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ABSTRACT

This paper presents ZigZag, an 802.11 receiver design that combats

hidden terminals. ZigZag’s core contribution is a new form of in-

terference cancellation that exploits asynchrony across successive

collisions. Specifically, 802.11 retransmissions, in the case of hidden

terminals, cause successive collisions. These collisions have different

interference-free stretches at their start, which ZigZag exploits to

bootstrap its decoding.

ZigZag makes no changes to the 802.11 MAC and introduces no

overhead when there are no collisions. But, when senders collide,

ZigZag attains the same throughput as if the colliding packets were

a priori scheduled in separate time slots. We build a prototype of

ZigZag in GNU Radio. In a testbed of 14 USRP nodes, ZigZag

reduces the average packet loss rate at hidden terminals from 72.6%

to about 0.7%.

Categories and Subject Descriptors C.2.2 [Computer Sys-

tems Organization]: Computer-Communications Networks

General Terms Algorithms, Design, Performance, Theory

Keywords Wireless, Hidden Terminals, Interference Cancellation

1 Introduction

Collisions and hidden terminals are known problem in 802.11 net-

works [8, 21, 18, 26, 33]. Measurements from a production WLAN

show that 10% of the sender-receiver pairs experience severe packet

loss due to collisions [8]. Current 802.11 WLANs rely on carrier

sense (CSMA) to limit collisions–i.e., senders sense the medium and

abstain from transmission when the medium is busy. This approach

is successful in many scenarios, but when it fails, as in the case of

hidden terminals, the impact on the interfering senders is drastic; the

senders either repeatedly collide and their throughputs plummet, or

one sender captures the medium preventing the other from getting

packets through [21, 18, 33]. The 802.11 standard proposes the use

of RTS-CTS to counter collisions, but experimental results show

that enabling RTS-CTS significantly reduces the overall through-

put [18, 33, 36, 26], and hence WLAN deployments and access point

(AP) manufacturers disable RTS-CTS by default [1, 2]. Ideally, one

would like to address this problem without changing the 802.11 MAC

or affecting senders that do not suffer from hidden terminals.
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We introduce ZigZag, a new 802.11 receiver that increases

WLAN’s resilience to collisions. ZigZag requires no changes to

the 802.11 MAC and introduces no overheard in the case of no colli-

sion. In fact, in the absence of collisions, ZigZag acts like a typical

802.11 receiver. But, when senders collide, ZigZag achieves the

same performance as if the colliding packets were a priori scheduled

in separate time slots.

ZigZag exploits a subtle opportunity for resolving collisions, an

opportunity that arises from two basic characteristics of 802.11:

1. An 802.11 sender retransmits a packet until it is acked or timed

out, and hence when two senders collide they tend to collide again

on the same packets.

2. 802.11 senders jitter every transmission by a short random inter-

val,1 and hence collisions start with a random stretch of interfer-

ence free bits.

To see how ZigZag works, consider the hidden terminal scenario

in Fig. 1, where Alice and Bob, unable to sense each other, transmit

simultaneously to the AP, causing collisions. When Alice’s packet

collides with Bob’s, both senders retransmit their packets causing

a second collision, as shown in Fig. 2. Further, because of 802.11

random jitters, the two collisions are likely to have different offsets,

i.e., ∆1 6= ∆2. Say that the AP can compute these offsets (as explained

in §5.1), the AP can then find a chunk of bits that experience inter-

ference in one collision but is interference-free in the other, such

as chunk 1 in Fig. 2. A ZigZag AP uses this chunk to bootstrap its

decoder. In particular, since chunk 1 is interference-free in the first

collision, the AP can decode it using a standard decoder. The AP

then subtracts chunk 1 from the second collision to decode chunk 2.

Now, it can go back to the first collision, subtract chunk 2, decode

chunk 3, and proceed until both packets are fully decoded.

ZigZag’s key contribution is a novel approach to resolving interfer-

ence, different from prior work on interference cancellation [31, 16]

and joint decoding [29]. Basic results on the capacity of the multi-

user channel show that if the two hidden terminals transmit at the

rate supported by the medium in the absence of interference, i.e.,

rate R in Fig. 3, the aggregate information rate in a collision, being

as high as 2R, exceeds capacity, precluding any decoding [29, 11].

Thus, state-of-the-art interference cancellation and joint decoding,

designed for cellular networks with non-bursty traffic and known

users [31, 4], have a fundamental limitation when applied in 802.11

networks: they require a sender to change the way it modulates and

codes a packet according to whether the packet will collide or not.

This leaves 802.11 senders with the following tradeoff: either they

tune to a suboptimal rate that works in the presence of collision,

though not every packet will collide, or they send at the best rate

in the absence of collision, but accept that the network cannot use

these methods to resolve collisions. In contrast, with ZigZag, the

senders need not make such a tradeoff. ZigZag allows the senders

1Each transmission picks a random slot between 0 and CW [34].
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Figure 1: A Hidden Terminals Scenario.
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Figure 2: ZigZag Decoding. ZigZag decodes first chunk 1 in the first

collision, which is interference free. It subtracts chunk 1 from the second

collision to decode chunk 2, which it then subtract from the first collision

to decode chunk 3, etc.

to transmit at the best rate supported by the medium in the absence

of collisions. However, if collisions occur, ZigZag decodes pairs of

collisions that contain the same packets. The average information

rate in such a collision pair is 2R/2 = R. This rate is both decodable

and as efficient as if the two packets were scheduled in separate time

slots.

ZigZag has the following key features.

• It is modulation-independent: In ZigZag, every chunk is first

rid of interference then decoded. Hence, ZigZag can employ a

standard 802.11 decoder as a black-box, which allows it to work

with collisions independent of their underlying modulation scheme

(i.e., bit rate), and even when the colliding packets are modulated

differently.

• It is backward compatible: A ZigZag receiver can operate with

unmodified 802.11 senders and requires no changes to the 802.11

protocol (see §7 for how to send acks).

• It generalizes to more than a pair of colliding packets, as explained

in §8 and experimentally demonstrated in §10.6.

We have implemented a ZigZag prototype in GNU Radio, and

evaluated it in a 14-node testbed, where 10% of the sender-receiver

pairs are hidden terminals, 10% sense each other partially, and 80%

sense each other perfectly. Our results reveal the following findings.

• The loss rate averaged over scenarios with partial or perfect hidden

terminals decreases from 72.6% to less than 0.7%, with some

severe cases where the loss rate goes down from 100% to zero.

• Averaging over all sender-receiver pairs, including those that do

not suffer from hidden terminals, we find that ZigZag improves the

average throughput by 25.2% when compared to current 802.11.

• Our BPSK GNURadio implementation and our 4-QAM and 16-

QAM simulations show that ZigZag and collision-free decoding

achieve the same bit error (BER) for comparable SNRs. Surpris-

ingly, at BPSK and 4-QAM, ZigZag has a slightly lower BER than

if the two packets were collision-free. This is because, in ZigZag,

every bit is received twice, once in every collision, improving its

chances of being correctly decoded.

2 Related Work

Related work falls in the following two areas.

