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Abstract
In domain-specific aspect languages we observe that aspects are
translated to base code and subsequently require a complex integra-
tion into base code while guaranteeing the correctness of the aspect
and the base code in the woven code. We call this phenomenon in-
vasively composed aspects. Weavers for invasive aspect languages
operate on the base language level and offer dedicated support for
crosscutting code. Unfortunately, current implementations poorly
modularize the implementation of invasive aspect languages. This
hampers their (unanticipated) evolution and severely reduces the
reusability of their constructs. We suggest an approach where the
specification of the crosscutting behavior is expressed on a higher
semantic level. To this end, we raise the abstraction level of base
languages towards the specific domain of the aspect languages. As
such, we enable a modular, declarative approach. We illustrate our
approach with KALA, a domain-specific aspect language.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors—Translator writing systems and compiler
generators

General Terms Languages, Design

Keywords Modularity, Generative Programming, Aspect-oriented
Programming, Language Engineering, Domain-specific Languages,
KALA, Linglets

1. Introduction
By shifting from general-purpose aspect languages towards more
domain-specific aspect languages, the abstraction level of aspect
languages is raised. In such languages, aspects are no longer solely
described in terms of general-purpose language constructs like
method invocations in object-oriented languages. Instead, aspect
languages are impregnated with specific language constructs which
are tailored towards the concepts of a particular problem domain.
Aspects can then be described in terms of the concepts of the prob-
lem domain. As these concepts are not natively supported by the
base language, the implementation of a domain-specific aspect lan-
guage first expresses the concepts of the aspect domain into more
general-purpose code fragments of the base language, and as we
will explain later in more detail subsequently invasively integrates
them into the base code. We refer to this kind of aspects as inva-
sively composed aspects. Such aspects have been encountered in
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the implementation of KALA, a domain-specific aspect language
for advanced transaction management (Johan Fabry and D’Hondt
2008) and in the implementation of HLBR, a domain-specific as-
pect language for connecting business rules (Cibran 2007).

In general, invasive composition is a difficult and delicate under-
taking as it must know how and where to modify a program with-
out breaking its functionality (Fabry et al. 2007; Brichau 2005).
This means that, in the case of the invasive integration of aspect
and base code, the correctness of both the aspect and the base code
must be ensured in the woven code. Therefore the implementation
of the aspect language constructs require detailed knowledge about
the base code in order to modify the base correctly. The required
knowledge even increases when multiple invasive aspect language
constructs operate on the same base code, because constructs must
know about all the other constructs which potentially might have
already changed the base code. This shared knowledge not only
contaminates the implementation of the aspect language constructs,
but erects many dependencies that result in a tightly coupled aspect
language implementation. It has been argued that this leads to a
maintenance nightmare (Voelter and Groher 2007) and to change
propagation (Brichau 2005) throughout the language implementa-
tion.

We find that the lack of modularization in the bulk of the
aspect-specific and general-purpose language development tech-
niques (Cleenewerck 2007a) prohibits unanticipated evolution and
reusability of aspect language constructs. This is unfortunate for
several reasons, as these software qualities are especially important
in the context of domain-specific aspect languages. First, domain-
specific languages need to evolve along with their domain (Clee-
newerck 2007b,a; lmar Juergens and Pizka 2006; Fabry et al. 2007;
Bosch and Dittrich). Second, software consists of several kinds of
crosscutting concerns. Hence, it does not only suffices to address
each concern with a separate domain-specific aspect language, but
several languages need to be used in conjunction with one an-
other. We believe that modularized aspect language constructs are
a fundamental step to be able to control and define the interactions
among constructs which initially belonged to different languages.

The challenge of invasively composed aspects lies thus in their
invasive composition into the base code. Invasive composition also
manifests itself in general-purpose aspect languages and has been
recognized as a general problem in software composition (Ass-
mann 2003). This paper focusses on the specific context of invasive
composition in domain-specific aspect languages as we want to ex-
ploit the high abstraction level of domain-specific aspect languages
to our advantage.

