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ABSTRACT

In order to stimulate cooperation among nodes in P2P systems,
some form of incentive mechanism is necessary so as to encourage
service contribution. Hence, designing and evaluating the stability,
robustness and performance of incentive policies is extremely crit-
ical. In this paper, we propose a general mathematical framework
to evaluate the stability and evolution of a family of shared history
based incentive policies. To illustrate the utility of the framework,
we present two incentive policies and show why one incentive pol-
icy can lead to a total system collapse while the other is stable and
operates at the optimal point. One can use this mathematical frame-
work to design and analyze various incentive policies and verify
whether they match the design objectives of the underlying P2P
systems.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Distributed Systems;
J.4 [Social and Behavioral Sciences]: Economics

General Terms

Design, Economics, Theory

Keywords

incentive, stability, strategy, learning, peer-to-peer, reciprocative

1. INTRODUCTION
The emergence of the Internet as a global platform for commu-

nication has sparkled the research and development of many large-
scale networked systems and applications. Often, these systems
require individual devices or nodes to cooperate so as to achieve
good performance. For example, (a) in wireless ad-hoc networks,
wireless nodes rely on other nodes to forward their packets so as
to reach the destination nodes, (b) in P2P file sharing networks,
peers rely on each other to perform uploading services so they can
complete the file downloading in a reasonable amount of time, (c)
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in P2P streaming applications, each peer relies on other peers to
provide local storage and uploading services so that peers can have
the appropriate playback rate. All these networked systems hinge
on an important factor: cooperation is necessary for the system to
perform properly. However, individual devices or nodes have dif-
ferent and sometimes, competing interests, and cooperation implies
a higher operating cost. Therefore, it is paramount to have some
form of incentive mechanisms so as to encourage cooperation.

There are a number of proposals on how to provide incentives for
networks or distributed systems. One proposal is that a node needs
to pay for the services it receives, and payment can be made via the
micro-payment approach [4]. However, this requires a centralized
server to mediate all the transactions in the system.

Without using a centralized server, peers have to collect infor-
mation themselves so as to make a proper decision. There are two
categories of such incentive mechanisms. The first one is called
the private history based mechanism: a peer provides a service to a
requester based on the requesters’ past generosity to this peer. This
incentive mechanism is easy to implement but for a large system, it
is very unlikely that two peers have many previous encounters, es-
pecially for a dynamic, high churn system. Hence, nodes may not
have the necessary information to make a proper decision. More-
over, one has to address the issue of asymmetric interest [1]. An-
other category is the shared history based mechanism: peers can
use others’ past experience to infer a requester’s reputation. This
approach is scalable and robust. There has been some simulation
study on this approach [1], but in general, there is a lack of rigorous
mathematical analysis to understand why this approach is robust or
stable for that matter.

The aim of this paper is to provide a general mathematical frame-
work to study and evaluate a large class of incentive policies for
networking applications. The contributions of our paper are:

• We provide a general mathematical framework to analyze the
incentive protocols (Section 2).

• To illustrate the mathematical framework, we present two
incentive policies (Section 3) and derive their performance
measures and stability conditions (Section 4).

• We carry out performance evaluation to illustrate the perfor-
mance gain of using strategy adaptation and under what sit-
uations the system may collapse (Section 5).

The outline of this paper is as follows. In Section 2, we present
the mathematical framework in analyzing incentive policies for P2P
systems. In Section 3, we present two incentive policies and show
how to apply the mathematical framework to analyze them. In Sec-
tion 4, we derive the performance measures (e.g., system gain, ex-
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pected gain for individual strategy) as well as the stability condi-
tions for the two given incentive policies. In Section 5, we present
the performance evaluation on these two policies, in particular,
demonstrate the evolution of the systems and state the reasons why
one policy can lead to complete system collapse while the other is
robust and operates at a good performance point. Related work is
given in Section 6 and Section 7 concludes.

2. MATHEMATICAL MODEL
In this section, we present a general mathematical model to study

different incentive policies for P2P systems. The goals of the model
are twofold: (a) to study whether a given incentive policy is stable1,
and (b) to study the performance measures (e.g., expected services
received, expected services contributed, . . .,etc) for a given incen-
tive policy.

For mathematical tractability, we make the following assump-
tions

• Finite strategies: Given an incentive policy P which has a
finite strategy set P = {s1, s2, . . . , sn} where si is the ith

strategy. All users in a P2P system can use any s ∈ P . A
peer using strategy si is of type si.