(a) Collisions in WLAN and Mesh Networks. Recent work [14,

15] advocates the use of successive interference cancellation (SIC)

and joint decoding to resolve 802.11 collisions. As explained in §1,

these schemes work only when the colliding senders transmit at a
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Figure 3: Standard Interference Cancellation and Joint Decoding Re-

quire Inefficient Rates. The figure shows the capacity region of the multi-

user channel. If Alice and Bob transmit close to the best rate supported

by the medium in the absence of interference, R, their combined rates

will be (R,R), which is outside the capacity region, and hence cannot be

decoded.

bit rate (i.e., information rate) significantly lower than allowed by

their respective SNRs and code redundancy. The authors have built a

Zigbee prototype of successive interference cancellation [15]. Since

ZigBee has no rate adaptation and employs a high redundancy code

(every 4 bits are expanded to 32 bits), it experiences scenarios in

which the bit rate is significantly below what can be supported by the

SNR and the code rate. In such scenarios, SIC could significantly

improve the throughput. In contrast, ZigZag works even when a

sender uses a bit rate that matches its channel’s SNR and the redun-

dancy of its code (as would be the case for systems with proper rate

adaptation). In that respect, ZigZag provides an attractive alternative

to SIC.

Our work is also related to analog network coding (ANC) [20].

An ANC receiver however can decode collisions only if it already

knows one of the two colliding packets. It cannot deal with general

collisions or hidden terminals. In principle, one can combine ANC

and ZigZag to create a system both addresses hidden terminals, and

collects network coding gains.

Additionally, prior works have studied wireless interference [27,

13, 8, 21, 18, 26, 33], and proposed MAC modifications to increase

resilience to collisions [37, 10, 19, 5, 25]. In comparison, this paper

presents mechanisms that decode collisions rather than avoiding

them, and works within the 802.11 MAC rather than proposing a new

MAC.

(b) Communication and Information Theory: The idea of decod-

ing interfering users has received much interest in information and

communications theories [29, 31, 7, 30, 32]. The main feature that

distinguishes ZigZag from prior works in those areas is that ZigZag

resolves 802.11 collisions without requiring any scheduling, power

control, synchronization assumptions, or coding.

Among the deployed systems, CDMA receivers decode a user by

treating all other users as noise [7]. A CDMA solution for hidden

terminals in WLANs, however, would require major changes to

802.11 including the use of power control and special codes [4, 7].

Furthermore, CDMA is known to be highly suboptimal in high SNR

regimes (e.g., worse than TDMA [29]), which are typical in WLANs.

Finally, successive interference cancellation (SIC) has been used to

decode interfering users in CDMA cellular networks [4]. SIC requires

the interfering senders to have significantly different powers [31], or

different levels of coding [16, 29]. It also requires tight control from

the base station to ensure that the total information rate stays below

capacity. Conceptually, SIC may be perceived as a special case of

ZigZag, in which a chunk is a full packet, i.e., a full packet is decoded

and subtracted from the collision signal to decode the other packet.

However, by iterating over strategically-picked chunks, ZigZag can

resolve interference even when the colliding senders have similar

SNRs, are not coordinated, and do not use special codes.
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Figure 4: ZigZag applies to various collision patterns. Subscripts refer

to a packet’s sender and id, e.g., Pa1 is Alice’s first packet. The top three

patterns are decoded chunk-by-chunk. The forth pattern may occur

when Alice’s SNR is significantly higher than Bob’s. The fifth pattern

occurs when Alice’s SNR is higher than Bob’s, and the bit rates are too

low for the SNRs. The last pattern occurs when two groups of nodes are

hidden from each other.

3 Scope

ZigZag is an 802.11 receiver design that decodes collisions. It focuses

on hidden terminals in WLANs. ZigZag’s benefits extend to mesh

networks, where having receivers that can decode collisions could

enable more concurrent transmissions and hence higher spatial reuse.

Exploring mesh benefits is, however, beyond the scope of this paper.

ZigZag adopts a best effort design; in the absence of collisions it

acts like current 802.11 receivers, but when collisions occur it tries

to decode them. Of course there are collision patterns that ZigZag

cannot decode and there are cases where, though the pattern is decod-

able, decoding may fail because of insufficient SNR. However, since

ZigZag does not introduce any overhead for the case of no collision,

its presence can only increase the throughput of the WLAN. In §7,

we explain how one can deploy ZigZag in a WLAN by changing

only the access points and without modifying the clients.

ZigZag resolves a variety of collision patterns. The main idea

underlying its decoding algorithm is to find a collision free chunk,

which it exploits to bootstrap the decoding process. Once the decoder

is bootstrapped the process is iterative and at each stage it produces

a new interference-free chunk, decodable using standard decoders.

For example, as explained in §1, ZigZag can decode the pattern in

Fig. 2 by decoding first chunk 1 in the first collision, and subtracting

it from the second collision, obtaining chunk 2, which it decodes

and subtracts from the first collision, etc. Using the same principle,

ZigZag can decode other patterns like those in Fig. 4. In particular, it

can decode patterns where the collisions overlap as in Fig. 4a, and

patterns in which colliding packets change order as in Fig. 4b, or

even patterns where the packets have different sizes, as in Fig. 4c.

ZigZag also exploits collision patterns that arise from capture ef-

fects. Say that Alice’s power at the AP is significantly higher than

Bob’s, and hence her packets enjoy the capture effect [33]. Currently

such a scenario translates into significant unfairness to Bob whose

packets do not get through [21, 18, 33]. Like current APs, a ZigZag

AP decodes every packet from Alice, the high power sender. Un-

like current APs however, ZigZag subtracts Alice’s packet from the

collision signal and try to decode Bob’s packet. However, if Alice’s

power is excessively high, even a small imperfection in subtracting

her signal would contribute a significant noise to Bob’s, prevent-

ing correct decoding of his packets. In this case, the next collision

will involve a new packet from Alice and Bob’s retransmission of

the same packet, as shown in Fig. 4d. ZigZag decodes Alice’s new

packet and subtracts it to obtain a second version of Bob’s packet,

which may also contain errors. ZigZag however combine the two

faulty versions of Bob’s packet to correct the errors. This is done

using Maximal Ratio Combining (MRC) [6], a classic method for

combining information from two receptions to correct for bit errors.

In addition, whenever the powers permit, ZigZag decodes patterns

that involve a single collision like those in Fig. 4e. This occurs when

Alice’s power is significantly higher than Bob’s, and both senders

happen to transmit at a bit rate lower than the best rate supported

by the channel. In this case, ZigZag can apply standard successive

interference cancellation [31], i.e., ZigZag decodes Pa and subtracts

it from the received signal to decode Pb, decoding both packets

using a single collision. As explained in §2, successive interference

cancellation is a special case of ZigZag, in which a chunk is a full

packet. This special case applies only when the bit-rate is too low

given the senders’ SNRs, and one of the senders has significantly

more SNR than the other.

ZigZag can also decode patterns that involve more than two nodes,

like that in Fig. 4f. This pattern may occur when two groups of nodes

cannot sense each other. For example, nodes A and B, which are in

the same room, can sense each other, but cannot sense nodes C and

D, which happen to be in a different room.

ZigZag can also decode collisions that involve more than a pair of

packets, which we discuss in detail §8.

4 A Communication Primer

A wireless signal is typically represented as a stream of discrete com-

plex numbers [24]. To transmit a packet over the wireless channel, the

transmitter maps the bits into complex symbols, in a process called

modulation. For example, the BPSK modulation (used in 802.11

at low rates) maps a “0” bit to e jπ = −1 and a “1” bit to e j0 = 1.

The transmitter generates a complex symbol every T seconds. In

this paper, we use the term x[n] to denote the complex number that

represents the nth transmitted symbol.

The received signal is also represented as a stream of complex

symbols spaced by the sampling interval T . These symbols differ,

however, from the transmitted symbols, both in amplitude and phase.

