
Aspect-Oriented Fault Tolerance for Real-Time
Embedded Systems

Francisco Afonso1 Carlos Silva1 Nuno Brito1 Sergio Montenegro2 Adriano Tavares1

1 Department of Industrial Electronics
University of Minho
Campus de Azurém

4800-058 Guimarães - Portugal

{fafonso, csilva, nunobrito, atavares}@dei.uminho.pt

2 German Space Agency (DLR)
Compact Satellite Program

Am Fallturm 1
28359 Bremen - Germany

sergio.montenegro@dlr.de

ABSTRACT
Real-time embedded systems for safety-critical applications have
to introduce fault tolerance mechanisms in order to cope with
hardware and software errors. Fault tolerance is usually applied
by means of redundancy and diversity. Redundant hardware
implies the establishment of a distributed system executing a set
of fault tolerance strategies by software, and may also employ
some form of diversity, by using different variants or versions for
the same processing.

This paper describes our approach to introduce fault tolerance in
distributed embedded systems applications, using aspect-oriented
programming (AOP). A real-time operating system sup-porting
middleware thread communication was integrated to a fault
tolerant framework. The introduction of fault tolerance in the
system is performed by AOP at the application thread level. The
advantages of this approach include higher modularization, less
efforts for legacy systems evolution and better configurability for
testing and product line development. This work has been tested
and evaluated successfully in several fault tolerant configurations
and presented no significant performance or memory footprint
costs.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;
D.4.7 [Operating Systems]: Organization and Design – Real-
Time Systems and Embedded Systems.

Keywords
Aspect-oriented programming, fault tolerance.

1. INTRODUCTION
Embedded systems have a widespread use in several domains of
safety-critical applications, as process control, avionics, space and
medical systems. These systems usually must satisfy real-time
performance requirements, and so the correct response depends
also on the time which it is produced. Generally a real-time

system executes a series of tasks subjected to deadlines and jitter
constraints. For many of these applications, there are serious
constraints in physical size and energy consumption, which imply
in reduced processing power and memory size. Furthermore,
these systems must exhibit high dependability [5], a concept that
involves not only reliability, but also other attributes as
availability, safety and maintainability.

The means of achieving dependability include fault prevention
and fault removal techniques, but usually fault tolerance (FT)
techniques are needed to cover transient faults, hardware
permanent faults and residual software faults. The application of
fault tolerance techniques is rather difficult. Redundant hardware
involves extra software coordination, which makes the software
system more complex and prone to errors.

The contribution of this work is evaluating the application of
aspect-oriented techniques to the development of real-time em-
bedded fault-tolerant software. In contrast with previous works,
we studied the usage of AOP at the application thread level, based
on a thread model commonly used for embedded systems soft-
ware development. We considered in this work a small real time
operating system named BOSS, and a fault tolerance framework
that supports several FT mechanisms, both for hardware and
software faults. The proposed solution was evaluated qualitatively
and quantitatively in terms of performance and memory footprint
in relation to non-AOP implementations. In addition, a case study
for testing this approach is described.

2. FAULT TOLERANCE CONCEPTS
A fault is active when it produces an error in the system state. An
error may propagate and lead to a subsequent service failure.
Fault tolerance is a means of achieving a continuous system ser-
vice in the presence of active faults [5]. Several FT strategies
have been proposed and applied in the last 30 years. Some
strategies are based on single version software, and can only be
effective with hardware faults and transient software faults. One
example is Rollback/Retry, also called “checkpoint and restart”
[16]. In this strategy the detection of an error triggers a system
rollback to a previously saved state and a re-execution of the same
processing. This technique is based on backward error recovery
and needs an efficient error detection mechanism. Other strategies
apply hardware redundancy to detect and mask errors, as Triple
Modular Redundancy (TMR) [18], where error detection is
performed by comparison of the results of multiple hard-
ware/software units.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Workshop ACP4IS’08, March 31, 2008, Brussels, Belgium.
Copyright © 2008 ACM 1-59593-XXX-X/0X/000X…$5.00.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
ACP4IS ’08, 31st March 2008, Brussels, Belgium
Copyright © 2008 ACM 1-978-60558-142-2 ...$5.00

In order to deal with permanent software faults, multiple version
software (software diversity) is needed. Several strategies have
been proposed as Recovery Blocks (RB) [17], Distributed
Recovery Blocks (DRB) [10] and N-Version Programming (NVP)
[6].