It is our position that the gap between the abstraction level
of domain-specific aspect languages and bases language has been
wrongly addressed. In previous work (Cleenewerck 2005, 2007a),
we developed an approach to disentangle and decouple semantics
of language constructs that require invasive composition. Our ex-
periments show that, in highly structured languages (Cleenewerck
2005) a lot of the integration can be automated and facilitated by
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using a more declarative formalism. In the case of invasively com-
posed aspects, integration is performed on base languages which
more general-purpose than the domain-specific aspect language. As
the base languages are less structured, the approach is far less ef-
fective. In order to attain a declarative composition technique for
invasively composed aspects, propose to increase the structure of
the base language by raising the abstraction level of the base lan-
guage towards the specific domain of a given aspect language. The
declarative composition technique preserves the modularization of
the aspect language constructs. Moreover, it will allow a robust and
concise way of ensuring the correctness of aspect code and the base
code in the woven code. In this paper, we present a case study in
modularizing such a domain-specific invasive aspect language by
implementing a subset of KALA.

2. Motivating Example
In this section we illustrate the integration complexities of in-
vasively composed aspects found in domain-specific aspect lan-
guages. The correct integration of the translational semantics of
invasively composed aspects depends on various constraints and
dependencies such as their ordering and the transactional context
in which they are used.

2.1 KALA
The running example which we use in this paper is the imple-
mentation of KALA (Johan Fabry and D’Hondt 2008), a domain-
specific aspect language (DSAL) for advanced transaction manage-
ment. KALA has been designed to modularize the aspect of ad-
vanced transaction management. Tangled aspect code occurs when
an aspect itself consists of multiple crosscutting sub-concerns (Jo-
han Fabry and D’Hondt 2008). It is a prime example of invasively
composed aspects as the weaving of tangled aspects requires a com-
plex integration of its different subconcerns.

With KALA, Java methods can be declared transactional via a
declarative specification. The KALA code excerpt in Figure 1 de-
clares the method transfer of the class Cashier as a transaction.

1 Cashier.moneyTransfer(Account, Account, int) {
2 alias(parent Thread.currentThread())
3 name(self Thread.currentThread())
4 begin { dep(self wd parent) }
5 commit { del(parent self)
6 view(self parent) }
7 abort { terminate(self) } }

Figure 1. Transactional Declaration of a Java Method in KALA.

Transactional properties are grouped in four different transac-
tional contexts (see Figure 1): initialize (lines 2-3), begin (line
4), commit (line 5-6) and abort (line 7). Each of them correspond
to the lifecycle of a transaction.

KALA provides a set of language constructs for advanced trans-
action management. With each construct a particular property of a
transactional method can be stated. Some of these constructs are
illustrated in Figure 1. There are five kinds of transactional prop-
erties. Naming and grouping constructs: name and alias respec-
tively identify and publish transactions in the run-time transaction
monitor, using keys which are computed by Java expressions (lines
2-3). Dependencies establish dependencies among the transaction
in order to control how different translations should be executed
(line 4). Delegations delegate the responsibility for committing the
intermediate changed data (line 5). Views declare what intermediate
data changes can be viewed by a transaction (line 6). Finally, termi-
nates remove a transaction from the run-time transaction monitor
(line 7).

MethodDeclaration {
  get identifier
  register in dep mechanisms
  NAMES & GROUPS 
  {
  NAMES & GROUPS 
  DEPENDENCIES 
  beginForcing = mayBegin?
  if (beginForcing) 
    VIEWS & DELEGATION
    begin
    TERMINATES
  } else { go to force state }
  try {
    if(must abort) throw Exception
    if(!must commit) {
      original code
      mayCommit?
      if (must abort) throw Exception
    }
    NAMES & GROUPS 
    DEPENDENCIES 
    VIEWS & DELEGATION
    commit
    TERMINATES
  }
  catch(TxException ex) {
    mayAbort?
    if(must commit)
      NAMES & GROUPS 
      DEPENDENCIES 
      VIEWS & DELEGATION
      commit
      TERMINATES
    else {
      NAMES & GROUPS 
      DEPENDENCIES 
      VIEWS & DELEGATION
      abort
      TERMINATES
      re-throw ex
    } }
}
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Figure 2. Simplified outline of a transactional method marked
with the intentions of the statements.