In particular, if the transmitted symbol is x[n] the received symbol

can be approximated as:

y[n] = Hx[n]+w[n], (1)

where H = heγ is also a complex number, whose magnitude h refers

to channel attenuation and its angle γ is a phase shift that depends on

the distance between the transmitter and the receiver, and w[n] is a

random complex noise.2

2This models flat-fading quasi-static channels.
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If Alice and Bob transmit concurrently their signals add up, and

the received signal can be expressed as:

y[n] = yA[n]+yB[n]+w[n],

where yA[n] = HAxA[n] and yB[n] = HBxB[n] refer to Alice’s and

Bob’s signals after traversing their corresponding channels to the AP.

Note that the above does not mean that we assume the nth symbol

from Alice combines with the nth symbol from Bob. The notation is

only to keep the exposition clear.

4.1 Practical Issues

A few practical issues complicates the process of estimating the

transmitted symbols from the received symbols: frequency offset,

sampling offset, and inter-symbol interference. Typically, a decoder

has built-in mechanisms to deal with these issues [24].

(a) Frequency Offset and Phase Tracking: It is virtually impossi-

ble to manufacture two radios centered at the same exact frequency.

Hence, there is always a small frequency difference, δ f , between

transmitter and receiver. The frequency offset causes a linear dis-

placement in the phase of the received signal that increases over time,

i.e.,

y[n] = Hx[n]e j2πnδ f T +w[n].

Typically, the receiver estimates δ f and compensates for it.

(b) Sampling Offset: The transmitted signal is a sequence of com-

plex samples separated by a period T . However, when transmitted

on the wireless medium, these discrete values have to be interpolated

into a continuous signal. The continuous signal is equal to the orig-

inal discrete samples, only if sampled at the exact same positions

where the discrete values were. Due to lack of synchronization, a

receiver cannot sample the received signal exactly at the right posi-

tions. There is always a sampling offset, µ . Further, the drift in the

transmitter’s and receiver’s clocks results in a drift in the sampling

offset. Hence, decoders have algorithms to estimate µ and track it

over the duration of a packet.

(c) Inter-Symbol Interference (ISI) While Eq. 1 makes it look

as if a received symbol y[n] depends only on the corresponding

transmitted symbol x[n], in practice, neighboring symbols affect each

other to some extent. Practical receivers apply linear equalizers [22]

to mitigate the effect of ISI.

5 ZigZag Decoding

We explain ZigZag decoding using the hidden terminal scenario in

Fig. 6, where Alice and Bob, not able to sense each other, transmit

simultaneously to the AP, creating repeated collisions. Later in §8,

we extend our approach to a larger number of colliding senders.

Like current 802.11, when a ZigZag receiver detects a packet it

tries to decode it, assuming no collision, and using a typical decoder.

If decoding fails (e.g., the decoded packet does not satisfy the check-

sum), the ZigZag receiver will check whether the packet has suffered

a collision, and proceed to apply ZigZag decoding.

5.1 Is It a Collision?

To detect a collision, the AP exploits that every 802.11 packet starts

with a known preamble [34]. The AP detects a collision by correlat-

ing the known preamble with the received signal. Correlation is a

popular technique in wireless receivers for detecting known signal

patterns [7]. Say that the known preamble is L samples. The AP

aligns these L samples with the first L received samples, computes the

correlation, shifts the alignment by one sample and re-computes the

correlation. The AP repeats this process until the end of the packet.

The preamble is a pseudo-random sequence that is independent of

shifted versions of itself, as well as Alice’s and Bob’s data. Hence the

correlation is near zero except when the preamble is perfectly aligned

with the beginning of a packet. Fig. 5 shows the correlation as a

function of the position in the received signal. The measurements are

collected using GNURadios (see §10). Note that when the correlation

spikes in the middle of a reception, it indicates a collision. Further,

the position of the spike corresponds to the beginning of the second

packet, and hence shows ∆, the offset between the colliding packets.

The above argument is only partially correct because the frequency

offset can destroy the correlation, unless the AP compensates for it.

Assume that Alice’s packet starts first and Bob’s packet collides with

it starting at position ∆. To detect Bob’s colliding packet, the AP

has to compensate for the frequency offset between Bob and itself.

The frequency offset does not change over long periods, and thus the

AP can maintain coarse estimates of the frequency offsets of active

clients as obtained at the time of association. The AP uses these

estimates in the computation.

Mathematically, the correlation is computed as follows. Let y

be the received signal, which is the sum of the signal from Alice,

yA, the signal from Bob, yB, and the noise term w. Let the samples

s[k],1≤ k ≤ L, refer to the known preamble, and s∗[k] be the complex

conjugate. The correlation, Γ, at position ∆ is:

Γ(∆) =
L

∑
k=1

s∗[k]y[k +∆]

=
L

∑
k=1

s∗[k](yA[k +∆]+yB[k]+w[k])

The preamble, however, is independent of Alice’s data and the noise,

and thus the correlation between the preamble and these terms is

about zero. Since Bob’s first L samples are the same as the preamble,

we obtain:

Γ(∆) =
L

∑
k=1

s∗[k]yB[k]

=
L

∑
k=1

s∗[k]HBs[k]e j2πkδ fBT

= HB

L

∑
k=1

|s[k]|2e j2πkδ fBT

Since a frequency offset exists between Bob and the AP, i.e.,

δ fB 6= 0, the terms inside the sum have different angles and may

cancel each other. Thus, the AP should compute the value of the

correlation after compensating for the frequency offset, which we

call Γ′. At position ∆ this value becomes:

Γ′(∆) = HB

L

∑
k=1

|s[k]|2e j2πkδ fBT × e− j2πkδ fBT

= HB

L

∑
k=1

|s[k]|2.

The magnitude of Γ′(∆) is the sum of energy in the preamble,

and thus it is significantly large, i.e., after compensating for the

frequency offset, the magnitude of the correlation spikes when the

preamble aligns with the beginning of Bob’s packet, as shown in

Fig. 5. Imposing a threshold enables us to detect whether the AP

received a collision signal and where exactly the second packet starts.
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Figure 5: Detecting Collisions by Correlation with the Known Pream-

ble. The correlation spikes when the correlated preamble sequence

aligns with the preamble in Bob’s packet, allowing the AP to detect the

occurrence of a collision and where it starts.
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Figure 6: ZigZag decodes then re-encodes a chunk. Before subtracting

a decoded chunk, like chunk 1, ZigZag needs to re-encode the bits to

create an image of chunk 1’, as received in the second collision.

5.2 Did the AP Receive Two Matching Collisions?

Now that it is clear that the received signal is the result of collision,

the AP searches for a matching collision, i.e., a collision of the

same two packets. The AP stores recent unmatched collisions (i.e.,

stores the received complex samples). It is sufficient to store the

few most recent collisions because, in 802.11, colliding sources

try to retransmit a failed transmission as soon as the medium is

available [34].

We use the same correlation trick to match the current collision

against prior collisions. Assume the AP is trying to match two

collisions (P1,P2), and (P′
1,P

′
2). Without loss of generalization, let

us focus on checking whether P2 is the same as P′
2. The AP already

knows the offset in each collision, i.e., ∆ and ∆′. The AP aligns

the two collisions at the positions where P2 and P′
2 start. If the two

packets are the same, the samples aligned in such a way are highly

dependent (they are the same except for noise and the retransmission

flag in the 802.11 header), and thus the correlation spikes. If P2 and

P′
2 are different, their data is not correlated and the correlation does

not spike at that alignment.

