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ABSTRACT

In this paper we introduce a novel collapsed Gibbs sam-
pling method for the widely used latent Dirichlet alloca-
tion (LDA) model. Our new method results in significant
speedups on real world text corpora. Conventional Gibbs
sampling schemes for LDA require O(K) operations per sam-
ple where K is the number of topics in the model. Our
proposed method draws equivalent samples but requires on
average significantly less then K operations per sample. On
real-word corpora FastLDA can be as much as 8 times faster
than the standard collapsed Gibbs sampler for LDA. No ap-
proximations are necessary, and we show that our fast sam-
pling scheme produces exactly the same results as the stan-
dard (but slower) sampling scheme. Experiments on four
real world data sets demonstrate speedups for a wide range
of collection sizes. For the PubMed collection of over 8 mil-
lion documents with a required computation time of 6 CPU
months for LDA, our speedup of 5.7 can save 5 CPU months
of computation.
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1. INTRODUCTION
The latent Dirichlet allocation (LDA) model (or “topic

model”) is a general probabilistic framework for modeling
sparse vectors of count data, such as bags of words for text,
bags of features for images, or ratings of items by customers.
The key idea behind the LDA model (for text data for ex-
ample) is to assume that the words in each document were
generated by a mixture of topics, where a topic is repre-
sented as a multinomial probability distribution over words.
The mixing coefficients for each document and the word-
topic distributions are unobserved (hidden) and are learned
from data using unsupervised learning methods. Blei et al
[3] introduced the LDA model within a general Bayesian
framework and developed a variational algorithm for learn-
ing the model from data. Griffiths and Steyvers [6] subse-
quently proposed a learning algorithm based on collapsed
Gibbs sampling. Both the variational and Gibbs sampling
approaches have their advantages: the variational approach
is arguably faster computationally, but the Gibbs sampling
approach is in principal more accurate since it asymptoti-
cally approaches the correct distribution.

Since the original introduction of the LDA model, the
technique has been broadly applied in machine learning and
data mining, particularly in text analysis and computer vi-
sion, with the Gibbs sampling algorithm in common use. For
example, Wei and Croft [19] and Chemudugunta, Smyth,
and Steyvers [5] have successfully applied the LDA model
to information retrieval and shown that it can significantly
outperform – in terms of precision-recall – alternative meth-
ods such as latent semantic analysis. LDA models have also
been increasingly applied to problems involving very large
text corpora: Buntine [4], Mimno and McCallum [12] and
Newman et al [15] have all used the LDA model to automat-
ically generate topic models for millions of documents and
used these models as the basis for automated indexing and
faceted Web browsing.

In this general context there is significant motivation to
speed-up the learning of topic models, both to reduce the
time taken to learn topic models for very large text collec-
tions, as well as moving towards “real-time” topic modeling
(e.g., for a few thousand documents returned by a search en-
gine). The collapsed Gibbs sampling algorithm of Griffiths
and Steyvers involves repeatedly sampling a topic assign-



ment for each word in the corpus, where a single iteration of
the Gibbs sampler consists of sampling a topic for each word.
Each sampled topic assignment is generated from a condi-
tional multinomial distribution over the K topics, which in
turn requires the computation of K conditional probabili-
ties. As an example, consider learning a topic model with
one million documents, each with 1000 words on average,
K = 1000 topics, and performing 500 Gibbs iterations (a
typical number in practice). This would require generating a
total of 5×1011 word-topic assignments via sampling, where
each sampling operation itself involves K = 1000 computa-
tions.

The key idea of our paper is to reduce the time taken for
the “inner-loop” sampling operation, reducing it from K to
significantly less then K on average; we observe speedups
up to a factor of 8 in our experiments. Furthermore, the
speedup usually increases as K increases. In our proposed
approach we exploit the fact that, for any particular word
and document, the sampling distributions of interest are fre-
quently skewed such that most of the probability mass is
concentrated on a small fraction of the total number of top-
ics K. This allows us to order the sampling operations such
that on average only a fraction of the K topic probabilities
need to be calculated. Our proposed algorithm is exact, i.e.,
no approximation is made and the fast algorithm correctly
and exactly samples from the same true posterior distribu-
tion as the slower standard Gibbs sampling algorithm.