Now that the different kinds of language constructs of KALA
are explained, the next section discusses the invasive character of
these language constructs.

2.2 Invasively composed aspects in KALA
In KALA, each construct denotes a transactional property and has a
particular kind of semantics that configures the run-time transaction
monitor. More importantly, the semantics of each construct plays a
well defined role in the overall semantics of a transactional decla-
ration. Figure 2 shows the pseudo code which is produced when
translating a KALA transactional declaration to Java code. Such
code is known as demarcation code. The expressions in capital indi-
cate where the code produced by the different language constructs
have to be put. The boxes denote the different intentions within the
demarcation of a transactional method and reflect the expertise of
the domain-expert.

KALA transaction declarations nicely illustrate the notion of an
invasively composed aspect: the tangled web of boxes reveals that
a complex and well defined ordering of transactional properties is
required. For example, naming and grouping must always be exe-
cuted first because the other constructs depend on them. Terminate
statements are always executed after the actual transactional lifecy-
cle change (i.e. begin, abort, commit) is executed.

2 2008/3/7



The integration of the translational semantics of each construct
even depends on the transactional contexts and is thus not solely
determined by the constructs themselves. In Figure 2 the various
kinds of constructs to express transactional properties are boxed in
their transactional context. The code shows that the distribution of
the constructs differs for certain transactional contexts. For exam-
ple, dependencies and naming & grouping are not put together with
the views & delegation in case their transactional context is begin.
Table 1 lists all the constructs with their transactional context de-
pendent integration semantics.

integration semantics
constructs order transactional context
naming & groups before initialize begin
naming & groups first -
dependencies after naming -
views & delegations after naming abort or commit
views & delegations before begin begin
terminates after begin begin
terminates after abort abort
terminates after commit commit

Table 1. Integration semantics of the different constructs.

3. Crosscutting code generators
KALA is a small language to implement. The language can there-
fore be relatively easily implemented as one monolithic entity. The
integration semantics of the individual language constructs is then
absorbed into a single entity that composes the different language
constructs. However, a monolithic design is not the most appropri-
ate fit for our needs: the whole language implementation must be
changed to incorporate unanticipated changes in terms of language
constructs such as adding new constructs to KALA, changing the
semantics of language constructs and composing it with other as-
pect languages. To avoid changing the whole implementation, the
language should be implemented such that the translation and in-
tegration of each aspect language construct is modularized. In the
next section, we will explain in detail to what extent we can modu-
larize language constructs in the implementation of DSALs.

3.1 Code Templates
Code templates are a general notion that is used by a large and het-
erogeneous group of language development techniques (LDTs) to
express the semantics language constructs. In its most basic and
common form a code template is a code fragment that is param-
eterized with other code fragments. These parameters are bound
to other code templates by querying for the desired information.
The differences among the various implementation techniques in-
cluding macro’s, template engines (XSLT (Laird)), attribute gram-
mars (JastAdd (Hedin and Magnusson 2003)), rewrite rule systems
(ASF+SDF (van Deursen et al. 1996) and Stratego (Visser 2001)),
plain interpreters and reflection models (Reflex (Tanter 2006)) lie
in how code templates are constructed, how they are parameterized
and how they are composed.

As the Linglet Transformation System (LTS) (Cleenewerck
2007a) provides unique mechanisms that allow us to modularize
code templates, we skip a general introduction and immediately
proceed by explaining how code templates can modularize the se-
mantics of language constructs in LTS.

3.2 Modularized Code Templates
LTS is an prototype-based object-oriented development technique
for the implementation of languages. The system is divided into

linglet Alias {
syntax { "alias" "(" name lookupkey ")" }
generate {
#Statements{ txmonitor.register(’name,’lookupkey) }

} }

Figure 3. Parameterized templates in LTS.

two layers: a kernel for defining language constructs and a reflec-
tive layer for establishing the interactions among the language con-
structs.