5.3 How Does the AP Decode Matching Collisions?

Say that the AP found a pair of matching collisions like those in

Fig. 6. Note that Fig. 6 is the same as Fig. 2 in the introduction

except that we distinguish between two images of the same chunk

that occur in different collisions, e.g., chunk 1 and chunk 1’. By now

the AP knows the offsets ∆1 and ∆2, and hence it can identify all

interference-free symbols and decode them using a standard decoder.

Next, the AP performs ZigZag decoding, which requires iden-

tifying a bootstrapping chunk, i.e., a sequence of symbols marred

by interference in one collision and interference-free in the other.

Say that the first collision has the larger offset, i.e., ∆1 > ∆2, the

bootstrapping chunk then is located in the first collision starting at

position ∆2 and has a length of ∆1 −∆2 samples. This is chunk 1 in

Fig. 6.

The rest of the decoding works iteratively. In each iteration, the

AP decodes a chunk, re-encodes the decoded symbols and subtract

them from the other collision. For example, in Fig. 6, the AP decodes

chunk 1 from the first collision, re-encodes the symbols in chunk 1

to create an image of chunk 1’, which it subtracts from the second

collision to obtain chunk 2. The AP iterates on the rest of the chunks

as it did on chunk 1, until it is done decoding all chunks in the

colliding packets.

(a) The Decoder. ZigZag can use any standard decoder as a black

box. Specifically, the decoder operates on a chunk after it has been rid

from interference, and hence can use standard techniques. This char-

acteristic allows ZigZag to directly apply to any modulation scheme

as it can use any standard decoder for that modulation as a black

box. Further, the two colliding packets may use different modulation

(different bit rates) without requiring any special treatment.

(b) Re-Encoding a Chunk. Now that the AP knows the symbols

that Alice sent in chunk 1, it uses this knowledge to create an estimate

of how these symbols would look after traversing Alice’s channel

to the AP, i.e., to create an image of chunk 1’, which it can subtract

from the second collision.

In §5.4 we explain how the AP computes channel parameters, but

for now, let us assume that the AP knows Alice’s channel, i.e., HA,

δ fA, and µA. Denote the symbols in chunk 1 by xA[n] . . .xA[n+K].
A symbol that Alice sends, xA[n], is transformed by the channel to

yA[n] where:

yA[n] = HAxA[n]e j2πδ fAT .

The AP would have received yA[n] had it sampled the signal ex-

actly at the same locations as Alice. Because of sampling offset,

the AP samples the received signal µA seconds away from Alice’s

samples. Thus, given the samples yA[n] . . .yA[n+K], the AP has to

interpolate to find the samples at yA[n+ µA] . . .yA[n+K + µA].

To do so, we leverage the fact that we have a band-limited signal

sampled according to the Nyquist criterion. Nyquist says that un-

der these conditions, one can interpolate the signal at any discrete

position, e.g., n+ µA, with complete accuracy, using the following

equation [24]:

yA[n+ µA] =
∞

∑
i=−∞

yA[i]sinc(π(n+ µA − i)),

where sinc is the sinc function. In practice, the above equation is

approximated by taking the summation over few symbols (about 8

symbols) in the neighborhood of n.

Now that the AP has an image of chunk 1’ as received, it subtracts

it from the second collision to obtain chunk 2, and proceeds to repeat

the same process on this latter chunk.

5.4 Estimating and Tracking System Parameters

The receiver estimates the system’s parameters using the preamble in

Alice’s and Bob’s packets. Without loss of generality, we focus on

Bob, i.e., we focus on the sender that starts second. This is the harder

case since the preamble in Bob’s packet, typically used for channel

estimation, is immersed in noise. We need to learn HB, µB, and δ fB.

(a) Channel. Again we play our correlation trick, i.e., we correlate

the received samples with the known preamble. Recall that the

correlation at the peak is:

Γ′(∆) = HB

L

∑
k=1

|s[k]|2.

The AP knows the magnitude of the transmitted preamble i.e., it

knows |s[k]|2. Hence, once it finds the maximum value of the correla-

tion over the collision, it substitutes in the above equation to compute

HB.
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Figure 7: Errors Die Exponentially Fast. The error causes the AP

to sum yA instead of subtracting it. Hence, the error propagates from

yA to the estimate ŷB, i.e., from one chunk to the next, only when the

angle between the two vectors is smaller than 60o, which occurs with

probability 1
3 .

(b) Frequency Offset. The frequency offset does not change sig-

nificantly. Since decoders already estimate the frequency offset, an

initial coarse estimate can be computed using any prior interference

free packet from the client (e.g., the association packet).

This coarse estimate, however, is not sufficient since any residual

errors in estimating δ f translate into linear displacement in the phase

that accumulates over the duration of a packet. Any typical decoder

tracks the signal phase and corrects for the residual errors in the

frequency offset. Since ZigZag uses a typical decoder as a black box,

it need not worry about tracking the phase while decoding. However,

as it reconstructs an image of a received chunk, ZigZag tracks the

phase. Consider as an example, reconstructing an image of chunk

1’. First we reconstruct the image using the current estimate of the

frequency offset, as explained in §5.3(b). Next we subtract that image

from the second collisions to get chunk 2. Now, we reconstruct chunk

2 and subtracted from the second collision, creating an estimate of

chunk 1’, which we term chunk 1”. We compare the phases in chunk

1’ and chunk 1”. The difference in the phase is caused by the residual

error in our estimate of the frequency offset. We update our estimate

of the frequency offset as follows:

δ f = δ f +αδφ/δ t,

where α is just a small multiplier, δφ is the phase error which accu-

mulated over a period δ t.

(c) Sampling Offset. The procedure used to update and track the

sampling offset is fairly similar to that used to update and track the

frequency offset. Namely, the black-box decoder tracks the sampling

offset when decoding a chunk. When reconstructing the image of a

chunk, like chunk 1’, we use the differences between chunk 1’ and 1”

to estimate the residual error in the sampling offset and track it.3

(d) Inter-Symbol Interference. When we reconstruct a chunk to

subtract it from the received signal, we need to create as close an

image of the received version of that chunk as possible. This includes

any distortion that the chunk experienced because of multipath effects,

hardware distortion, filters, etc. To do so, we need to invert the linear

filter (i.e., the equalizer) that a typical decoder uses to remove these

effects. The filter takes as input the decoded symbols before removing

ISI, and produces their ISI-free version, as follows:

x[i] =
L

∑
l=−L

hl xISI [i+ l],

where the hl’s are known as the filter taps. For our purpose, we

can take the filter from the decoder and invert it. We apply the inverse

filter to the symbols x[n] before using them in Eq. 5.3 to ensure that

our reconstructed image of a chunk incorporates these distortions.

3We use the Muller-and-Muller algorithm [24] to estimate sampling offset errors.
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Figure 8: The probability of error propagation dies fast.

6 Dealing with Errors

Up to now, we have described the system assuming correct decoding.

But what happens if the AP makes a mistake in decoding a symbol?

For example, in Fig. 6, say the AP mistakenly decodes the first bit in

chunk 1 as a “0” bit, when it is actually a “1” bit. Since chunk 1 is

subtracted from the second collision to obtain chunk 2, the error will

affect the first symbol in chunk 2. This in turn will affect the first

symbol in chunk 3, and so on. We will show the following:

• If a symbol error occurs while decoding, it may affect later chunks,

but this propagation does not persist. It dies exponentially fast.

