff. Geometry? 0.11 3.81 24.00 0.94 0.23 0.06
Political Books Neutral? 1 8.4 8.4 0.87 0.16 0.12
Reality Mining In Study? 1 2.75 2.75 0.07 -0.86 0.08

Figure 8: Detailed information prediction tasks. |L|/|V | gives the proportion of core nodes labeled at 1.0. We define local consistency
as the percentage of links connecting labeled nodes that have the same label at each endpoint. Auto-correlation is the Pearson
correlation measure on the links connecting labeled nodes. Average degree is computed as the mean of the number of neighboring
nodes in a set of nodes (either L or V). P(+) is the proportion of labeled nodes that have the class label of interest.

[8] D. Jensen. Proximity HEP-TH database.
http://kdl.cs.umass.edu/data/hepth/hepth-info.html, 2003.

[9] V. Krebs. Books about U.S. Politics.
http://www.orgnet.com/, 2004.

[10] Q. Lu and L. Getoor. Link-based classification. In ICML,
pages 496–503, 2003.

[11] S. Macskassy and F. Provost. A simple relational classifier.
In Notes of the 2nd Workshop on Multi-relational Data
Mining at KDD, 2003.

[12] S. Macskassy and F. Provost. Classification in networked
data: a toolkit and a univariate case study. Machine
Learning, 8:935–983, 2007.

[13] S. A. Macskassy. Improving learning in networked data by
combining explicit and mined links. In AAAI, pages
590–595, 2007.

[14] L. McDowell, K. M. Gupta, and D. W. Aha. Cautious
inference in collective classification. In AAAI, pages
596–601, 2007.

[15] J. Neville and D. Jensen. Relational dependency networks.
Journal of Machine Learning Research, 8:653–692, 2007.

[16] J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning
relational probability trees. In KDD, pages 625–630, 2003.

[17] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and
T. Eliassi-Rad. Collective classification in network data. AI

Magazine (Special Issue on AI and Networks), forthcoming.
[18] B. Taskar, P. Abbeel, and D. Koller. Discriminative

probabilistic models for relational data. In UAI, pages
485–492, 2002.

[19] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In ICDM, pages 613–622, 2006.

[20] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, 2nd edition, 2005.

[21] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global consistency. In
NIPS, 2003.

[22] X. Zhu. Semi-supervised learning literature survey. Technical
Report 1530, Department of Computer Sciences, University
of Wisconsin, Madison, 2005.

[23] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In
ICML, pages 912–919, 2003.

	Introduction
	Related work
	Proposed Method
	Motivation and General Approach
	Quantifying Node Proximity Using Random Walk with Restart
	Handling Degrees of Label Consistency
	Classifier Design
	The GhostEdgeNL Classifier
	The GhostEdgeL Classifier

	Scalability

	Experimental Design
	Data Sets
	Competing methods
	Competing methods
	Collective Classification

	Experimental Methodology

	Experimental Results
	Effects of Ghost Edges
	Effects of Learning
	Effects of Collective Classification and Semi-Supervised Learning

	Conclusions
	Acknowledgements
	References