• Service model: The system runs in discrete time slots. At
the beginning of each time slot, each peer randomly selects
another peer in the system and requests for a service. Let
gi(j) be the probability that a peer of type si will provide
a service to a peer of type sj . Here we assume random se-
lection for three reasons: (1) This is a natural behavior when
peers have little information about others. (2) It is easy to
implement and mathematically tractable. (3) It can balance
the load among peers.

• Gain and loss model: For each time slot, a peer gains α > 0
points when it receives a service from another peer, while
loses β points when it provides a service to another. Without
loss of generality, one can normalize β by setting β = 1.

• Learning model: At the end of a time slot, a peer can choose
to switch (or adapt) to another strategy s′ ∈ P . To decide
which strategy to switch to, a peer needs to “learn” from
other peers. Let Gi(t) be the expected gain (we will formally
define this in later sections) of using strategy si at time slot
t, and sh(t) is the strategy that has the highest performance
among all s ∈ P at the end of time slot t. Then a peer using
strategy si will switch to strategy sh at time slot t + 1 with
probability γ(Gh(t) − Gi(t)), where γ > 0 is the learning
rate. Note that this is a mathematical abstraction and there
are many ways to implement this learning process, e.g., tit-
for-tat in the BT protocol or inferring from the reputation of
peers are examples of such adaptations.

We now present the mathematical model. Let xi(t) be the frac-
tion of type si peers at time t. If a peer is of type si, the expected
services it receives, denoted by E[Ri(t)], can be simply expressed
as:

E[Ri(t)] =
n
X

j=1

xj(t)gj(i) for i = 1, . . . , n. (1)

Let us now derive E[Si(t)], the expected number of services pro-
vided by type si peer at time t. Assume that at time t, there are

1Informally, stability implies there is a high contribution level in
the system.

N(t) number of peers in the system. Consider a generic si peer
and N be the set representing the other N(t)−1 peers. Let k∗∈N ,
the probability that si peer will provide a service to this peer k∗ is
V , where:

V=Prob[k∗ selectssi peer]Prob[si peer will servek∗]

=

»

1

N(t)−1

–

"

n
X

j=1

Prob[k∗ is of type sj]gi(j)

#

,

and

Prob[k∗ is of type sj] =

(

xj(t)N(t)

N(t)−1
for sj 6= si,

xi(t)N(t)−1
N(t)−1

for sj = si.

Since |N | = N(t)−1, the expected number of services provided
by this type si peer in one time slot is

E[Si(t)] = [N(t)−1]V.

Combining the above expressions and by assuming that N(t) is
sufficiently large, we have

E[Si(t)] ≈
n
X

j=1

xj(t)gi(j) for i = 1, 2, . . . , n. (2)

Since a peer receives α points for each service it receives and loses
β = 1 point for each service it provides, the expected gain per slot
at time t is Gi(t):

Gi(t) = αE[Ri(t)] − E[Si(t)] i = 1, 2, . . . , n. (3)

We can put the above expression in matrix form and derive G(t),
the expected gain per slot for the whole P2P system at time t as

G(t) =
n
X

i=1

xi(t)Gi(t) = (α − 1)xT (t)Gx(t), (4)

where x(t) is a column vector of (x1(t), . . . , xn(t)) and G is an
n × n matrix with Gij = gi(j).

In short, given an incentive policy P , we can determine G (e.g.,
probabilities that different type of peers will help each other). Based
on the given learning model, we can obtain the evolution of x(t)
and answer important questions like whether the given incentive
policy P will lead to a stable system. Also, given x(t), we can
compute the individual expected gain Gi and the system gain G via
Eq. (3) and (4).

Let us now proceed to describe how to model the dynamics (or
evolution) of the system x(t). Let sh(t) be the strategy that has
the highest performance among all s ∈ P at the end of time slot t.
Then peers using strategy si will switch to strategy sh at time slot
t + 1 with probability γ(Gh(t)− Gi(t)), where γ > 0 is the learn-
ing rate. We can express this dynamics of x(t) via the following
difference equations:

xh(t + 1) = xh(t) + γ

n
X

i=1,i6=h

xi(t) (Gh(t) − Gi(t)) ,

xi(t + 1) = xi(t) − γxi(t) (Gh(t) − Gi(t)) , i 6= h.

For computational efficiency, one can transform the above differ-
ence equations to a continuous model. Informally, the transforma-
tion can be carried out by assuming that (1) the peer-request process
is a Poisson process with rate equal to 1, (2) the number of learning
events is a Poisson process with rate γe. (3) In each learning event,
the learning rate is γl. If we let γ = γeγl, then the continuous
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model will be:

ẋh = γ
X

i6=h

xi(t) (Gh(t)−Gi(t))

= γ

 

Gh(t)−
n
X

i=1

xi(t)Gi(t)

!