A linglet defines the syntax and the semantics of a single lan-
guage construct in isolation from any other language construct. In
its most basic form, as any other LDT, the translational semantics
of language constructs can be expressed in the form of a parame-
terized code template. The code template of a language construct
is parameterized with meta-variables, which refer to the semantics
of the parts of the language construct. In Figure 3 the semantics
of the Alias language construct is implemented in the generate
method using a code template. The #-construct of LTS creates code
templates of the code between curly brackets that follow the opera-
tor. The identifier between the # and the code denotes the language
construct which should be used to parse the given code fragment.
The quoted variables name and lookupkey refer to the semantics
of the name and the key part of an alias.

LTS distinguishes between two kinds of results: local and non-
local results. The local results are typically used in parameters of
code templates. They have simple integration semantics: simply
inject the code bound to the parameter into the location specified
by the parameter. In the code example of Figure 3, the semantics of
name and key are directly composed in the set of statements that
register the transaction.

However, it is not trivial to integrate the semantics of the trans-
actional properties in the demarcation code. With mere parameter-
ization, the composition of code is limited to predefined holes pro-
vided by each template. The problem is that templates cannot be
designed up-front, anticipating every potential involvement of other
templates as that breaks their modularity. In LTS we refrain from
doing so by allowing code templates to be returned as nonlocal re-
sults. Each nonlocal result can define in which other code template
it must be integrated and how. This renders templates modular as
each construct encodes its translational semantics as well as its in-
tegration semantics and other templates do not have to specify how
to handle this.

The code in Figure 4 shows how a set of view statements can
be integrated into the demarcation code of Figure 2. The set of
statements called views specializes two methods corresponds:
and combine: of some strategy. The corresponds: method (lines
2-3) determines when the statements can be combined with another
set of statements. The actual combination is stated in the combine:
method (lines 4-8).

1 views
2 corresponds: master {
3 master linglet hasType: ast linglet type. }
4 combine: master { | stat |
5 stat := master find:
6 #Statements{ beginForcing = mayBegin?
7 if(beginForcing) { } }.
8 stat consequent addFirst: ast. }

Figure 4. Example of the INR strategy

3.3 Modularized Integration Strategies
How the integration semantics is specified and how the integra-
tion is performed depends on the kind of interaction strategy that
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is used. Interaction strategies are reflective modular extensions of
the LTS system. This enables them to change the behavior of lin-
glets, so that linglets can interact with another while the linglets
themselves remain modular. For the purpose of this paper, a strat-
egy is required such that nonlocal results are properly integrated in
the code produced by the different aspect language constructs with-
out requiring that constructs are polluted with integration semantics
specific for nonlocals produced by other constructs.

The INR strategy is one of the strategies which are typically
used in LTS to integrate nonlocal results. The strategy is depicted
as a cloud in Figure 5. It intercepts whenever nonlocal results are
returned1. Upon interception, it tries to integrate the nonlocals.
As is shown in Figure 5, the INR strategy intercepts the nonlocal
Statements and tries to integrate them in the Java method con-
taining the outline of the demarcation code for a method.

Statements that implement 
the transactional properties

Java Demarcation 
Method

Demarcation code  
Statements

translates to 

trans-
lates 

to 

translate 

returned 
as a local

Intercepted by

INR Strategyreturned 
as a nonlocal

try to
integrate

in local result

Transactional 
Properties

Transaction
Declaration

Figure 5. Translation in LTS.

3.4 Non-modularized Integration Semantics
DSALs translate may translate to a wide range of target languages
ranging from general-purpose languages to domain-specific lan-
guages. The challenge of invasive composition we tackle in this
paper is due to the use of what we call generic languages as
a target language. Generic languages have very few distinguish-
able language constructs which can be almost arbitrarily combined.
General-purpose languages are a prime example of generic lan-
guages, but also some domain-specific languages are generic lan-
guages e.g. HTML, FPIC (Kamin and Hyatt 1997).