RB and DRB perform backward error recovery like Roll-
back/Retry, but use different software versions, or variants, in
each execution block. The main difference between RB and DRB
is the distributed nature of the latter, which allows concurrent
execution of variants in two distinct nodes and coordination
between them to define what node will send the final output.

NVP is a FT strategy that uses forward error recovery in which
multiple variants (at least 3) run sequentially or concurrently. A
decision mechanism selects the correct response usually by
majority voting. In a multi-computer system, each variant runs in
a different node and the decision mechanism (voter) may be
replicated too.

In this work, RB, DRB and NVP strategies are supported, as well
as single version techniques related to them, as Roll-back/Retry,
Pair of Self-Checking Processors (PSP) [11] and TMR.

3. BOSS OPERATING SYSTEM
BOSS is a real-time operating system developed by FHG-FIRST.
The BIRD (Bi-Spectral Infrared Detection) satellite [14], de-
signed for early detection of fires, uses BOSS as its multiple-
computer control operating system. BOSS has also been applied
in several other projects, and future utilizations include CubeSat
satellites [15] and robotics in space [13].
BOSS design has been driven by reducing software complexity as
a means to achieving dependability, as complexity is the cause of
most development faults. The system had several parts validated
by formal verification. It was developed using object-oriented
programming with C++ and it has been ported to several
platforms as PowerPC, x86 and Atmel AVR. There is also avail-
able an on-top-of Linux porting, primarily used for early testing.

BOSS supports fault tolerance in hardware redundant systems, by
including a middleware layer which carries out transparent
communications between nodes, using the publisher-subscriber
protocol. A message object can be sent locally to the network,
using a string as message subject. Receiving messages must spec-
ify which subject they are expected to receive from. Threads are
usually consumers of receiving messages, by attaching to mail
box objects. The middleware also supports message marshaling
and the elimination of duplicate messages, based on a message
identification number. This work uses a middleware
implementation based on broadcast communications but a unicast
version is also available.

4. FAULT TOLERANCE FRAMEWORK
This Section describes our thread model, the basic features of the
tolerance framework which was integrated to the BOSS operating
system to support application level fault tolerance, and how this
framework is applied.
Fault tolerance can be applied to several layers of software, as at
the operating system level, function/method level, object level or
process level. Our work applies fault tolerance techniques to the

thread level, but targeting only application threads, as operating
system threads are supposed to be more robust
Our purpose is presenting a general description of the framework
fault tolerance capacities and how they are employed by the
application programs.

4.1 Thread Model
Figure 1 shows the thread model required for fault-tolerant
threads. The thread to be made fault-tolerant runs in an infinite
loop, reading from input devices or receiving input messages from
other threads. After processing the inputs, an output is generated
either by writing to an output device or sending a result message
to other threads. The model supports both state threads and
stateless threads. For state threads, the output result will depend
both on the input data and on the previous state data.

An example of a candidate thread for fault tolerance
implementation is presented in Figure 2.

class ExampleThread : public Thread {

 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg, 20>
 incommingMessages;
public:
 ExampleThread(){ ... // init code}

 void run () {
 while(1) {
 recMsg = incommingMessages.receive();
 process();
 output();
 }
 }

 void process(){
 ... // uses msg data and state data
 }

 void output(){
 ... // prepares output message
 outMsg.send("exampleResult");
 }
};

ExampleThread myThread;

Figure 2. Example of application thread.

In BOSS, all application threads must inherit from the Thread
class and implement the run virtual function, which defines the
thread run-time behavior. In this example, ExampleThread runs
cyclically, reading messages from an IncommingMessageAdmin-
istrator object, which consists of a mailbox for messages of the

Figure 1. Model for FT threads.

Msg class. The process method is executed next, and implements
some computing algorithm using data from the incoming message
and possibly from an internal state. (attributes not shown). Finally
the output method prepares the output message and sends it
locally and over the network, using the string “exampleResult” as
subject. The instantiation of thread objects is normally static, as
shown in the last line of Figure 2. Dynamic memory allocation is
avoided for performance reasons.