2. RELATED WORK
The problem of rapidly evaluating or approximating prob-

abilities and drawing samples arises in a great many do-
mains. However, most existing solutions are characterized
by the data being embedded in a metric space, so that ge-
ometric relationships can be exploited to rapidly evaluate
the total probability of large sets of potential states. Mix-
ture modeling problems provide a typical example: a data
structure which clusters data by spatial similarity, such as
a KD-tree [2], stores statistics of the data in a hierarchical
fashion and uses these statistics to compute upper and lower
bounds on the association probabilities for any data within
those sets. Using these bounds, one may determine whether
the current estimates are sufficiently accurate, or whether
they need to be improved by refining the clusters further
(moving to the next level of the data structure).

Accelerated algorithms of this type exist for many com-
mon probabilistic models. In some cases, such as k-means,
it is possible to accelerate the computation of an exact solu-
tion [1, 16, 17]. For other algorithms, such as expectation–
maximization for Gaussian mixtures, the evaluations are
only approximate but can be controlled by tuning a qual-
ity parameter [13, 10, 9]. In [8], a similar branch-and-bound
method is used to compute approximate probabilities and
draw approximate samples from the product of several Gaus-
sian mixture distributions.

Unfortunately, the categorical nature of LDA makes it
difficult to apply any of these techniques directly. Instead,
although we apply a similar “bound and refine” procedure,
both the bound and the sequence of refinement operations
must be matched to the expected behavior of the data in
topic modeling. We describe the details of this bound along
with our algorithm in Section 4, after first reviewing the
standard LDA model and Gibbs sampling.
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Figure 1: Graphical model for LDA.

3. LDA
LDA models each of D documents as a mixture over K

latent topics, each of which describes a multinomial distribu-
tion over a W word vocabulary. Figure 1 shows the graphical
model representation of the LDA model.

The LDA model is equivalent to the following generative
process for words and documents:

For each of Nj words in document j

1. sample a topic zij ∼ Multinomial(θj)

2. sample a word xij ∼ Multinomial(φzij
)

where the parameters of the multinomials for topics in a
document θj and words in a topic φk have Dirichlet priors.
Intuitively we can interpret the multinomial parameter φk

as indicating which words are important in topic k and the
parameter θj as indicating which topics appear in document
j [6]. Given the observed words x = {xij}, the task of
Bayesian inference is to compute the posterior distribution
over the latent topic indices z = {zij}, the mixing propor-
tions θj , and the topics φk. An efficient inference procedure
is to use collapsed Gibbs sampling [6], where θ and φ are
marginalized out, and only the latent variables z are sam-
pled. After the sampler has burned-in we can calculate an
estimate of θ and φ given z.

We define summations of the data by Nwkj = #{i : xij =
w, zij = k}, and use the convention that missing indices are
summed out, so that Nkj =

P

w
Nwkj and Nwk =

P

j
Nwkj .

In words, Nwk is the number of times the word w is assigned
to the topic k and Nkj is the number of times a word in
document j has been assigned to topic k. Given the current
state of all but one variable zij , the conditional probability
of zij is then

p(zij = k|z¬ij ,x, α, β) =
1

Z
akjbwk (1)

where

akj = N¬ij

kj + α bwk =
N¬ij

wk + β

N¬ij

k + Wβ
,

Z is the normalization constant

Z =
X

k

akjbwk,

and the superscript ¬ij indicates that the corresponding da-
tum has been excluded in the count summations Nwkj .



Algorithm 3.1: LDA Gibbs Sampling(z,x)

for i← 1 to N
do
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:

u← draw from Uniform[0, 1]
for k ← 1 to K
do



P [k]← P [k − 1] +
(N

¬ij
kj

+α)(N
¬ij
xijk

+β)

(N
¬ij
k

+Wβ)

for k ← 1 to K
do



if u < P [k]/P [K]
then zij = k, stop

An iteration of Gibbs sampling proceeds by drawing a
sample for zij according to (1) for each word i in each doc-
ument j. A sample is typically accomplished by first cal-
culating the normalization constant Z, then sampling zij

according to its normalized probability; see Algorithm 3.1.
Given the value sampled for zij the counts Nkj , Nk, Nwk are
updated. The time complexity for each iteration of Gibbs
sampling is then O(NK).