The declarativeness of the INR strategy depends on the generic-
ity of the language. In generic languages, the many language con-
structs that can be arbitrarily combined with one another lead to
an explosion of the amount of possible locations and possible inte-
grations. Hence, we are forced to rely on detailed layout of other
code templates to determine the exact locations and specify the
integration semantics. This renders the integration semantics non-
declarative, fragile and potentially hazardous as it can easly break
the code of other templates. This is for example the case in the in-
tegration semantics of views shown in Figure 4. The combine:
method (lines 4-8) contains detailed knowledge and assumptions
of the demarcation code to figure out where the views should be
integrated. Deriving this from the base code means that we depend
a specific implementation details i.e. a couple of statements that ex-
ecute mayBegin?, assign it to the variable beginForcing which
is subsequently tested in a subsequent if-statement.

By increasing the structure of the base language via raising its
abstraction level, the integration logic can be written in terms of
the new abstractions. As such the logic could be more declarative
and contain fewer details. Moreover INR can then better disam-
biguate the possible locations and integrations based on the gram-
mar, resulting in a semi-automatic integration. If for example, the

1 Technically, it intercepts each AST node composition and tries searches
for any remaining nonlocals

beginning intension would be explicitly present in the demarca-
tion code, the integration of views would only have to refer to this
intension. Therefore its coupling with the demarcation could have
been significantly reduced.

4. Constructing Intermediate Languages from
Base Languages using Connotations

We raise the abstraction level of the base languages by creating
a new intermediate language. In this language, new constructs are
provided that explicitly state the intention of expressions in terms of
generic language constructs. The intentions are not merely a loose
collection. They are structured by the language specification of the
intermediate language. As such we obtain a conceptual framework
of intentions, stipulating when and how intentions can be used.
In the next section we will show how the use of intentions to
express code templates renders templates semantically richer such
that we can effectively modularize the semantics of aspect language
constructs.

The intermediate languages are enriched generic base lan-
guages with abstractions taken from the domain of the aspect lan-
guages. The constructs with which we enrich Java to better ex-
press the invasively composed aspect of transaction management
denote the different intentions in the template of a transactional
method (see the boxes in Figure 2). Some constructs denote the
intention of transactional properties such as naming, grouping,
viewing, delegating, subordinating, terminating. Other
constructs refer to the lifecycle of transactions like initializing,
beginning, aborting, committing. Yet other constructs denote
the transitions of the lifecycle executed by the transaction monitor
such as beginningtx, abortingtx, committingtx.

When the code templates of KALA describe the intentions of
the produced Java code, integration semantics can be declaratively
specified on a rich semantic level. There is no need to explicitly de-
tail where code can be integrated and prevent incorrect changes to
produced code. For example, with a comes before relationship (say
CB) one can ensure that views of a commit are executed before the
transaction commits by stating CB(viewing, committingtx).

The development of an intermediate language complicates the
implementations conceptually and imposes new maintenance and
evolution problems. Moreover, when defining a plain entirely new
language we would only shift the invasive composition problem
to the implementation of the higher-level intermediate language
in terms of the original base language. The challenge is thus to
design an intermediate language such that the effort of creating an
intermediate language is minimized and avoid a translation from
intermediate language to the original base language. To this end, we
chose to embed the intermediate language in the generic language
by extending the base language with additional constructs.

New language constructs are created by connotating the con-
structs of the generic language. A connotation of a base language
construct captures a specific intention that can be expressed by us-
ing that base language construct. New language constructs are thus
syntactically indistinguishable from their generic counterpart.

Connotations get transparently integrated in the base language.
They introduce an alternative for a construct in the base language.
Hence, the new construct can be used wherever the base con-
struct can be used. For example, beginningtx is a subtype of
Statements, and as such whenever a set of statements is expected
a beginningtx can be used.

Connotations specialize the behavior of base language con-
structs with additional semantics:

1. Specification of their integration semantics. By attaching the
integration semantics to the connotations themselves, their in-
tegration semantics no longer has to be specified in other code
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templates. As such, the semantics of language constructs can be
modularized.

2. Specification of their usage context. The usage context may
span over several productions in the base language grammar,
the language extension mechanism allows language developers
to abstract away from those parts of the grammar which do not
influence this usage context.

5. Language connotations in LTS
Language connotations are natively supported in LTS. This allows
us to design the necessary strategies to declaratively and modularly
realize the integration of the modularized translational semantics of
invasive aspect language constructs. The creation of intermediate
languages in LTS involves two steps: the creation of new linglets
to define new constructs and their integration in a language. These
two steps are explained in the two following subsections.