• The errors can be further reduced by appling ZigZag in both the

forward and backward directions and combining the results.

(a) Errors Die Exponentially Fast. Intuitively, say the AP made

a random error in decoding a symbol; the error will propagate to

subsequent symbols making them random. However, any modulation

scheme has only a few possible symbol values (e.g., a BPSK symbol

can be either “0” or “1”). Even when a symbol is randomly decoded,

there is a reasonable chance the randomly picked value is correct.

Thus, a decoding mistake propagates for a stretch of symbols until it

is corrected by chance, at which point it stops affecting subsequent

symbols. Assume the probability of randomly picking the right

symbol is p, the errors dies at a rate 1
p .

We formalize the above argument for the case of BPSK, which

maps a “0” bit to -1 and a “1” bit to +1. Assume the AP makes a

mistake in decoding some symbol yA, and tries to use the erroneous

symbol to decode yB by subtracting the decoded vector from the

received signal y = yA + yB.4 In the worst case, and as shown in

Fig. 7, the error causes the AP to add the vector instead of subtracting

it, and hence the AP estimates ŷB as yB + 2yA. In BPSK, the AP

will decode yB to the wrong bit value only if the estimate ŷB has

the opposite sign of the original vector. This will happen only if

the angle between the two vectors yB and yA is less than −60o. The

frequency offset between Alice and Bob means that the vectors yB

and yA can have any angle with respect to each other. Thus, the error

propagates with probability less than 60
180 = 1

3 , i.e., in BPSK, errors

die exponentially fast at a rate 2
3 .

Fig 8 shows a simulation of error propagation in ZigZag. We

insert a decoding error by randomly mistaking a symbol as one of its

neighbors in the constellation. We compute the number of subsequent

symbols that are affected by this error. The figure shows that errors

die exponential quickly. The figure however shows that errors die

faster in BPSK and 4-QAM than in 16-QAM, and hence ZigZag

performs better in these modulation schemes.

(b) Forward and Backward Decoding. The ZigZag algorithm

described so far decodes forward. In Fig. 2, it starts with chunk 1

in the first collision and proceeds until both packets are decoded.

4We ignore the noise term w since it has a random effect on the error and can equally

emphasize it or correct it.
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Figure 9: How ZigZag sends 802.11 synchronous acks.

However, clearly the figure is symmetric. The AP could wait un-

til it received all samples, then decode backward. If the AP does

so, it will have two estimates for each symbol. ZigZag combines

these estimates to both combat error propagation and reduce the

overall errors. To do so, ZigZag builds on prior results in diversity

combining [35, 6]; whenever there is a mismatch between forward

and backward decoding, ZigZag uses the soft values of the decoded

symbols as a confidence measure. It picks the results of forward or

backward decoding depending on which one has a higher confidence

(the details are in [12]).

In practice, instead of decoding all the way forward and then

backward, one can do it on a chunk-by-chunk basis, using the most

recently decoded chunk as a bootstrapping chunk for backward de-

coding.

7 Backward Compatibility

It would be beneficial if ZigZag requires no changes to senders. In

this case, one can improve resilience to interference in a WLAN by

purely changing the APs, and without requiring any modifications to

the clients (e.g., laptops, PCs, PDAs). Compatibility with unmodified

802.11 senders requires a ZigZag receiver to ack the colliding senders

once it decoded their packets; otherwise the senders will retransmit

again unnecessarily. Recall that an 802.11 sender expects the ack to

follow the packet, separated only by a short interval called SIFS [34];

Can a ZigZag receiver satisfy such requirement?

The short answer is “yes, with a high probability.” To see how,

consider again the example where Alice and Bob are hidden terminals,

and say that the AP uses ZigZag to decode two of their packets, Pa1

and Pb1, as shown in Fig. 9. The AP acks the packets according

to the scheme outlined in Fig. 9. Specifically, by time t1, the AP

has fully decoded both Pa1 and Pb1. Even more, by t1 the AP has

performed both forward-decoding and backward decoding for all bits

transmitted so far, i.e., all bits except the few bits at the end of Pb1.5

Thus, at t1 the AP declares both packets decoded. It waits for a SIFS

and acks packet Pa1. Though the ack collides with the tail of packet

Pb1, the ack will be received correctly because Alice cannot hear

Bob’s transmission. Bob too will not be disturbed by the AP’s ack to

Alice because practical transmitters cannot receive and transmit at

the same time. The AP then transmits some random signal to prevent

Alice from transmitting her next packet, Pa2, before Bob’s packet is

acked. The AP knows how long this padding signal should be since it

already has a decoded version of Bob’s packet and knows its length.

After Bob finishes his transmission the AP acks him as well.

One question remains, however, would the offset between the two

colliding packets suffice to send an ack? Said differently, in Fig. 9,

how likely is it that t2 − t1 > SIFS +ACK. One can show that, given

802.11 timing, the likelihood that the time offset between the two

packets is sufficient to send an ack is quite high. In particular, for

the common deployment of backward compatible 802.11g, we prove

in [12] the following.

5This assumes the receiver tries in parallel to use standard decoding and ZigZag, and

takes whichever satisfies the checksum.
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Figure 10: Applying ZigZag to Three Collisions.

Lemma 7.1 In 802.11g, the probability that the time offset between

two colliding packets is sufficient for sending an ACK is higher than

93.7%.

There exist however patterns that ZigZag can decode but cannot

ack synchronously. For example, in Fig. 4, with a high probability,

we can synchronously ack the first four patterns. However, the last

two patterns require asynchronous acks. ZigZag always prefers to

use synchronous acks. Specifically, the AP identifies ZigZag-aware

senders during association. It always tries to send synchronous acks

but if that fails and the sender is ZigZag-aware, the AP sends the ack

asynchronously in a manner similar to [35]. In practice, however,

most collisions tend to involve two terminals and the autorate algo-

rithm matches the bit rate to the SNR. Thus, we believe that even if

the AP does not implement asynchronous acks, it can still resolve

the majority of the collisions that occur in practice.

8 Beyond Two Interferers

Our description, so far, has been limited to a pair of colliding packets.

ZigZag, however, can resolve a larger number of colliding senders.

Consider the scenario in Fig. 10, where we have three collisions from

three different senders. We refer to the colliding packets by P1, P2

and P3, and collision signals by C1, C2 and C3. The figure shows a

possible decoding order. We can start by decoding chunk 1 in the

first collision, C1, and subtract it from C2 and C3. As a result, chunk

2 in C2 becomes interference-free and thus decodable. Next, we

subtract chunk 2 from both C1 and C3. Now, chunk 3 in C3 becomes

interference-free; so we decode it and subtract it from both C1 and C2.

Thus, the idea is to find a decoding order such that, at each point, at

least one collision has an interference-free chunk ready for decoding.

The following linear-time algorithm provides a chunk-decoding

order for any number of collisions.

• Step 1: For each of the collisions, decode all the overhanging

chunks that are interference-free.

• Step 2: Subtract the known chunks wherever they appear in all

collisions.

• Step 3: Decode all the new chunks that become interference free

as a result of Step 2.

• Step 4: Repeat the last two steps until all the chunks from all the

packets are decoded.

We would like to estimate how often this linear-time algorithm

succeeds in resolving collisions, i.e., the probability that it will not

get stuck before fully decoding all symbols. To do so, we simulate

the behavior of the 802.11 MAC. Specifically, we have n nodes, all

hidden from each other, and all want to transmit a packet at t = 0.