Given a sample we can then get an estimate for θ̂j and φ̂k

given z:

φ̂wk =
Nwk + β

Nk + Wβ

θ̂kj =
Nkj + α

Nj + Kα

4. FAST LDA
For most real data sets after several iterations of the Gibbs

sampler, the probability mass of the distribution p(zij =
k|z¬ij ,x, α, β) becomes concentrated on only a small set
of the topics as in Figure 4. FastLDA takes advantage of
this concentration of probability mass by only checking a
subset of topics before drawing a correct sample. After
calculating the unnormalized probability in (1) of a sub-
set of topics, FastLDA determines that the sampled value
does not depend on the probability of the remaining top-
ics. To describe how FastLDA works, it is useful to in-
troduce a graphical depiction of how a sample for zij is
conventionally drawn. We begin by segmenting a line of
unit length into K sections, with the kth section having
length equal to p(zij = k|z¬ij ,x, α, β). We then draw a
sample for zij by drawing a value uniformly from the inter-
val, u ∼ Uniform[0,1], and selecting the value of zij based
on the segment into which u falls; see Figure 2.

As an alternative, suppose that we have a sequence of
bounds on the normalization constant Z, denoted Z1 . . . ZK ,
such that Z1 ≥ Z2 ≥ . . . ≥ ZK = Z. Then, we can graphi-
cally depict the sampling procedure for FastLDA in a similar
way, seen in Figure 3. Instead of having a single segment for
topic k, of length pk/Z = p(zij = k|z¬ij ,x, α, β), we instead
have several segments sk

l . . . sk
K associated with each topic.

The first segment for a topic k, sk
k, describes a conserva-

tive estimate of the probability of the topic given the upper
bound Zk on the true normalization factor Z. Each of the
subsequent segments associated with topic k, namely sk

l for
l > k, are the corrections for the missing probability mass
for topic k given the improved bound Zl. Mathematically,

p1/Z

p2/Z

p3/Z

p4/Z

p5/Z

p6/Z

u

Figure 2: Draw from p(zij = k|z¬ij ,x, α, β). pk =
ajkbwk. u ∼ Uniform[0, 1]. A topic k is sampled
by finding which segment (pk) contains the draw u.
Here the total number of topics K = 6.

the lengths of these segments are given by

sk
k =

ajkbwk

Zk

∀l > k sk
l = (ajkbwk)(

1

Zl

−
1

Zl−1
)

Since the final bound ZK = Z, the total sum of the seg-
ment lengths for topic k is equal to the true, normalized
probability of that topic:

p(zij = k|z¬ij ,x, α, β) =
K

X

l=k

sk
l

Therefore, as in the conventional sampling method, we can
draw zij from the correct distribution by first drawing u ∼
Uniform[0, 1], then determining the segment in which it falls.

By organizing the segments in this way, we can obtain a
substantial advantage: we can check each segments in or-
der, knowing only p1 . . . pk and Zk, and if we find that u
falls within a particular segment sk

l , the remaining segments
are irrelevant. Importantly, if for our sequence of bounds
Z1 . . . ZK , an intermediate bound Zl depends only on the
values of ajk and bjk for k ≤ l, then we may be able to draw
the sample after only examining topics 1 . . . l. Given that
in LDA, the probability mass is typically concentrated on
a small subset of topics for a given word and document, in
practice we may have to do far fewer operations per sample
on average.

4.1 Upper Bounds for Z
FastLDA depends on finding a sequence of improving bounds

on the normalization constant, Z1 ≥ Z2 ≥ . . . ≥ ZK = Z.



u

s1
1 = p1/Z1

s1
2 = p1(1/Z2 − 1/Z1)

s2
2 = p2/Z2

s1
3 = p1(1/Z3 − 1/Z2)

s2
3 = p2(1/Z3 − 1/Z2)

s3
3 = p3/Z3

s1
4 = p1(1/Z4 − 1/Z3)

s2
4 = p2(1/Z4 − 1/Z3)

s3
4 = p3(1/Z4 − 1/Z3)

s4
4 = p4/Z4

Figure 3: Draw from p(zij = k|z¬ij ,x, α, β). pk =
ajkbwk. u ∼ Uniform[0, 1]. A topic k is sampled
by finding which segment (sk

j ) contains the draw u.
Here the total number of topics K = 4.