4.2 Fault-Tolerant Application
Figure 3 shows a class diagram of the FT framework. A fault-
tolerant thread must define an FTStrategy object that will
implement the fault-tolerant functionality. Presently, three FT
strategies have been implemented: RB, DRB and NVP, but others
can be developed and integrated to the framework. Some
strategies, like DRB, involve message exchanges and
coordination between multiples nodes, for defining roles,
initializing global state and communicating results. All this work
is performed by the FT framework, but some specific procedures
must be defined by the application, as for instance, the acceptance
test in RB and DRB. The degree of transparency depends on the
strategy selection and the configuration. The VoterThread class
implements application dependent majority voting and it is used
in NVP to select the correct response among the NVP threads.
StdVoter is a specialized voter that performs exact majority
voting.
The modifications required to make an application thread fault-
tolerant include:

• Instantiation and registration of an FTStrategy object that
will implement the desired fault tolerance strategy, as RB,
DRB and NVP.

• Execution of the executeFT method of the FTStrategy
object after the thread activation.

• Implementation of application specific methods related to
the selected fault tolerance strategy (as the acceptance test
in RB and DRB). Some of them consist of new functionality
but others will contain the code originally defined in the
processing and output methods.

Figure 4 shows an example of fault tolerant implementation for
ExampleThread, using the DRB strategy. The main differences
between this version and the original code in Figure 2 are
highlighted. A concrete FTStrategy is instantiated as a
DRBStrategy (myDRB). In the class constructor, the maximum
response time for execution is set to 20,000 microseconds and the
setFTStrategy method is called, assigning the address of the

DRBSstrategy to the ftStrategy pointer. In the run method, the
original process and output methods are replaced by a call to the
executeFT method of the FTStrategy class. This method is
responsible for executing the particular strategy and for activating
the application specific methods defined in the application thread,
as for example, variant1 (primary block) and acceptanceTest.
Some of these methods correspond to original implementations,
but others, like variant2 (recovery block) and saveCheckpoint
should be defined to allow the DRB strategy operation.
In this example, ExampleThread is stateless; otherwise
FTExampleThread should also implement the methods getState
and setState, to provide state initialization between the primary
and the shadow nodes in DRB. None of these methods are
necessary in the original version, as only one ExampleThread
instance runs in a single node.

class FTExampleThread : public Thread {

 DRBStrategy myDRB;
 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg, 20>
 incommingMessages;
public:

 FTExampleThread(){
 ... // init code
 myDRB.setMaxResponseTime(20000);
 setFTStrategy(&myDRB);
 }

 void run () {
 while(1) {
 recMsg = incommingMessages.receive();
 ftStrategy->executeFT();
 }
 }

 void variant1(){
 ... // same code of original process method
 }

 void sendResult(){
 ... // same code of original output method
 }
 // to be defined
 void variant2(){ ...}
 void saveCheckpoint(){ ... }
 void restoreCheckpoint(){...}
 bool acceptanceTest(){...}
};

Figure 4. Example of FT application thread.

4.3 Application Specific Entities
Each FT strategy instantiation and usage demands the definition
of strategy attributes and application-specific behavior. These
requirements are summarized in Tables 1 and 2.
Table 1 represents requirements for multiple version software and
Table 2 for single version software. The fault tolerance strategies
in Table 2 use the same FTStrategy objects of RB, DRB and
NVP, but do not implement their full functionality, as several
methods are not defined and so they present a default
implementation. For example, the default implementation save/
restoreCheckpoint is doing nothing and for acceptanceTest is
returning true (success).

Figure 3. Fault tolerance framework.

Table 1. Multiple version strategies requirements.

Table 2. Single version strategies requirements.

The simpler FT strategy in Table 2 is the restart strategy. In this
technique only one variant is defined, and the acceptance test is

not implemented. Therefore, the only possible error detection is
deadline expiration. A deadline is obtained by adding the
response time parameter to the thread activation time. Roll-
back/Retry can be implemented as a single version simplification
of the RB strategy. In this case, only one real variant is defined,
and the body of the variant2 should contain a call to the variant1
method. In a similar way, PSP is implemented with the DRB
strategy and TMR with the NVP strategy.
Voter threads are needed when using TMR or NVP. In the general
case, a voter thread is application-specific and must implement
virtual methods defined in the VoterThread class (see Figure 3).
For exact majority voting using messages, a standard voter which
compares results byte by byte is provided (StdVoter class). It is
also possible to define if all replicated voters will send their
outputs or if only a master voter will do it. The definition of the
master voter in a coordinated voting is performed by the FT
framework.