Each node maintains a congestion window cw, which is initialized to

32 slots. Each node randomly picks a slot in its congestion window

to transmit the packet. If a collision occurs and the AP fails to

decode the packet, the sender doubles its congestion window, up to

a maximum of 1024 slots. The experiment is repeated 10,000 times

for each value of n. Fig. 11 shows the probability that the greedy

decoder fails to decode n packets given n collisions. It shows that

this probability ranges between .01%– 1%, and hence is negligible

in practice.
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Figure 11: Failure probability of our linear-time decoder as a function

of the number of colliding nodes.

Intuitively, one may think of the system of n collisions of n packets

as a linear system of n equations and n unknowns. The collisions are

the linear equations, whereas the packets are the unknowns. Such

system is solvable if the equations are linearly independent, i.e., the

packets combine differently in different collisions. A general system

of linear equations, however, is not always solvable in linear-time

(it requires a matrix inversion). But the equations in the case of

collisions have a special structure because the symbols in a packet

appear in all collisions in the same order. Fig. 11 shows that for such

a structure a linear-time decoder is quite powerful. Indeed, for three

collisions (or less) we can show that our linear-time algorithm is as

powerful as a non-linear decoder. Specifically, we prove in [12] that:

Lemma 8.1 Given three collisions of three packets, if for any packet

pair Pi and Pj, there exists 2 collisions such that this pair has com-

bined differently (in terms of offsets) in these 2 collisions, the above

greedy algorithm always succeeds in decoding all symbols in all

colliding packets.

Finally, note that Fig. 11 is an upper bound on the performance of

our linear decoder. In practice, imperfections in the implementation

of the decoder limit the maximum number of colliding senders that

can be correctly decoded. In §10.6, we show experimental results for

scenarios with three interfering senders.

9 Complexity

ZigZag is linear in the number of colliding senders. In comparison to

current decoders, ZigZag requires only two parallel decoding lines

so that it can decode two chunks in the same time that it would take

a current decoder to decode one chunk. Most of the components

that ZigZag uses are typical to wireless receivers. ZigZag uses the

decoders and the encoders as black-boxes. Correlation, tracking,

and channel estimation are all typical functionalities in a wireless

receiver [24, 7].

10 Experimental Environment

We evaluate ZigZag in a 14-node GNURadio testbed. The topology

is shown in Fig. 12. Each node is a commodity PC connected to a

USRP GNU radio [17].

(a) Hardware and Software Environment. We use the Universal

Software Radio Peripheral (USRP) [17] for our RF frontend. We use

the RFX2400 daughterboards which operate in the 2.4 GHz range.

The software for the signal processing blocks is from the open source

GNURadio project [9].

(b) Modulation. ZigZag uses the modulation/demodulation module

as a black-box and works with a variety of modulation schemes. Our

implementation, however, uses Binary Phase Shift Keying, BPSK,

which is the modulation scheme that 802.11 uses at low rates.

(c) Configuration Parameters. We use the default GNURadio con-

figuration, i.e., on the transmitter side, the DAC rate is 128e6 sam-

ples/s, the interpolation rate is 128, and the number of samples per

symbol is 2. On the receiver side, the ADC rate is 64e6 samples/s and

Figure 12: Testbed Topology.

the decimation rate is 64. Given the above parameters and a BPSK

modulation, the resulting bit rate is 500kb/s. Each packet consists of

a 32-bit preamble, a 1500-byte payload, and 32-bit CRC.

(d) Implementation Flow Control. On the sending side, the net-

work interface pushes the packets to the GNU software blocks with

no modifications. On the receiving side, the packet is first detected

using standard methods built in the GNURadio software package.

Second, we try to decode the packet using the standard approach (i.e.,

using the BPSK decoder in the GNURadio software). If standard

decoding fails, we use the algorithm in §5.1 to detect whether the

packet has experienced a collision, and where exactly the colliding

packet starts. If a collision is detected, the receiver matches the

packet against any recent reception, as explained in §5.2. If no match

is found, the packet is stored in case it helps decoding a future col-

lision. If a match is found, the receiver performs chunk-by-chunk

decoding on the two collisions, as explained in §5.3. Note that even

when the standard decoding succeeds we still check whether we can

decode a second packet with lower power (i.e., a capture scenario).

(e) Compared Schemes. We compare the following:

• ZigZag: This is a ZigZag receiver as described in §5 augmented

with the backward-decoding described in §6.

• 802.11: This approach uses the same underlying decoder as

ZigZag but operates over individual packet.

• Collision-Free Scheduler: This approach also uses the same ba-

sic decoder but prevents interference altogether by scheduling each

sender in a different time slot.

(f) Metrics. We employ the following metrics:

• Bit Error Rate (BER): The percentage of incorrect bits averaged

over every 100 packets.

• Packet Loss Rate (PER): This is the percentage of incorrectly

received packets. We consider a packet to be correctly received

if the BER in that packet is less than 10−3. This is in accordance

with typical wireless design, which targets a maximum BER of

10−3 before coding (and 10−5 after coding) [3, 28].6

• Throughput: This is the number of delivered packets normalized

by the GNU Radio transmission rate. Again a packet is considered

delivered if the uncoded BER is less than 10−3. In comparison

to packet loss rate, the throughput is more resilient to hidden

terminals in scenarios that exhibit capture effects. This is because

the terminal that captures the medium transmits at full rate and

gets its packets through, causing unfairness to the other sender, but

little impact on the overall throughput.

10.1 Setup

Since ZigZag acts exactly like current 802.11 receivers except when

a collision occurs, our evaluation focuses on scenarios with hidden

terminals, except in §10.5 where we experiment with various nodes

in the testbed irrespective of whether they are hidden terminals. In

6For example, 802.11a target packet error rate (PER) is 0.1 for a packet size of

8000 bits. Given a maximum uncoded BER of 10−3, practical channel codes like BCH

Code(127,99) and BCH Code(15,5) achieve the desired PER.
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Table 1: Micro-Evaluation of ZigZag’s components

Correlation
False Positives 3.1%

False Negatives 1.9%

Frequency Pkt size(Bytes) 800 1500

& Success With 99.6% 98.2%

Phase Tracking Success Without 89% 0%

ISI Filter

SNR 10dB 20dB

Success With 99.6% 100%

Success Without 47% 96%

every run, two (or three) senders transmit 500 packets to an access

point. The AP (i.e., the receiver) logs the received signal and the logs

are processed offline with the evaluated receiver designs.

Software radios are incapable of accurately timing their carrier

sense activity (CSMA) because they perform all signal processing in

user mode on the PC. To approximate CSMA, we take the following

measures. First, we setup an 802.11a node next to each of our USRP

nodes. The objective is to create an 802.11a testbed that matches the

topology in our USRP testbed but uses standard 802.11a cards, and

copy the results of carrier sense from it to our USRP testbed.

For each USRP experiment, we check whether the corresponding

802.11a nodes can carrier sense each other. Specifically, we make

each pair of the 802.11 nodes transmit at full speed to a third node

considered as an AP, log the packets, and measure the percentage of

packets each of them delivers to the AP. Next, we try to mimic the

same behavior using the USRP nodes, where each packet that was

delivered in the 802.11 experiments results in a packet delivery in

the USRP experiments between the corresponding sender-receiver

USRP pairs. Lost 802.11 packets are divided into two categories:

collisions and errors. Specifically, a lost 802.11 packet that we can

match with a loss from the concurrent sender is considered a collision

loss. Other losses are considered as medium errors and ignored. We

try to make each USRP experiment match the collisions that occurred

in the corresponding 802.11a experiment by triggering as many colli-

sions as observed in the 802.11a traces. The USRP experiments are

run without CSMA. Each run matches an 802.11 run between the

corresponding nodes. Each sender first transmits the same number

of packets that the corresponding 802.11 correctly delivered in the

matching 802.11 run. Then both senders transmit together as many

packets as there were collision packets in the matching 802.11 run.