We first define Z in terms of component vectors ~a,~b,~c:

~a = [N¬ij
1j + α, .., N¬ij

Kj + α]

~b = [N¬ij
w1 + β, .., N¬ij

wK + β]

~c = [1/(N¬ij
1 + Wβ), .., 1/(N¬ij

K + Wβ)]

Then, the normalization constant is given by

Z =
X

k

~ak
~bk~ck

To construct an initial upper bound Z0 on Z, we turn
to the generalized version of Hölder’s inequality [7], which
states

Z0 = ‖~a‖p‖~b‖q‖~c‖r ≥ Z

where 1/p + 1/q + 1/r = 1

Notice that, as we examine topics in order, we learn the

actual value of the product ~ak
~bk~ck. We can use these calcu-

lations to improve the bound at each step. We then have a
bound at step l given by:

Zl =
l

X

i=1

“

~ai
~bi~ci

”

+ ‖~al+1:K‖p‖~bl+1:K‖q‖~cl+1:K‖r ≥ Z

This sequence of bounds satisfies our requirements: it is
decreasing, and if l = K we recover the exact value of Z. In
this way the bound improves incrementally at each iteration
until we eventually obtain the correct normalization factor.

Hölder’s inequality describes a class of bounds, for any
valid choice of (p, q, r); these values are a design choice of
the algorithm. A critical aspect in the choice of bounds is
that it must be computationally efficient to maintain. In
particular we want to be able to calculate Z0 and update

‖~al+1:K‖p ‖~bl+1:K‖q ‖~cl+1:K‖r

in constant time. We focus our attention on two natural
choices of values which lead to computationally efficient im-
plementations: (p, q, r) = (2, 2,∞) and (3, 3, 3). For p, q, r <
∞, the norms can be updated in constant time, while for
r = ∞, we have ‖~cl+1:K‖r = mink Nk which is also rela-
tively efficient to maintain. Section 4.4 provides more detail
on how these values are maintained. Empirically, we found
that the first choice typically results in a better bound (see
Figure 10 in Section 6.4).

FastLDA maintains the norms ‖~a‖p, ‖~b‖q, ‖~c‖r separately
and then uses their product to bound Z. One might con-

sider maintaining the norm ‖~a~b‖, ‖~b~c‖ or even Z instead,
improving on or eliminating the bound for Z. The problem

with maintaining any combination of the vectors ~a,~b or ~c is
that the update of one zij will cause many separate norms to
change because they depend on the counts of zij variables,
Nwkj . For example, if we maintain dwk = bwkck, then a
change of the value of zij from k to k′ requires changes to
dwk, dwk′∀w resulting in O(2W ) operations. However with-

out ~d, only bwk, bwk′ , ck, ck′ change.

Algorithm 4.1: FastLDA(~a,~b,~c)

sumpk ← 0
u←∼Uniform[0, 1]
for k ← 1 to K
do
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:

sumpk ← sumpk−1 + ~ak
~bk~ck

Zk ← sumpk + ‖~al+1:K‖‖~bl+1:K‖
1

mink N
¬ij
k

+Wβ

if u× Zk > sumpk

then continue to next k

else
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:

if (k = 1)or(uZk > sumpk−1)
then return (k)

else
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:

u←
(uZk−1−sumpk−1)Zk

Zk−1−Zk

for t← 1 to k
do



if (sumpt >= u)
then return (t)

4.2 Refinement Sequence
Finally, we must also consider the order in which the top-

ics are evaluated. Execution time improves as the number of
topics considered before we find the segment sk

l containing u
decreases. We thus would like the algorithm to consider the
longest segments first, and only check the short segments if
necessary. Two factors affect the segment length: pk, the
unnormalized probability, and Zl, the bound on Z at step l.
Specifically, we want to check the topics with the largest pk

early, and similarly the topics which will improve (decrease)
the bound Zl.