5. AOP IMPLEMENTATION
Our goal is to use AOP to modularize all fault-tolerant code,
keeping the original code intact. The process of generating the
executable code using this approach is explained as follows. The
operating system, already integrated to the fault tolerant frame-
work, is compiled and an OS library is generated. Abstract
strategy aspects are developed for each FT strategy in the system.
They define virtual pointcuts and standard advices used for all
related concrete strategy aspects. A concrete aspect must be de-
fined for advising each future fault-tolerant application thread, as
it will be discussed later. The weaving process using AspectC++
[4] generates a fault-tolerant application that is eventually com-
piled and linked to the OS code.

aspect DRBStrategyAbstract {

 pointcut virtual DRBClass() = 0;
 pointcut virtual ProcessMethod() = 0;
 pointcut virtual OutputMethod() = 0;
 int maxResponseTime;

 advice DRBClass(): slice class {
 private:
 DRBStrategy myDRB;
 };
 pointcut constr() = construction(DRBClass());

 advice constr(): after(){
 tjp->target()->myDRB.setMaxResponseTime(maxResponseTime);
 tjp->target()->setFTStrategy(&(tjp->target()->myDRB));
 }

 pointcut compute()= call(ProcessMethod()) && target(DRBClass()) && !within("% ...::variant%(...)"
);

 advice compute(): around(){
 tjp->target()->ftStrategy->executeFT();
 }

 pointcut result()= call(OutputMethod()) && target(DRBClass()) && !within("% ...::sendResult(...)"
);

 advice result(): around(){
 }
};

Figure 5. DRB strategy abstract aspect.

We will present an example of how to apply AOP to make the
ExampleThread of Figure 2 fault tolerant, using the DRB strategy.
Figure 5 shows the abstract aspect related to the DRB strategy.
Initially this aspect declares three virtual pointcuts which will be
defined in the concrete aspect. These pointcuts represent the
thread class under modification (DRBClass) and the original
methods for processing (ProcessMethod) and output
(OutputMethod). The integer maxResponseTime will keep the
maximum response time for execution, which must be defined by
the concrete aspect. The introduction of the DRBStrategy object
definition is carried out using the AspectC++ slice construction,
which is used to extend the static structure of a program. The
initialization of this object, as well as its registration, is performed
by the advice with the constr pointcut, similarly as done in the
constructor code of the non-AOP version in Figure 4.
The compute pointcut defines a condition in which the processing
method of the non-FT thread is called in the original code. The
around advice related to this pointcut will replace this call with
the activation of the executeFT method of the FTStrategy class.
Similarly, the result pointcut defines a condition in which the
output method of the non-FT thread is called in the original code.
The around advice related to this pointcut will just suppress this
call, as the activation of the thread output is going to be con-
trolled by the FTStrategy object.
The concrete aspect to make the ExampleThread fault-tolerant is
shown in Figure 6. The aspect inherits from the
DRBStrategyAbstract aspect and initially defines its virtual
pointcuts. In this case, the target thread is “ExampleThread”, the
processing method is “process” and the output method is
“output”, as seen in Figure 2.

aspect DRBExampleConcrete: public
 DRBStrategyAbstract {

 pointcut DRBClass() = "ExampleThread";
 pointcut ProcessMethod()= "% ...::process()";
 pointcut OutputMethod() = "% ...::output()";

 DRBExampleConcrete(){
 maxResponseTime = 20000;
 }

 advice DRBClass() : slice class {
 public:
 void variant1(){ process(); }
 void sendResult(){output(); }

 // methods to be defined
 void variant2(){ ... }
 void saveCheckpoint(){ ... }
 void restoreCheckpoint(){...}
 bool acceptanceTest(){...}
 }
};

Figure 6. Concrete DRB aspect example.

The maximum response time for this strategy is set to 20.000
microseconds in the aspect constructor, by initializing a base
abstract variable. After that, several methods are introduced in the
target thread. The virtual method variant1 is responsible for
running the primary block in DRB, and in this case it must
execute the original processing of ExampleThread. Similarly, the
virtual method sendResult must call the original output method.