Software radios also cannot time 802.11 synchronous acks. Given

the 802.11a traces, we know when a collision occurs, and that the

sender should retry the packet, in which case the sender transmits

each packet twice. However, if the ZigZag AP manages to decode

using a single collision, we ignore the retransmission and do not

count it against the throughput. This prototype implementation does

not include the acking scheme described in §7.

10.2 Micro-Evaluation

We examine the role of various components of ZigZag.

(a) Correlation as a Collision Detector: We estimate the effec-

tiveness of the correlation-based algorithm (§5.1) in detecting the

occurrence of collisions. Our implementation sets the threshold to

Γ′(Delta) > β ×L×SNR, where β is a constant, L is the length of

the preamble and SNR is a coarse estimate of the SNR of the collid-

ing sender, which could be obtained from any previously decoded

packets or from one of the sender’s interference free chunks. For

our testbed, β = 0.6-0.7 balances false positives with false negatives.

Higher values eliminate false positives but make ZigZag miss some
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Figure 13: Effects of Residual Frequency Offset and ISI.

collisions, whereas lower values trigger collision-detection on clean

packets. Note that neither false positives nor false negatives produce

end-to-end errors. The harm of false positive is limited to computa-

tional resources, because in ZigZag marking a packet as a collision

does not prevent correct decoding of that packet. The algorithm be-

haves as if the packet suffered capture effect and hence is decodable

despite being marred by collision. False negatives, on the other hand,

make ZigZag miss opportunities for decoding collisions but do not

produce incorrect decoding. Our evaluation sets β = 0.65.

For SNRs in [6-20]dB, we run the collision detector on sets of

500 non-collision packets and 500 collisions, and report the results

in Table 10.1. The average false positive rate (packets mistaken

as collisions) is 3.1% and the average false negative rate (missing

collisions) is 1.9%. Thus, the collision detector is pretty accurate for

our purpose.

(b) Frequency and Phase Tracking: We evaluate the need for the

frequency and phase tracking described in §5.4b. We disable our

tracking algorithm (but leave the decoder unchanged) and provide

the encoder with an initially accurate estimate of the frequency offset

(as estimated by the decoder). We run ZigZag with and without track-

ing on 500 collision-pairs of 1500B packets. We find that without

tracking none of the colliding packets is decodable (BER > 10−3),

whereas with tracking enabled, 98.2% of the colliding packets are

decodable.

Fig. 13(a) explains this behavior. It plots the error as a function

of the bit index in one of the colliding packets (black shades refer to

errors). It shows that the first 6000 bits are decoded correctly, but as

we go further the bits start getting flipped, and eventually most of the

bits are in error. This is expected since even a small residual error in

the frequency offset causes a phase rotation that increases linearly

with time. Hence after some time the phase becomes completely

wrong causing high decoding error rates. This effect is particularly

bad for long packets since the errors accumulate over time. Table 10.1

shows that while ZigZag can decode 89% of the 800Byte packets

without phase tracking, none of the 1500Byte packets is successfully

decoded unless we enable phase tracking.

(c) Effect of ISI: Fig. 13(b), shows a snapshot of the ISI-affected

received bits in our testbed. Recall that BPSK represents a “0” bit

with -1 and a “1” bit with +1. The figure shows that the value of a

received bit depends on the value of its neighboring bits. For example,

a “1” bit tends to take a higher positive value if it is preceded by

another “1”, than if the preceding bit is a “0” bit.

We evaluate the importance of compensating for these distortions
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(b) Bob’s Throughput
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Figure 14: Impact of SINR. The figure plots the throughput of the

hidden terminals Alice and Bob, as Alice moves closer to the AP, i.e., as

SINR ≈ SNRA − SNRB increases. It shows that ZigZag achieves higher

throughput than both 802.11 and the Collision-Free Scheduler. ZigZag

is also fairer than 802.11, where Bob cannot get any packets through.

using the inverse filter described in §5.4d. We try to decode 500

collision pairs at different SNRs, with the filter on and off. Table 10.1

shows that, while the filter is not important at high SNRs, i.e., 20dB,

it is necessary at low SNRs. This is expected as at low SNRs, the

decoder has to combat both higher noise and ISI distortions.

10.3 Does ZigZag Work?

We would like to understand the impact of the signal-to-interference

ratio (SINR) on ZigZag’s performance. We want to check that ZigZag

does not suffer from the same restrictions as traditional interference

cancellation, i.e., it works even when the colliding senders have

comparable SNRs. We also want to check that ZigZag continues to

work as the SNR difference becomes large, i.e., in scenarios that may

cause capture effects [23, 18].

We consider the hidden terminal scenario in Fig. 1, where Alice

and Bob cannot sense each other and hence transmit simultaneously

to the AP. We start from a setting where both senders are at equal

distance from the AP, i.e., SNRA = SNRB, and hence SINR = 0.

Gradually, we move Alice closer to the AP. As Alice moves closer, her

SNR at the AP increases with respect to Bob’s, making it easier for

the AP to capture Alice’s signal. We plot the results of this experiment

in Fig. 14, for when the nodes use a Collision-Free Scheduler, 802.11,

and ZigZag.

Fig. 14 shows that ZigZag improves both throughput and fairness.

In 802.11, when Alice and Bob are equal distance from the AP, their
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Figure 15: Comparison of Bit Error Rate (BER). For all modulation

schemes, ZigZag and the Collision-Free Scheduler achieve the same

BER for comparable SNRs (+/- 1 dB of each other).

signals collide, and neither can be received. As Alice moves closer,

her signal improves with respect to Bob’s. When Alice’s signal is 4-6

dB higher than Bob’s, the capture effect starts, and we see a slight

increase in Alice’s throughput. As Alice gets even closer, Bob’s

signal becomes irrelevant. Note, however, that at all times Bob is

never received at the AP with 802.11. In contrast, with the Collision-

Free Scheduler, both Alice and Bob get a fair chance at accessing

the AP. But the scheduler cannot exploit that as Alice gets closer, the

capacity increases [29], making it possible to decode both Alice and

Bob.

ZigZag outperforms both current 802.11 and the Collision-Free

Scheduler. When Alice and Bob are equal distance from the AP, it

ensures that they are both received, as if they were allocated different

time slots. As Alice moves closer to the AP, the capture effect starts

kicking off. As a result, the AP can decode Alice’s signal without the

need for a second collision. The AP then subtracts Alice’s signal from

the collision and decode Bob’s packet, and thus the total throughput

becomes twice as much as the radio transmission rate. As Alice

gets even closer, her signal completely covers Bob’s signal making it

impossible to decode Bob’s packet.

Thus, this experiment reveals the following:

• At low SINRs, ZigZag significantly outperforms 802.11 and is

similar to a Collision-Free Scheduler, i.e., it delivers the same

throughput as if the colliding packets were scheduled in separate

time slots.