Those topics which fall into the former category are those

with (relatively) large values for the product ~ak
~bk~ck, while



those falling into the latter category are those with large

values for at least one of ~ak, ~bk, and ~ck. Thus it is natural
to seek out those topics k which have large values in one or
more of these vectors.

Another factor which must be balanced is the computa-
tional effort to find and maintain an order for refinement.
Clearly, to be useful a method must be faster than a di-
rect search over topics. To greedily select a good refinement
order while ensuring that we maintain computational effi-
ciency, we consider topics in descending order of Nkj , the
frequency of word assignments to a topic in the current doc-

ument (equivalent to descending order on the elements of ~b).
This order is both efficient to maintain (see Section 4.4) and
appears effective in practice.

4.3 Fast LDA Algorithm
The sampling step for FastLDA begins with a sorted list

of topics in descending order by Njk, the most popular topic
for a document to the least popular. A random value u is
sampled u ∼ Uniform[0, 1]. The algorithm then considers
topics in order, calculating the length of segments sk

l as it
goes. Each time the next topic is considered the bound Zk

is improved. As soon as the sum of segments calculated so
far is greater then u, the algorithm can stop and return the
topic associated with the segment u falls on. Graphically,
the algorithm scans down the line in Figure 3 calculating
only sk

l and Zk for the k topics visited so far. When the
algorithm finds a segment whose end point is past u it stops
and returns the associated topic. By intelligently ordering
the comparisons as to whether u is within a segment, we
need to do 2K comparisons in the worst case.

4.4 Complexity of the Algorithm
To improve over the conventional algorithm, FastLDA

must maintain the sorted order of Nkj and the norms of

each component: minkNk, ‖~al:K‖ and ‖~bl:K‖, more effi-
ciently then the K steps required for the calculation of Z.
The strategy used is to calculate the values initially and
then update only the affected values after each sample of
zij . Maintaining the descending sort order of Nkj or the
minimum element of Nk can be done inexpensively, and in
practice much faster than the worst case O(log K) required
for a delete/insert operation into a sorted array. We start
by performing an initial sort of these integer arrays, which
takes O(K log K) time. During an update, one element of
Nkj is incremented by one, and another element of Nkj is
decremented by one (likewise for Nk). Given that we have
integer arrays, this update will render the array in almost
sorted order, and we expect that only a few swaps are re-
quired to restore sorted order. Using a simple bubble sort,
the amortized time for this maintain-sort operation is very
small, and in practice much faster than O(log K).

Maintaining the value of the finite norms, ‖~a‖ and ‖~b‖,
from iteration to iteration can be done by calculating the
values once during initialization and then updating the value
when an associated zij is sampled. Two norms need to be
updated when zij is updated, the value of ‖~a‖ for document

j and the value of ‖~b‖ for word w, where xij = w. These
updates can be done in O(1) time.

In addition, we require the incremental improvements at
each step of the sampling process, i.e., at topic k − 1 we

require ‖~ak:K‖ and ‖~bk:K‖, the norms of the remaining topics
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Figure 4: Average fraction of a document explained
by top-20 topics, for NYTimes (K=400 topics) and
PubMed (K=2000 topics). We see that, on aver-
age, the top-20 topics in any document account for
approximately 90% of the words in the document.

D N W

NIPS 1, 500 1.9× 106 12, 419
Enron 39, 861 6.4× 106 28, 102
NYTimes 300, 000 100× 106 102, 660
PubMed 8, 200, 000 730× 106 141, 043

Table 1: Size parameters for the four data sets used
in experiments. D is number of documents, N is
total number of words in the collection, and W is
size of vocabulary.

from k to K. (We upper-bound ‖~ck:K‖ by its initial value,
‖~c‖.) For finite p-norms, given ‖~ak:K‖p it is an O(1) update

from ‖~ak:K‖p → ‖~ak+1:K‖p, and equivalently for ‖~bk:K‖q.