=γ (Gh(t)−G(t)) (5)

ẋi = −γxi(t) (Gh(t) − Gi(t)) , i 6= h. (6)

In summary, the above equations allow one to study the evolution
and stability of any incentive policy. Let us now illustrate some
incentive policies.

3. INCENTIVE POLICIES
In a typical P2P system, one can classify peers according to their

behavior upon receiving a request:

• cooperator: a peer has a cooperative behavior when it serves
other peers unconditionally.

• defector: a peer has a defective behavior when it refuses to
serve any request from other peers.

• reciprocator: a peer has a reciprocative behavior when it
serves according to the requester’s contribution level. In short,
it tries to make the system fair.

Note that these behavior can be easily implemented into a P2P
software. Of course, an interesting question is how to design a
proper incentive policy so as to keep the system scalable and robust.
In the following, we will study two incentive policies.

3.1 Image Incentive Policy
Let us consider the image incentive policy Pimage. Under this

policy, when a reciprocative peer receives a request for service, this
peer checks the requester’s reputation, and it will only provide ser-
vice with the same probability as this requester serves other peers.
One can view this as a “probabilistic” version of the tit-for-tat strat-
egy in BitTorrent. Therefore, if the requester is a cooperator (de-
fector, reciprocator), this peer will behave exactly like a cooperator
(defector, reciprocator), and that is why we coined it the image
strategy.

Image incentive policy Pimage has three pure strategies: (1) s1,
or pure cooperation, (2) s2, or image reciprocation, (3) s3, or pure
defection. To model this incentive policy, we have to derive gi(j),
which is the probability that a peer of type si will serve a peer of
type sj . Based on the definition of the image strategy, it is easy to
see that g1(j) = 1 and g3(j) = 0 for j ∈ {1, 2, 3}, g2(1) = 1 and
g2(3) = 0. One can derive g2(2), which is:

g2(2) = Prob[a reciprocator will grant a request]

=
3
X

i=1

Prob[the requester is of type si] ×

Prob[granting the request|type si requests]

= x1(t)g2(1) + x2(t)g2(2) + x3(t)g2(3)

= x1(t) + x2(t)g2(2).

Solving the above equation, we have

g2(2) =
x1(t)

1 − x2(t)
. (7)

3.2 Proportional Incentive Policy
We consider a different incentive policy which was proposed by

authors in [1], in which results were obtained only via simulation.
Reciprocative peers serve the requester with the probability equal
to the requester’s contribution/consumption ratio, or E[Sj ]/E[Rj ].
In case the ratio is larger than one, the probability to serve the re-
quest is set to one. If the requester is a cooperator, its ratio is larger
than one, thus, we set g2(1) = 1. If the requester is a defector, its
ratio is zero, hence g2(3) = 0. As for g2(2), we have:

E[R2(t)] = x1(t)g1(2) + x2(t)g2(2) + x3(t)g3(2)

= x1(t) + x2(t)g2(2),

E[S2(t)] = x1(t)g2(1) + x2(t)g2(2) + x3(t)g2(3)

= x1(t) + x2(t)g2(2).

Since E[R2(t)] = E[S2(t)], we have g2(2) = 1.
Comparing to image strategy, proportional strategy takes into ac-

count the services consumed by requesters. Even if a requester al-
ways grants services, it is still not fair for the system if it requests
much more services than it provides.

4. PERFORMANCE AND STABILITY
In this section, we analyze and compare the performance and

stability of the two incentive policies described in the previous sec-
tion.

4.1 Image incentive policy
Since we have derived gi(j) of Pimage in Section 3.1, substitut-

ing them into Equation (3) and (4), we have:

G1(t) = α(x1(t) + x2(t)) − 1, (8)

G2(t) = (α − 1)
x1(t)

1 − x2(t)
, (9)

G3(t) = αx1(t), (10)

G(t) = (α − 1)
x1(t)

1 − x2(t)
. (11)

Let us consider their respective differences:

G3(t) − G1(t) = 1 − αx2(t),

G3(t) − G2(t) =
x1(t)(1 − αx2(t))

1 − x2(t)
,

G2(t) − G1(t) =
(1 − αx2(t))(1− x1(t) − x2(t))

1 − x2(t)
.