• At high SINR, ZigZag can outperform both 802.11 and the

Collision-Free Scheduler. This is because neither 802.11 nor the

Collision-Free Scheduler can benefit from scenarios where the

network capacity is higher than the sum of the rates of the two

senders. In contrast, ZigZag can exploit such scenarios to double

the throughput of the network, decoding both hidden terminals

using a single collision. Furthermore, ZigZag does not need to be

explicitly informed of the capacity of the network to exploit it. It

naturally transitions to exploit the increased capacity as the SNR

increases.
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Figure 16: Normalized Throughput for the Whole Testbed. The figure

shows a CDF of the throughputs in our testbed for pairs of competing

flows, for both hidden and non-hidden terminal scenarios. ZigZag im-

proves the average throughout in our testbed by 25.2%.
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Figure 17: Loss Rate for the Whole Testbed. The figure shows a CDF

of the packet loss rate in our testbed for pairs of competing flows, for

both hidden and non-hidden terminal scenarios. ZigZag improves the

average loss rate in our testbed from 15.8% to 0.2%.

10.4 The Impact of the SNR

The standard performance metric for a receiver is the BER as a

function of the SNR [28, 3, 29], and the ultimate test for a design

that resolves collisions is whether it can match the uncoded BER of

a collision-free reception at every SNR, and for every modulation

scheme.

To test performance under various SNRs and modulation schemes,

we consider the scenario where Alice and Bob cannot sense each

other and hence transmit simultaneously to the AP. In contrast

to §10.3 however, Alice and Bob stay at a fixed and equal distance

from the AP. We control their transmission powers to ensure that they

have the same SNR, and plot the BER as a function of the SNR. Our

GNURadio prototype employs BPSK but to check performance with

other modulation schemes (e.g., 4-QAM, 16-QAM), we use simula-

tions. The simulations are based on an additive white Gaussian noise

(AWGN) channel [29]. Other parameters (e.g., the packet size and

frequency offset) are set to their values in the testbed.

Figs. 15a and 15b plot the BER as a function of the SNR, both

in the testbed and in simulations.7 The plots are only for ZigZag

and the Collision-Free Scheduler because, in this scenario, 802.11

performed extremely poorly with BER close to 50%. The figures

show:

• For all modulation schemes, ZigZag and the Collision-Free Sched-

uler achieve the same BER for comparable SNRs, i.e., the required

SNRs are within 1 dB of each other.

• At BPSK and 4-QAM, ZigZag has a slightly better BER than

if the two packets were received collision-free. This is because,

in ZigZag, every bit is received twice, once in every collision,

improving its chances of being correctly decoded. This impact is

countered by error propagation (see §6). Since errors propagate

7As expected BPSK in the testbed works at slightly higher SNR than in simulations
because of hardware and software imperfections.
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Figure 18: Scatter Plot of Flow Throughputs. The figure shows a

scatter plot of ZigZag and 802.11 throughputs for each sampled sender-

receiver pairs. ZigZag helps when there are hidden terminals and never

hurts.
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Figure 19: CDF of Loss Rate at Hidden Terminals. The figure zooms

on scenarios with full or partial hidden terminals. ZigZag reduces the

average loss rate for hidden terminals in our testbed from 72.6% to

about 0.7%.

further in denser modulations, ZigZag’s performance is slightly

worse at 16-QAM.

10.5 Testbed Throughput and Loss Rate

In this section, we use the testbed in Fig. 12 as a case study to

investigate how ZigZag affects various sender-receiver pairs. The

testbed has 14 nodes that form a variety of line-of-sight and non-

line-of-sight topologies. While up to now we have focused only

on scenarios with hidden terminals, in this section, we experiment

with various testbed nodes irrespective of whether they are hidden

terminals. Specifically, we pick two senders randomly. We pick an

AP randomly from the nodes reachable by both senders. We mimic

CSMA as explained in §10.1 and make each sender transmit 100

packets to the AP. We repeat the experiment with random set of

sender pairs and different choice of APs. Among the sender pairs

that we sampled 10% are perfect hidden terminals, 10% can sense

each other partially, and 80% can sense each other perfectly.

First, we compare the throughput and loss rate under current 802.11

and ZigZag, for the whole network. Fig. 16 plots a CDF of the aggre-

gate throughput, i.e., the sum of the throughput of each pair of concur-

rent senders. The figure shows that in our testbed, ZigZag increases

the average throughput by 25.2%. This improvement arises from two

factors. For all cases where the normalized aggregate throughput is

less than 1, the improvement comes purely from ZigZag’ s ability to

resolve successive collisions. For cases where the aggregate through-

put is higher than 1, the improvement is caused by a combination

of being able to resolve a single collision whenever possible, and

successive collisions otherwise. Note that traditional interference

cancellation applies only to cases whose throughputs are between 1.5
and 2, which are very few. Fig. 17 plots a CDF of the loss rates of

individual sender-receiver pairs, i.e., the flows we experimented with.
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Figure 20: ZigZag’s Performance with Three Hidden Terminals. Cu-

mulative distribution of the throughput of three hidden terminals.

The figure shows that in our testbed, ZigZag reduces the average

packet loss rate from 15.8% to 0.2%.

Next, we check that a ZigZag AP is always a conservative choice

and does not hurt any flow. Fig. 18 shows a scatter plot of the

throughout of every sender-receiver pair in our experiments, both

under 802.11 and ZigZag. The figure shows that ZigZag consistently

improves the throughput and does not hurt any sender-receiver pair.

Next, we zoom on the hidden terminals in our testbed, which we

define as sender pairs that fail to sense each other fully or partially.

Fig. 19 shows a CDF of the packet loss rate in transfers that suffered

such hidden terminal scenarios. The figure shows that ZigZag im-

proves the average loss rate for hidden terminals in our testbed from

72.6% to 0.7%. Furthermore, for some severe cases, the packet loss

rate goes down from 99-100% to about zero.

10.6 Many Hidden Terminals

In §8 we generalized ZigZag to deal with many colliding sources.

Here, we evaluate how ZigZag performs on three collisions. In this

experiment, we have three hidden terminals that transmit concurrently

to a random AP. Fig. 20 shows the CDF of the throughput under

ZigZag. The figure shows that all three senders see a fair throughput

that is about one third of the medium throughput. Thus, even with

more than a pair of colliding senders, ZigZag performs almost as if

each of the colliding senders transmitted in a separate time slot.

11 Conclusion

This paper presents ZigZag, a receiver that can decode collisions. Our

core contribution is a new form of interference cancellation that iter-

atively decodes strategically picked chunks, exploiting asynchrony

across successive collisions. We show via a prototype implementa-

tion and testbed evaluation that ZigZag addresses the hidden terminal

problem in WLANs, improving the throughput and loss rate.

We identify two research issues worth of further exploration. First,

our prototype works with pre-coded bits. Most wireless systems

however use some form of forward error correction (FEC). We en-

vision that jointly decoding collisions and the FEC in the packets

could provide better performance. Second, collision signals have

more power and a wider dynamic range than individual transmissions.

Wireless hardware typically employs automatic gain control (AGC)

to adjust the dynamic range. It is important to study the AGC design

in systems that decode collisions.

We believe ZigZag has wider implications for wireless design than

explored in this paper. It motivates a more aggressive MAC that ex-

ploits concurrent transmissions in order to increase spatial reuse and

network throughput. Further, ZigZag can decode ANC packets [20],

presenting a modulation-independent decoder for analog network

coding. It seems plausible that one may combine ZigZag with the

ideas in the ANC paper into one system that improves concurrency,

addresses hidden terminals, and collects network coding gains.
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