5. DATA SETS
We compared execution times of LDA and FastLDA using

four data sets: NIPS full papers (from books.nips.cc), En-
ron emails (from www.cs.cmu.edu/∼enron), NYTimes news
articles (from ldc.upenn.edu), and PubMed abstracts (from
www.pubmed.gov). These four data sets span a wide range
of collection size, content, and average document length.
The NYTimes and PubMed collections are relatively large,
and therefore useful for demonstrating the potential bene-
fits of FastLDA. For each collection, after tokenization and
removal of stopwords, the vocabulary of unique words was
truncated by only keeping words that occurred more than
ten times. The size parameters for these four data sets are
shown in Table 1.

While the NIPS and Enron data sets are moderately sized,
and thus useful for conducting parameter studies, the NY-
Times and PubMed data sets are relatively large. Running
LDA on the NYTimes data set using K = 1600 topics can
take more than a week on a typical high-end desktop com-
puter, and running LDA on the PubMed data set using
K = 4000 topics would take months, and would require



memory well beyond typical desktop computers. Conse-
quently, these larger data sets are ideal candidates for show-
ing the reduction in computation time from our FastLDA
method, and measuring speedup on real-life large-scale cor-
pora.

6. EXPERIMENTS
Before describing and explaining our experiments, we point

the reader to the Appendix, which lists the exact parameter
specifications used to run our experiments. With the goal
of repeatability, we have made our LDA and FastLDA code
publicly available at http:// www.ics.uci.edu/ ∼iporteou/
fastlda and the four data sets at the UCI Machine Learning
Repository, http:// archive.ics.uci.edu/ml/ machine-learning-
databases/ bag-of-words/.

The purpose of our experiments was to measure actual
reduction in execution time of FastLDA relative to LDA.
Consequently, we setup a highly-controlled compute envi-
ronment to perform timing tests. All speedup experiments
were performed in pairs, with LDA and FastLDA being run
on the same computer, compiler and environment to allow a
fair comparison of execution times. Most computations were
run on workstations with dual Xeon 3.0GHz processors with
code compiled by gcc version 3.4 using -O3 optimization.

While equivalence of FastLDA to LDA is guaranteed by
construction, we performed additional tests to verify that
our implementation of FastLDA produced results identical
to LDA. In the first test we verified that the implementa-
tions of LDA and FastLDA drew samples for zij from the
same distribution. To do this, we kept the assignment vari-
ables z¬ij constant, and sampled a value for, but did not
update, zij . We did this for 1000 iterations and then ver-
ified that the histograms of sampled values were the same
between LDA and FastLDA. In the second test, using 100
runs on the NIPS corpus, we confirmed that the perplexity
for FastLDA was the same as the perplexity for LDA. This
double checking affirmed that FastLDA was indeed correctly
coded, and therefore timings produced by FastLDA would
be valid and comparable to those produced by LDA.

6.1 Measuring Speedup
For the NIPS and Enron data sets, we timed the execution

of LDA and FastLDA for 500 iterations of the Gibbs sam-
pler, i.e., 500 sweeps through the entire corpus. This number
of iterations was chosen to be large enough to guarantee that
burn-in had occurred, and that samples were being drawn
from the posterior distribution. This number of iterations
also meant that the measurement of execution time was rel-
atively accurate. Each separate case was run twice using
different random initializations to estimate variation in tim-
ings. These repeat timings of runs showed that the variation
in CPU time for any given run was approximately 1%. We
do not show error bars in the figures because this variation
in timings was negligible.

For the NYTimes and PubMed data sets, we used a slightly
different method to measure speedup, because of the consid-
erably larger size of these data sets compared to NIPS and
Enron. Instead of measuring CPU time for an entire run, we
measured CPU time per iteration. To produce an accurate
estimate, we estimated this per-iteration CPU time by tim-
ing 20 consecutive iterations. FastLDA was initialized with
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Figure 5: CPU time for LDA and FastLDA, as a
function of the number of topics K for NIPS and
Enron data sets.

parameters from an already burned-in model for NYTimes
and PubMed. The K = 2000 and K = 4000 topic models
of PubMed were computed on a supercomputer using 256
processors using the parallel AD-LDA algorithm [14].

