
Regression Test Selection when Evolving Software with
Aspects

Romain Delamare
IRISA / INRIA Rennes

Avenue du Général Leclerc
35042 Rennes Cedex

France
romain.delamare@irisa.fr

Benoit Baudry
IRISA / INRIA Rennes

Avenue du Général Leclerc
35042 Rennes Cedex

France
benoit.baudry@irisa.fr

Yves Le Traon
ENSTB

2, rue de la Châtaigneraie
35576 Cesson Sévigné Cedex

France
yves.letraon@enst-

bretagne.fr

ABSTRACT
Aspect-oriented software evolution introduces new challen-
ges for regression test selection. When a program, that has
been thoroughly tested, evolves by addition of an aspect,
it is important for regression test selection to know which
test cases are impacted by the new aspects and which are
not. The work presented here proposes a classification for
regression test cases and introduces an algorithm for impact
analysis of aspects on a set of test cases. A major benefit of
this analysis is that it saves the execution of test cases that
are not impacted.

1. INTRODUCTION
When software evolves, it is necessary to perform regres-

sion testing in order to check that no unexpected change
has been introduced. A major challenge for regression test
selection techniques is to identify the subset of test cases
for one version of the system that must be re executed to
validate an evolution of the system. It is very important
to precisely identify this subset since executing the whole
test suite is very time consuming in the case of large soft-
ware systems. Also, a selection technique must distinguish
between the test cases that can be kept unchanged (that
can be re executed as they are for regression testing) and
the ones that must evolve (to take changes into account).
Several techniques have been proposed for regression test
selection in the context of object-oriented programs [2, 3, 5,
7]. Here we are interested in regression testing in the context
of aspect-oriented software evolution.

In this paper, we propose an impact analysis of aspects on
test cases, as well as a classification of regression test cases.
The analysis identifies the test cases that can cover a part of
the system where an aspect is woven. These test cases are
called impacted test cases. The test cases that are not con-
cerned by the aspect weaving are called non-impacted test
cases. This impact analysis provides the necessary informa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tion for regression test selection.
The impact analysis is performed statically, which avoids

executing all the non-impacted test cases. In the first step of
the analysis, the aspect and the base program are analyzed
in order to identify which base methods are impacted by the
aspect’s weaving. Second, the static call graph is built for
each test case. The graph is then analyzed to check whether
it contains an impacted method.

Once the impacted test cases have been identified, we run
them in order to get a verdict for each of them. The test
cases that are impacted by the change but that still pass
are of particular interest for us. This verdict can be inter-
preted in several ways. Either the aspect has no effect on the
behaviour that is evaluated by the test case; or the aspect
adds behaviour without modifying the previous one. When
this happens, the test case still passes but its oracle function
does not evaluate the behaviour added by the aspect. The
test case should then be modified and re-executed in order
to validate the evolution introduced by the aspect. The test
cases that are impacted and that still pass can be automati-
cally identified, but the analysis to know if they must change
has to be performed manually.

The paper is organized as follows. Section 2 describes
the general principles for the impact analysis we want to
perform for regression testing selection. Section 3 presents
the classification of test cases and discusses the meaning of
each class of test case for regression testing. Section 4 goes
into the detail of our solution for regression test selection.
Section 5 discusses related works and section 6 concludes.

1.1 Relevance to LATE topics
The approach presented in this paper is related to aspect

evolution and software evolution with aspects. Our tech-
nique leads to better evolvable aspects because it eases the
validation of the evolutions thanks to a safe regression test
selection. Regression testing has two purposes in this situ-
ation: it is a necessary step for validating the evolutions; it
helps getting confidence that the introduced evolutions do
not disturb existing behaviour. Thus, this approach can also
be used to validate the preservation of certain behaviours
after the addition of a new aspect or the evolution of an
aspect already woven: it selects the test cases that must be
executed to validate this behaviour preservation.

2. IMPACT ANALYSIS
In this section, we define the test cases that we manipulate

public class Stack {
class Cell {
int data; Cell next;
Cell(Cell n, int i) { next = n; data = i

; }
}
Cell head = null;
public void push(int i) {
head = new Cell(head,i);

}
public void pushArray(int[] t) {
for(int i:t) push(i);

}
public int pop() {
if(head==null)
throw new EmptyStackError();

int result = head.data;
head = head.next;
return result;

}
}

Figure 1: Java Integer Stack implementation

and we introduce the global objectives of an impact analysis
in case of aspect oriented evolution.