Here it should be noticed that the calls to process and output in
the introduced methods variant1 and sendResult will not trigger
the execution of the advices defined by the compute and result
pointcuts in the DRBStrategyAbstract aspect, because the scope
pointcut function within is being applied. Finally, the application
specific methods are defined for this strategy, as variant2
(recovery block) and saveCheckpoint. After the process of
weaving, the new ExampleThread code becomes functionally
equivalent as the non-AOP version of Figure 4.
An alternative approach for code generation is applying aspects to
connect the fault tolerance framework to the operating system. In
this case, the weaving process now applies also to the original
operating system code. The FT framework is injected in the OS
by an aspect. In our framework this aspect has to modify the
original Thread class to introduce a pointer to an FTStrategy
object and the virtual functions shown in Tables 1 and 2. Using
this approach it is possible to reduce the code size for non-FT
implementations and also to apply aspects for fault tolerance and
other concerns at the operating system level, as logging,
synchronization and middleware customization [1]. However,
there is no modification in abstract and concrete FT aspects used
at the application level.

6. EVALUATION
In this Section we present two case studies. The first one was used
to validate the AOP implementation by verifying if it produces
the correct behavior. The second case study was meant to measure
the AOP costs. Finally, we discuss of advantages and
disadvantages of the AOP approach.

6.1 Radar Filtering System
We applied the AOP approach to a radar filtering system. In this
application a portable PC running an on-top-of Linux
implementation of BOSS simulates a radar system and generates
detection data of several planes periodically. The data generation
includes simulated errors in bearing and distance, typical of this
kind of equipment. This data is received by three PowerPC 823
boards (80 MHz clock) running an application that filters the
planes’ position, using an alpha-beta filter, and calculates the
planes’ course and speed. The results are sent back to the portable
PC, where they are displayed. Our development environment
consisted of a PC host running Linux Fedora 3, GNU gcc 3.2.3 as
cross-compiler and AspectC++ 1.0pre3 as aspect weaver [4].
Initially we had a single node, non-FT version of the filtering
application, and then we applied AOP to create an FT application
using TMR. The FT configuration is shown in the UML
deployment diagram of Figure 7, where nodes are represented by
cubes and application threads by rectangles. All Filter threads
send their results with “unvoted_data” as subject, which are
received by voter threads in the PowerPC boards. In this
particular configuration, only the master voter thread sends the
final results to the Display thread in the PC.
The AOP implementation was compared to a non-AOP
implementation and presented the correct behavior (timing and
values) at all times.

6.2 Performance and Memory Footprint
We now describe an experiment to test and compare performance
and footprint of the fault tolerant AOP implementations with
respect to non-AOP implementations.

In order to evaluate performance, we decided to measure the CPU
utilization on the target board, in a test case with 10 RB threads
with small processing times and high activation frequencies. A
single processor configuration using only local messages was
selected, aiming to eliminate the amount of CPU time spent on
sending and receiving messages over the communication net-
work, which in our case is not affected by the usage of aspect-
oriented artifacts.
A PowerPC 823 board executes an application with one Sender
thread, which periodically generates an array of 5 integer random
numbers and sends them using a local message. Then, the 10
identical Receiver threads obtain this message and sort the
numbers using the insertion sort algorithm as the primary block
and the selection sort algorithm as the recovery block. The
acceptance test is executed by checking if the integers are in the
correct order within the result array. The Receiver threads output
consists of preparing an output message with the sorting results
but this message is not sent so as to decrease the CPU utilization.
In this experiment three different software versions were
evaluated:

• Non-FT implementation – In this version, the Receiver
thread does not use any FT strategy and just sorts the arrays
of integers with the insertion sort algorithm. The Receiver
thread code is similar to the one presented in Figure 2.

• FT implementation – This version uses a Receiver thread
that follows a standard object-oriented RB fault tolerance
implementation, similar to the one presented in Figure 4.

• FT-AOP implementation – In this version the Receiver
thread is the same of the non-FT implementation and the
RB fault tolerance in injected by AOP, as described in
Section 5.

Figures 8 and 9 show performance results of these three
implementations for different compiler optimizations and thread
activation periods. Figure 8 shows CPU utilizations with no
compiler optimization (-O0 option in gcc) for activation periods
of 5 and 10 milliseconds. The non-FT implementation has the
lower CPU utilization as expected, because it does not involve
any fault tolerant control and fault detection mechanisms, as the

acceptance test in RB. Comparing fault tolerant implementations,
we verified that, in this test case, the AOP version has a higher
CPU utilization of about 6%, for un-optimized programs. On the
other hand, if maximum performance optimization is performed
by the compiler (-O3 in gcc), as shown in Figure 9, this difference
in performance drops to less than 0.5%. That performance
difference is directly dependent on the application thread
activation. Consequently, we conclude that the performance
difference measured in this experiment is greater than in real
applications, as they usually have longer processing times and
larger activation periods.
Table 3 shows program memory sizes in bytes used for code
(text), data and uninitialized data (bss) for each implementation,
considering -O3 compiler optimization. The FT-AOP
implementation uses more 260 bytes for code and 16 bytes for
bss, comparing to the normal FT implementation. The increase in
code size is caused by inlining after and around advices that make
use of the AspectC++ joinpoint data structure. The extra bytes in
bss are related to the creation of aspect objects and pointers.