5.1 Defining New Constructs
New language constructs of intermediate languages are created just
like any other language construct. Languages in LTS are defined
in a language specification (LS) by composing a set of linglets.
The linglets in a LS are in essence defined by specialization: an
existing linglet definition is specialized by binding their syntactic
parameters to other linglets and by adding or overriding methods.
Specialized linglets can be aliased with a new type.

Connotations are defined by aliasing specializations of linglets.
In Figure 6 the beginningtx connotation of Java statements for
KALA is shown. The connotation is defined as an alias of the
linglet Statements.

beginningtx = Statements.

Figure 6. The definition of the beginning connotation.

5.2 Defining the Intermediate Languages
Aliases of linglet specializations denote a new type which is a
subtype of the specialized linglet. Because a type is substitutable
by a subtype, the new constructs will automatically be allowed to
be used wherever the generic language construct is allowed, hence
they seamlessly blend in the language.

Although substitutability is already integrating the language
features in the language, as we explained in Section 4, we further-
more need to override or further constrain the usage context of a
connotation. As this usage context spans over many productions,
and as context-free grammars are not designed to handle context,
the usage context of connotations in LTS is specified by specializ-
ing the INR strategy.

Recall that INR is a strategy for composing non-local code
fragments. It provides three methods corresponds, combine and
integrate. The location(s) in the code where the non-local frag-
ments need to be integrated are determined by the integrate
method. The strategy checks whether the non-local fragment cor-
responds with an already existing part of the code using the
corresponds method. If so, the two are merged via the combine
method. When a connotation is defined by specializing a new lin-
glet, this behavior can thus also be specialized. As such, we can
easily specify where a connotation is allowed to be used although
it spans over many productions.

In Figure 7 the connotation beginningtx of a Java statement
for KALA is shown. We specify how this language construct ex-
tends the Java language by specializing the Statements linglet.
In this case, we override the method corresponds:. The method
corresponds: is a method from the INR strategy that determines

whether a given AST node can be combined with an existing AST
of the produced program (called master). The specialization stipu-
lates that a beginningtx can only be a part of group of statements
that are connotated as beginning.

beginningtx = Statements
corresponds: master {

(previous corresponds: master) and: [
(master hasType: ’beginning’)
or: [ master ancestor: ’beginning’ ] ] }.

Figure 7. Extending the Java language with connotations for
KALA in LTS.

Remark that we did not hardcode the exact integration loca-
tion of beginningtx but only added an additional constraint. The
actual location of integration is first selected by the integrate:
method of the INR strategy which relies on the grammar and the
type of the beginningtx to determine whether a given integration
position is a correct one. This reuse clearly shows that changes in
the generic language, in this case Java, will not likely cause a cas-
cade of changes in intermediate languages.

5.3 Integration Strategy
LTS does not offer a built-in strategy to specify and perform the
integration of non-local fragments. Language developers can cus-
tomize LTS with their own new strategies or customizations of ex-
isting strategies. The strategy which we use in our examples is con-
structed on top the INR strategy.

The integration strategy that will be used to implement KALA
primarily operates on Java statements. An excerpt of that strategy
definition is shown in Figure 8. The strategy consists of two parts:
a public part and a private part.

• The public part will mainly be used to define the transla-
tional semantics of the invasive aspect language constructs.
It consists of three methods comesFirst:, comesBefore:
and comesAfter:. They allow developers to state the order
of the statements when integrated: which statement that comes
first, and which statements that execute before or after another
statement. Each of them are given a default implementation.
Connotations need to specialize the appropriate method(s) for
specifying their specific integration semantics.

• The private part is mainly used to effect the semantics de-
fined by the public part. The method insertFirst: inserts
a statement before the rest, the methods insertBefore: and
insertAfter: insert a statement before or after another one.
These methods are used to respond to certain method calls
triggered by the INR strategy: corresponds: and combine:.
These methods are called by the strategy when it detects that
groups of statements correspond and decides to combine the
two groups. The methods corresponds: and combine: are
specialized for the linglet Statements. The corresponds:
method states that two statements correspond only if the ex-
isting statement (called the master) has the same type of the
non-local (called the ast). The combine: method integrates a
group of statements in an already existing group of statements.
For each statement we check that it needs to come first by us-
ing the comesFirst: method. If that is is the case, the actual
integration is performed by the insertFirst: method.