Because of its large size, PubMed presented further chal-
lenges. Running LDA or FastLDA on PubMed with K =
2000 and K = 4000 topics requires on the order of 100-
200 GB of memory, well beyond the limit of typical work-
stations. Therefore, we estimated speedup on PubMed us-
ing a 250,000 document subset of the entire collection, but
running LDA and FastLDA initialized with the parameters
from the aforementioned burned-in model that was com-
puted using the entire PubMed corpus of 8.2 million docu-
ments. While the measured CPU times were for a subset
of PubMed, the speedup results we show hold for FastLDA
running on the entire collection, since the topics used were
those learned for the entire 8.2 million documents.

6.2 Experimental Setup
For all experiments, we set Dirichlet parameter β = 0.01

(prior on word given topic) and Dirichlet parameter α =
2/K (prior on topic given document), except where noted.
Setting α this way ensured that the total added probability
mass was constant. These settings of Dirichlet hyperparam-
eters are typical for those used for topic modeling these data
sets, and similar to values that one may learn by sampling or
optimization. We also investigated the sensitivity of speedup
to the Dirichlet parameter α.

The bound presented in Section 4.1 was expressed in the
more general form of Hölder’s inequality. For all experi-
ments, except where noted, we used the general form of
Hölder’s inequality with p = 2, q = 2, r = ∞. Section 6.4
examines the effect of different choices of p, q and r. As is
shown and discussed in that section, the choice of p = 2,
q = 2, r =∞ is the better one to use in practice.

6.3 Speedup Results
CPU time for LDA increases linearly with the number of

topics K (Figure 5), an expected experimental result given
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the for loop over K topics in algorithm 3.1. The CPU time
for FastLDA is significantly less than the CPU time for LDA
for both the NIPS and Enron data sets. Furthermore, we
see that FastLDA CPU time increases slower than linearly
with increasing topics, indicating a greater speedup with in-
creasing number of topics. Figure 6 shows the same results,
this time displayed as speedup, i.e. the y-axis is the CPU
Time for LDA divided by the CPU Time for FastLDA. For
these data sets, we see speedups between 3× and 8×, with
speedup increasing with higher number of topics. The frac-
tion of topics FastLDA must consider on average per sample
is related to the fraction of topics used by documents on av-
erage. This in turn depends on other factors such as the
latent structure of the data and the Dirichlet parameters
α and β. Consequently, in experiments using a reasonable
number of topics the speedup of FastLDA increases as the
number of topics increase.

Our summary of the speedup results for all four data sets
are shown in Figure 7. Each pair of bars shows the speedup
of FastLDA relative to LDA, for two different topic settings
per corpus. The number of topics are: NIPS K = 400, 800,
Enron K = 400, 800, NYTimes K = 800, 1600 and PubMed
K = 2000, 4000, with the speedup for the larger number
of topics shown in the black bar on the right of each pair.
We see a range of 5× to 8× speedup for this wide variety
of data sets and topic settings. On the two huge data sets,
NYTimes and PubMed, FastLDA shows a consistent 5.7×
to 7.5× speedup. This speedup is non-trivial for these larger
computations. For example, FastLDA reduces the compu-
tation time for NYTimes from over one week to less than
one day, for K = 1600 topics.

The speedup is relatively insensitive to the number of doc-
uments in a corpus, assuming that as the number of docu-
ments increases the content stays consistent. Figure 8 shows
the speedup for the NIPS collection versus number of top-
ics. The three different curves respectively show the en-
tire NIPS collection of D = 1500 documents, and two sub-
collections made up of D = 800 and D = 400 documents
(where the sub-collections are made up from random sub-
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Figure 7: Speedup of FastLDA over LDA for the
four corpora. Bars show: NIPS K = 400, 800, Enron
K = 400, 800, NYTimes K = 800, 1600 and PubMed
K = 2000, 4000. α = 2/K for all runs.

samples of the full 1500-document collection). The figure
shows that speedup is not significantly effected by corpus
size, but predominantly dependent on number of topics, as
observed earlier. The choice of Dirichlet parameter α more
directly affects speedup, as shown in Figure 9. This is be-
cause using a larger Dirichlet parameter smooths the distri-
bution of topics within a document, and gives higher proba-
bility to topics that may be irrelevant to any particular doc-
ument. The resulting effect of increasing α is that FastLDA
needs to visit and compute more topics before drawing a
sample. Conversely, setting α to a low value further concen-
trates the topic probabilities, and produces more than an
18× speedup on the NIPS corpus using K = 800 topics.