Table 3. Memory footprint results.

version text data bss total

Non-FT 65,987 6,384 207,152 279,523

FT 66,783 6,424 207,792 280,999

FT-AOP 67,043 6,424 207,808 281,275

Figure 7. TMR strategy configuration.

Figure 8. CPU utilization with no optimization.

Figure 9. CPU utilization with maximum optimization.

Based on this experiment we conclude that the utilization of AOP
for application-level fault tolerance implementation in an
embedded real-time application does not imply a significant in-
crease in run-time or memory footprint.

6.3 Discussion
We used AOP to modularize all fault tolerant code at the
application thread level, keeping the original code intact. The
advantages of this approach are:

• Less prone to errors in porting a non-FT system to a FT one.
The task of changing an existing system to introduce fault
tolerance capabilities may insert software faults in the
original code. Using AOP the original code is preserved.

• The programmer can initially write applications without
fault tolerance in mind, and concentrate his efforts in the
development of the functional code. Using AOP, fault
tolerance can be applied in a second stage, after validating
the core functionality.

• Facilitates the evaluation and comparison of several FT con-
figurations, as the developer may easily select what set of
application threads will be made fault tolerant and on which
strategy.

• Contributes to product line development, as single or
redundant systems may be generated by introducing or not
fault tolerant aspects.

• Contributes to code reuse, because the same functional code
can be applied in other projects with different dependability
requirements.

Using this approach we noticed that the base code remains
oblivious to the fault tolerant concern, but on the other hand, the
aspect code is very dependent on the base code it applies to. This
fact is related to the nature of fault tolerance domain, where for
each FT instantiation we may need to define deadlines, extra fault
detection, alternative procedures, checkpoints, state coordination,
voting specifications, and so on. For that reason, concrete aspects
are normally heterogeneous and can target only one application
thread. However, depending on the characteristics of the
application process and the selected fault tolerant strategy, less
application specific code may be needed. In our opinion,
completely transparent fault tolerance injection is very hard to
achieve.

7. RELATED WORK
The work in [7] proposed the use of aspect-orientation in real-
time systems for distribution, timeliness and dependability do-
mains. An example of the application for each domain is given,
using CORBA in a logging application as test case. This work
does not address any fault tolerance mechanism other than
execution time surveillance.
Herrero et al [8] designed a replication model called JReplica,
based on AO techniques, to allow the specification of fault
tolerance behavior and requirements. This model works at design
time, using UML. Only passive replication is supported. The
model includes new entities to intercept input and output
messages and interact with replication aspects.
In [9] the authors feel that it is hard and potentially dangerous to
separate concurrency control and failure management from the
main application. They prepared a case study based in

transactions and conclude that homogeneous aspects yields poor
performance and the functional code keeps semantically coupled
with the non-functional part (the aspect). Besides, any
maintenance in one should trigger a modification on the other.
The work with more similarity with ours is described in [2]. They
address the question of whether AOP can provide a base for
implementing fault tolerant mechanisms in non-distributed
environments. For the implementation of the recovery cache
mechanism, AspectC++ had to be extended with the “set”
joinpoint [3]. This work presents examples of aspects for single
node computing, as time-redundant execution, assertions and
Recovery Blocks. However, the FT mechanisms are applied at the
method level while ours is applied at the thread level.
Detailed quantification of AspectC++ run-time and memory costs
have been presented in [12]. In this work, extra cycles and
memory consumption are measured for each aspect-oriented
feature and also for a refactored and extended AOP version of the
ECOS operating system kernel. In contrast, our work measures
the AOP performance in a demanding fault-tolerant application,
based on CPU utilization

8. CONCLUSION
In this paper we described and evaluated an approach for the
application of AOP to the development of real-time embedded
fault-tolerant software. Our work differs from previous works for
injecting fault tolerance at the application thread level, and
considering several fault tolerant mechanisms and redundant
hardware/software configurations.
We conclude that AOP is very useful in this domain because it
reduces efforts and errors in making a legacy system fault-
tolerant, simplifies system development by allowing the
validation of the functional part in advance, facilitates the
evaluation and comparison of various FT configurations, and
contributes to product line development and code reuse.
Future work will include the application of AOP for operating
system fault tolerance and additional run-time overhead
measurements in cycles or time.