We have the following important observations:

• Case A: when x2(t) > 1/α, we have G1(t) > G2(t) >
G3(t), or cooperators achieve the best performance. There-
fore defectors and reciprocative peers will continue to adapt
their strategies to cooperative strategy until x2(t) = 1/α.

• Case B: when x2(t) = 1/α, the performance of three strate-
gies are the same and there is no more strategy adaptation.

• Case C: when x2(t) < 1/α, G3(t) > G2(t) > G1(t), and
defectors have the best performance, therefore, cooperators
and reciprocative peers will adapt their strategies to the de-
fective strategy. Since x2(t) < 1/α will continue to hold,
the population of cooperators and reciprocative peers will
keep decreasing until defectors dominate the system. At this
time, the P2P system collapses (or unstable) since there is no
service exchange.
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Therefore, the system has two equilibria: B and C respectively. In
B, the fraction of reciprocative peers x2(t) will stay at the level
1/α. In C, the P2P system will be dominated by defectors. How-
ever, point B is not a stable equilibrium. Suppose the system is at
B, we disturb x2(t) a little bit (e.g., peers arrival or departure and
they are of defective behavior). If the disturbance is positive, the
system will go to case A and then drop back to B. But if the distur-
bance is negative, the P2P system will go to C and never return to
B. Since we cannot control peers arrival or departure, the system
will eventually collapse. In summary, the image incentive policy is
unstable.

4.2 Proportional incentive policy
For this incentive policy, gi(j) are derived in Section 3.2. The

performance of the three strategies are:

G1(t) = α(x1(t) + x2(t)) − 1,

G2(t) = (α − 1)(x1(t) + x2(t)),

G3(t) = αx1(t),

G(t) = (α − 1)(x1(t) + x1(t)x2(t) + x2
2(t)).

Let us consider their respective differences:

G3(t) − G2(t) = x1(t) − (α − 1)x2(t),

G2(t) − G1(t) = 1 − x1(t) − x2(t) ≥ 0,

G3(t) − G1(t) = 1 − αx2(t).

Note that under the proportional incentive policy, reciprocative be-
havior is always better than cooperative behavior, and we have the
following cases:

• Case A: when x2(t) > 1
α−1

x1(t), G2(t) > G3(t), so the

fraction of reciprocative peers x2(t) will keep increasing un-
til they dominate the P2P system. In this situation, the per-
formance of system gains G(t) reaches the maximum at α−1
and the system stabilizes at this point.

• Case B: when x2(t) = 1
α−1

x1(t), G3(t) = G2(t) > G1(t),
so only cooperative peers will continue to adapt to either s2

or s3. In this case, x1(t) will decrease but x2(t) will not
decrease. So eventually the system will go back to case A.

• Case C: when x2(t) < 1
α−1

x1(t), defective behavior has
the highest performance so peers will adapt to this strategy.
However, since s2 has a higher performance than s1, x1(t)
will decrease at a faster rate than x2(t) until the system reaches
x2(t) = 1

α−1
x1(t) and the system will go to case B.

In summary, the system operates in case A, where the fraction
of reciprocative peers dominates the system. Moreover, the sys-
tem achieves the optimal overall performance at this point. This
mathematical result agrees with the observation by [1] which was
obtained only via simulation.

5. PERFORMANCE EVALUATION
In this section, we present the mathematical results such as sys-

tem evolution and stability, performance gain of each strategy and
the overall system gain. The parameters we used are shown in Ta-
ble 1.
Evolution of the Image Incentive Policy: Figure 1 to 3 illustrate
the population dynamics of the image incentive policy with differ-
ent initially conditions x(0). Again, xi(t) represents the fraction

of peers using strategy si at time t, with s1, s2 and s3 being coop-
erative, reciprocative and defective strategy respectively. In Figure

α gain per service received 7
β cost per service provided 1
γ learning rate 0. 004
T # of time slots 6000