A simple example connotation called naming, shown in Fig-
ure 9, is using the above integration strategy. This connotation
specializes statements by overriding the method comesFirst:. It
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Statement
comesFirst: s { false }
comesBefore: s { false }
comesAfter: s { false }
insertFirst: statements {

statements body add: master on: 1. }
insertAfter { ... }
insertBefore { ... }.

Statements
corresponds: master {

master linglet type == ast linglet type. }
combine: master {

ast body do: [ :statement | | comesfirst |
comesfirst := master body forAll: [

:masterstat |
statement comesFirst: masterstat ].

comesfirst ifTrue: [ ast insertFirst: master ]
ifFalse: [ master body add: master ]

] }.

Figure 8. Integration strategy for Java Statements.

states that a naming connotation should always be integrated before
any other set of statements2.

naming = Statements
comesFirst: s { true }

Figure 9. Defining integration semantics in the language specifi-
cation of Java for KALA in LTS.

6. Implementing Invasive Aspect Language
Constructs using Connotations

In this section we will show that by using connotations the trans-
lational semantics including the integration semantics of invasive
aspect languages can be defined modularly and declaratively. The
translation of each invasive aspect language construct is defined
by a code template. The code templates are constructed with con-
notations. This allows the semantics of other language constructs
to express their integration semantics in terms of the connotations
used in other language constructs and not in terms of other lan-
guage constructs themselves. So with connotations, invasive aspect
language constructs do not need to explicitly refer to other aspect
language constructs, do not depend on their translational seman-
tics and do not require extra semantics to anticipate other aspect
language constructs.

6.1 Code templates
Figure 10 shows how the code template of a transactional method
can be expressed in LTS using connotations. As connotations are
also language constructs, the # can be used to create connotated
code fragments as well.

The outline of a transactional method (txmethod) is cre-
ated by #MethodDeclaration{...} (lines 18-27). It is com-
posed out of other templates using quoted variables: inittx,
beginning, running and abort. The outline is the local result
of the Transaction linglet (line 30). The translational semantics
of the transactional properties (txproperties) (lines 28) are re-
turned as nonlocal results (line 29). They are intercepted by the
INR strategy and composed in the correct way with the outline of
a transactional method.

Quotation within the # in LTS is polymorphic. This means that
either the exact type or any subtype of the value of a quote variable

2 Note that this will be further constrained by the begin, commit and abort
constructs, depending on the transactional context in which naming is used.

1 Linglet Transaction {
2 syntax { name "{" ( body )* "}" }
3 generator { | name initbegin inittx
4 begin begintx abort aborttx run
5 commit committx copycommit txmethod |
6 name := ast name generate.
7 inittx := #initializing{ ... }.
8 begintx := #begintx{ begin }.
9 begin := #beginning{ mayBegin?

10 if (no forcing) { }
11 ’begintx
12 } else { go to force state }
13 } insertAfter: anAST {
14 begintx insertAfter: anAST }.
15 commit := #committing{ ... }.
16 run := #running{ ... }.
17 abort := #abortting{ ... }.
18 txmethod := #MethodDeclaration{ ’name {
19 ’inittx
20 {
21 ’begin
22 try {
23 ’run }
24 catch(TxException ex) {
25 ’abort }
26 }
27 }
28 txproperties := ast body generate.
29 txmethod nonlocals addAll: txproperties.
30 txmethod } }

Figure 10. Connotating code fragments.

will be accepted in the parsed code fragment. As such connotations
of statements can be used within a code fragment even where the
language specification only specifies statements.

6.2 Intention misalignment
In Section 5.1 we have defined connotations in LTS as special-
ized generic language constructs. The connotations used in our
example denote the intention of statements. However, not all in-
tentions align with distinct statements. Consider for example the
beginning code template in Figure 10. In Figure 2, it is shown
that terminate statements that are to be executed after a begin
should be integrated right after the beginningtx and not after the
if-else statements. To specify this, the begin connotation over-
rides the default behavior of the insertAfter: method: it redi-
rects to the begintx connotation.