9. ACKNOWLEDGMENTS
This work has been supported by the Portuguese Foundation for
Science and Technology.

10. REFERENCES
[1] F. Afonso, C. Silva, S. Montenegro and A. Tavares.

Applying Aspects to a Real-Time Embedded Operating
System. In Proceedings of the 6th Workshop on Aspects,
Components and Patterns for Infra-structure Software -
ACP4IS, Vancouver, Canada, 2007.

[2] R. Alexandersson, P. Ohman and M. Ivarson. Aspect
Oriented Soft-ware Implemented Node Level Fault
Tolerance. In Proceedings of the 9th IASTED International
Conference on Software Engineering and Applications -SEA,
Phoenix, Arizona, USA, 2005.

[3] R. Alexandersson and P. Ohman. Implementing Fault
Tolerance Using Aspect Oriented Programming. LNCS
Dependable Computing, vol. 4746/2007, Springer-Verlag,
2007.

[4] AspectC++ project homepage: http://www.aspectc.org.

[5] A. Avizienis, J.-C. Laprie and B. Randell. Fundamental
Concepts of Dependability. Technical Report 739,
Department of Computing Science, University of Newcastle
upon Tyne, 2001.

[6] L. Chen and A. Avizienis. N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation. In
Proceedings of FTCS-8, pp. 3-9, Toulouse, France, 1978.

[7] A. Gal, O. Spinczyk and W. S-Preikschat. On Aspect-
Orientation in Distributed Real-time Dependable Systems. In
Proceedings of the Seventh International Workshop on
Object-Oriented Real-Time Dependable Systems - WORDS,
pp. 261-267, 2002.

[8] J. Herrero, F. Sánchez and M. Toro. Fault Tolerance as an
Aspect using JReplica. In Proceedings of the 8th IEEE
Workshop on Future Trends in Distributed Computing
Systems - FTDCS, pp. 201-207, 2001.

[9] J. Kienzle and R. Guerraoui. AOP: Does it Make Sense? The
Case of Concurrency and Failures. In Proceedings of the
16th European Conference on Object Oriented
Programming, pp. 37-61, 2002.

[10] K. Kim and O. Welch. Distributed Execution of Recovery
Blocks: An Approach for Uniform Treatment of Hardware
and Software Faults in Real-Time Applications. IEEE
Transactions on Computers, vol. 38, Nº 5, pp. 626-636,
1989.

[11] K. Kim. Toward Integration of Major Design Techniques for
Real-Time Fault-Tolerant Computer Systems. In Journal of

Integrated De-sign and Process Science, vol. 6, issue 1, pp.
83-101, 2002.

[12] Lohmann D. et al. A Quantitative Analysis of Aspects in the
eCos Kernel. In Proceedings of EusoSys2006, Leuven,
Belgium, 2006.

[13] P. Massa, et al. HiPeRCAR: the High Performance Resilient
Computer for Autonomous Robotics. In Proceedings of Data
Systems on Aerospace - DASIA, Berlin, Germany, 2006.

[14] S. Montenegro and F. Zolzky. BOSS /EVERCONTROL
OS/Middleware Target Ultra High Dependability. In
Proceedings of Data Systems on Aerospace -DASIA,
Edinburgh, Scotland, 2005.

[15] S. Montenegro, K. Briess and H. Kayal. Dependable
Software (BOSS) for the BEESat Pico Satellite. In
Proceedings of Data Systems on Aerospace - DASIA, Berlin,
Germany, 2006.

[16] D.K. Pradhan, Fault-Tolerant Computer System Design,
Prentice-Hall, Inc., 1996.

[17] B. Randell System Structure for Software Fault Tolerance.
IEEE Trans. Software Engineering, vol. 1, no.2, pp. 220-232,
June 1975.

[18] B. Randell, P. Lee and P.C. Treleaven. Reliability Issues in
Computing System Design. ACM computing Surveys, vol.
10, issue 2, pp. 123-165, 1978.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