Table 1: Parameters used in the evaluation

1, when the fraction of reciprocator at t = 0 is x2(0) < 1/α.
One can observe that the fraction of cooperators, x1(t), gradu-
ally drops to zero and the system collapses. This implies that the
system is unstable since no one wants to contribute. In Figure 2,
when x2(0) > 1/α, the system seems to be stable at first since
there is a significant increase of the fraction of cooperator. And
at t = 2500− , we have x(t) = (0.80, 0.16, 0.04)T . However,
at t = 2500, we introduce a small disturbance where some new
peers arrive and they all use the cooperative strategy, so we have
x(2500) = (0.83, 0.14, 0.03)T . Although there are more coop-
erative peers, this small disturbance cause the fraction of recip-
rocative peers to drop below the threshold 1/α, causing the sys-
tem to collapse. As we observe at t = 5000, there are a sig-
nificant fraction of defectors in the system. In Figure 3, initially
x2(0) is larger than the threshold 1/α and there are more coop-
erators in the system initially. There are two small disturbances
(e.g., some new cooperative peers arrive) at t = 1500 where x(t)
goes from (0.782, 0.205, 0.013)T to (0.805, 0.174, 0.021)T , and
at t = 3000, where x(t) goes from (0.822, 0.171, 0.007)T to
(0.842, 0.141, 0.016)T . From the figure, we can observe that the
system eventually collapses and defectors dominate the system.
The performance gains for these three cases are listed in Table 2.
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Figure 1: Evolution of Pimage, x(0)=(0.5, 0.1, 0.4)T .

x(0) G0 G1 G2 G

(0.5, 0.1, 0.4)T -0.60 0 0 0

(0.2, 0.3, 0.5)T -0.55 0.045 0.050 0.045

(0.4, 0.3, 0.3)T -0.55 0.049 0.054 0.049

Table 2: Performance Gains of Pimage

Evolution of the Proportional Incentive Policy: Figure 4 to 6 il-
lustrate the population dynamics of the proportional incentive pol-
icy with different initially conditions x(0). In Figure 4, we have

100



0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

slot

fr
a
c
ti
o
n
 o

f 
p
o
p
u
la

ti
o
n

 

 

cooperators

reciprocators

defectors

Figure 2: Evolution of Pimage, x(0) = (0.2, 0.3, 0.5)T , distur-

bance at t = 2500.

x2(0) < x1(0)/(α − 1), and we observe that the system will be
stabilized. At the equilibrium, there will be no defector and there
remains a significant fraction of cooperators. In Figure 5, we have
x(0) = (0.10, 0.05, 0.85)T , so we start the system with a large
fraction of defectors and we also introduce a small disturbance at
t = 200. Note that even under these adverse conditions, Pprop is
very robust. At the equilibrium, there are still some cooperators in
the system while the fraction of defectors will converge to zero. In
Figure 6, we set x2(0) > x1/(α − 1) and we introduce two dis-
turbances at slot t = 300 and t = 700 respectively. Once again,
we can observe the robustness of the incentive policy wherein peers
with defective behavior will diminish. The performance for these
three cases are listed in Table 3. In all these three cases, the de-
fective strategy will be abandoned by peers and finally, the system
operates with optimal performance of α − 1.

x(0) G0 G1 G2 G

(0.5, 0.05, 0.45)T 6.0 6.0 1.2 6.0

(0.1, 0.05, 0.85)T 6.0 6.0 0.6 6.0

(0.4, 0.3, 0.3)T 6.0 6.0 2.7 6.0

Table 3: Performance Gains of Pratio

6. RELATED WORK
Various incentive techniques have been proposed with Micro-

payment [4] being the earliest ones. It relies on a central server
and uses virtual currency to provide incentive for resource sharing.
Since then, much efforts are focused on incentive mechanisms for
P2P systems [6–8]. Shared history based incentives can overcome
the scalability problem of private history based mechanisms, while
DHT technology [9] can be used to implement the shared history
incentive mechanism in a distributed fashion. One shared history
based incentive is the reciprocative strategy [1, 5]. It makes de-
cisions according to the reputation of requesters. There are also
some models developed to help in understanding and designing in-
centives mechanism. A motivating model in [2, 3] assumes that
each peer has a internal generosity. In [10], authors show that a
proportional response can lead to market equilibria.
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Figure 3: Evolution of Pimage, x(0) = (0.4, 0.3, 0.3)T , distur-

bance at t = 1500 and = 3000.
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Figure 4: Evolution of Pprop,x(0)=(0.5, 0.05, 0.45)T .

7. CONCLUSION
We present a general mathematical framework to model the evo-

lution and performance of incentive policies. Peers are assumed to
be rational and are able to learn about the behavior of other peers.
We compare two incentive policies and show that why the image
incentive policy may lead to a complete system collapse, while the
proportional incentive policy, which takes into account of service
consumption and contribution, can lead to a robust and scalable
system. The mathematical framework is general to analyze the sta-
bility and performance of other incentive mechanisms.
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Figure 6: Evolution of Pprop, x(0) = (0.4, 0.3, 0.3)T , distur-

bance at t = 300 and t = 700.
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