7. Related Work
Crosscutting code generators for invasively composed aspects are
encountered in many software engineering disciplines where some
form of meta-programming is used. The most common established
disciplines involving meta-programming are generative program-
ming, transformation systems and aspect technology.

In generative programming as well as in transformational ap-
proaches, templates are the primary means to define the semantics
of invasive aspect language constructs. In our approach, connota-
tions raise the abstraction level of the base language and linglets
modularize code templates because integration semantics can be
directly attached to the code templates themselves.

Also most aspect technologies compose code fragments at
the level of generic base languages. In languages such as As-
pectJ (Colyer 2005), the pointcuts are fragile (Gybels and Brichau
2003) as they are expressed in terms of syntactical patterns of the
program. More expressive pointcut languages only delve deeper
in the implementation rendering them as dependent on the actual
implementation. The deduction of the role or the intention of a part
of an implementation in generic languages rapidely becomes very
complicated (Tourwé et al. 2004) or even impossible in general.

6 2008/3/7



Extensible aspect language frameworks like Josh (Chiba and
Nakagawa 2004), AspectBench (Avgustinov et al. 2005) and
Reflex (Tanter 2006) range from AspectJ-like extensions over
full compilers to powerful AOP kernels. Also in these language
frameworks, composition and integration is performed at the
level of generic base languages. Despite the dedicated nature of
these frameworks, the semantics of aspect language constructs
are not modularized: their semantics is implemented using plain
parametrized templates (see Section 3.1).

Pointcuts in approaches like Compose* (Bergmans and Aksits
2001) and AspectWerkz (Boner 2004) can refer to annotations. An-
notations enrich statements with metadata and are put in the base
code. However, a general annotation mechanism allows arbitrary
kinds of annotations, in other words they lack a conceptual frame-
work to define, annotate the code and to use these annotations. In
contrast connotations form an intermediate language. They also dif-
fer with annotations as the later is consists of only data while the
former are accompanied with integration semantics.

Another part of the definition of crosscutting code is how the
crosscutting code affects the program. Most aspect related tech-
nologies offer a limited set of integration facilities i.e. before, after
and around integrations of method invocations. Whereas in our ap-
proach more complex integration semantics can be defined e.g. in-
tegrations delve deep into the code, compute integration locations
and satisfy non-trivial ordering.

8. Conclusion
The semantics of invasive aspect language constructs requires to
invasively change the semantics of other constructs. Current ap-
proaches fail to modularize their semantics because they specify the
integration semantics in terms of a generic base language, and do
not offer the appropriate techniques to attach integration semantics
to code fragments. In our approach we exploit the richer domain-
specific nature of invasively composed aspects, by enriching the
generic base language with new constructs of the domain of the
aspects. These new constructs connotate constructs of the generic
base language and reflect the intention of produced code fragments.
The rich constructs increase the abstraction level of the generic lan-
guage. As a result, the integration semantics can be defined modular
and declarative, abstracting away from delicate and highly specific
code manipulations.

The implementation is performed in the Linglet Transformation
Systems (LTS). We showed that the language connotations natu-
rally blend in the general purpose language. Moreover, the ability
to define custom(ized) strategies allows us to (1) modularize the
specification of the integration semantics of invasive language con-
structs, and (2) results in a declarative integration which can be
tailored towards particular invasive language constructs.
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T. Tourwé, J. Brichau, A. Kellens, and K. Gybels. Induced intentional
software views. Elsevier Journal on Computer Languages, Systems &
Structures, 30(1-2):35–47, 2004.

Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Prototyp-
ing: An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific Publishing Co., 1996.

Eelco Visser. Stratego: A Language for Program Transformation Based on
Rewriting Strategies. Lecture Notes in Computer Science, 2051:357–
361, 2001.

Markus Voelter and Iris Groher. Handling variability in model transfor-
mations and generators. In DSM ’07: Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling, Montreal, Canada, 2007.

7 2008/3/7