6.4 Choice of Bound
We experimented with two different bounds for Z, cor-

responding to particular choices of p, q and r in Hölder’s
inequality. The first was setting p = q = 2 and r = ∞,
i.e. using mink Nk. We also used the symmetric setting
of p = q = r = 3. In all comparisons so far we found the
p = q = r = 3 setting resulted in slower execution times
than p = q = 2 and r =∞.

Figure 10 shows given two choices for p, q, r, how quickly
the bound Zk converges to Z as a function of the number of
topics evaluated. This plot shows the average ratio Zk/Z for
the kth topic evaluated before drawing a sample. The faster
Zk/Z converges to 1, the fewer calculations are needed on
average. Using the NIPS data set, four runs are compared
using the two different choices of p, q, r and K = 400 versus
K = 4000 topics. Here as well, we see that the bound pro-
duced by p = q = r = 3 tends to give much higher ratios
on average, forcing the algorithm to evaluate many topics
before the probabilities approach their true values.

7. CONCLUSIONS
Topic modeling of text collections is rapidly gaining im-

portance for a wide variety of applications including infor-
mation retrieval and automatic subject indexing. Among
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these, Latent Dirichlet Allocation and Gibbs sampling are
perhaps the most widely used model and inference algo-
rithm. However, as the size of both the individual docu-
ments and the total corpus grows, it becomes increasingly
important to be as computationally efficient as possible.

In this paper, we have described a method for increasing
the speed of LDA Gibbs sampling while providing exactly
equivalent samples, thus retaining all the optimality guaran-
tees associated with the original LDA algorithm. By orga-
nizing the computations in a better way, and constructing
an adaptive upper bound on the true normalization con-
stant, we can take advantage of the sparse and predictable
nature of the topic association probabilities. This ensures
both rapid improvement of the adaptive bound and that
high-probability topics are visited early, allowing the sam-
pling process to stop as soon as the sample value is located.
We find that this process gives a 3–8× factor of improvement
in speed, with this factor increasing with greater numbers
of topics. These speed-ups are in addition to improvements
gained through other means (such as the parallelization tech-
nique of Newman et al. [14]), and can be used in conjunction
to make topic modeling of extremely large corpora practical.

The general method we describe, to avoid having to con-
sider all possibilities when sampling from a discrete distribu-
tion, should be applicable to other models as well. In partic-
ular we expect the method to work well for other varieties of
topic model, such as the Hierarchical Dirichlet Process [18]
and Pachinko allocation [11], which have a sampling step
similar to LDA. However, how to maintain an efficient upper
bound for Z, the accuracy of the bound, and an efficient–to–
maintain ordering in which to consider topics, remain model
specific problems.

Additionally, our bound–and–refine algorithm used one
particular class of bounds based on Hölder’s inequality, and a
refinement schedule based on the document statistics. Whether
other choices of bounds or schedules could further improve
the performance of FastLDA is an open question.
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Decreasing α encourages sparse, concentrated topic
probabilities, increasing the speed of our method.
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APPENDIX

We describe here the parameter specifications used to run
our experiments. We have made our LDA and FastLDA code
publicly available at http:// www.ics.uci.edu/ ∼iporteou/
fastlda and the four data sets at the UCI Machine Learn-
ing Repository, http:// archive.ics.uci.edu/ ml/ machine-
learning-databases/ bag-of-words/.

For all NIPS and Enron runs:

1. α = 2/K, β = 0.01, except for experiments versus α

2. CPU times measured over 500 iterations, including burn-
in

3. Speedup computed over entire run

4. Runs repeated with different random initializations

For NYTimes and PubMed runs:

1. α = 2/K, β = 0.01

2. CPU times measured over 20 iterations

3. Speedup computed on a per-iteration basis

4. LDA and FastLDA runs initialized with model param-
eters from already burned-in run (1000 iterations, α =
2/K,β = 0.01)