2.1 Test cases
The starting point for the impact analysis proposed in

this paper is a base program with its associated unit and
system test cases. Our goal is then to analyze which test
cases are impacted by the introduction of an aspect in the
base program. Before we define what we mean by an im-
pacted test case, we briefly present the structure of the test
cases that we consider. It is important to understand this
structure in order to understand the different ways an aspect
can impact a test case. The analysis we propose is dedicated
to Java programs, thus the base program is implemented in
Java and the test cases are implemented with JUnit. All test
cases conform to the same structure defined in the following.

Test cases.
A test case is composed of three parts.

• The first part of the test case is the preamble, which
puts the system in a certain state required by the test
scenario.

• The second part actually executes the method under
test with the test data.

• The third part is the oracle, composed of a set of as-
sertions. The test case fails if any of the assertion of
the oracle fails.

The following test case example is a unit test for the pop
method of the class Stack:

1 @Test
public void testPop2() {

3 Stack s = new Stack();
s.add(3);

5 int i = s.pop();
assertEquals(3,i);

7 }

The preamble is on lines 3 and 4: a new stack is created and
an integer (3) is pushed. Line 5 exercise the method under
test: pop is called on s and its result is stored in the local

public class StackTest {
Stack stack;
@Before
public void setUp() throws Exception {
stack = new Stack();

}
@Test
public void testPush() {
stack.push(-3);
assertEquals(-3,stack.pop());

}
@Test
public void testPushArray() {
int[] t = {1,2,3};
stack.pushArray(t);
assertEquals(3,stack.pop());
assertEquals(2,stack.pop());
assertEquals(1,stack.pop());

}
@Test
public void testPop() {
try {
stack.pop();
fail();

} catch(EmptyStackError e)
{assertTrue(true);}

}
}

Figure 2: JUnit tests for the Stack class

public aspect NonNegativeArg {
before(int i): execution(* *.*(int)) &&

args(i) {
if(i<0) throw new Error("Negative arg")

;
}

}

Figure 3: The NonNegativeArg aspects implementa-
tion

variable i. Finally line 6 is the oracle: an assertion checks
if the result of pop equals the pushed integer.

It is important to note that in most cases the oracle (the
set of assertions) cannot be exhaustive and is only partial:
it is too expensive to check that the expected behavior oc-
curred and nothing else occurred. For instance, in the pre-
vious example the oracle just checks if the result of pop
is correct but it does not check if the stack is empty as it
should be after the call of pop.

2.2 Objective of the impact analysis
The main objective of this work is to determine what test

cases should be kept unchanged, what test cases should be
modified, and what test cases should be removed in case of
aspect oriented evolution. This analysis starts by detecting
the methods in the base code that are impacted by an aspect.
Then, a test case is detected as impacted if it can reach an
impacted method.

Impacted method.
An impacted method is a method where an aspect is wo-

ven. Thus, a method is impacted if it includes a joinpoint
shadow where an advice is woven. For instance if a pointcut
matches every call to a method m, then the methods that

Impact Execution
Effect

Analysis Result
NI No need to be executed

I
IP

– evolve to pass
– evolve to fail
– no change

IF
– evolve to pass
– remove

Table 1: Summary of the test case classification

call m are impacted. If a pointcut matches every execution
of m, then m is impacted.

Figure 1 shows an example that implements an integer
Stack in Java (adapted from Xie et al. [8]) and Figure 3
displays an aspect called NonNegativeArg. In this exam-
ple, the NonNegativeArg aspect impacts the push method
because its pointcut expression matches every execution of
push, so its advice is woven within push.

Impacted test case.
An impacted test case is a test case that can possibly exe-

cute at least one impacted method according to the previous
definition. Let M(tc) be the set of all the methods statically
reachable by a test case tc and I(a) the set of all the meth-
ods impacted by an aspect a. A test case tc is impacted if
and only if ∃a, M(tc) ∩ I(a) 6= ∅.

Figure 2 shows three JUnit test cases for the Stack class.
The push method is impacted by the NonNegativeArg
aspect, so the testPush and testPushArray test cases
are impacted:

• testPush calls an impacted method

• testPushArray calls the pushArray method which
calls push which is impacted

A test case can be impacted by an aspect in several differ-
ent ways. The preamble may not achieve to put the system
in the correct state. For instance in the example of section
2.1, if an aspect only allows pushing an integer in a stack
under certain conditions, the integer might not be pushed
as expected. The aspect might modify the behavior of the
method under test and the result is not the same, so the
oracle is not correct, or a behavior has been added, and the
oracle must be extended. The input domain of the method
under test may also change, so the input data may not be
correct anymore.

Next section introduces the different classes of test cases
that our analysis can identify and section 4 details the static
analysis that we perform in order to determine the set of
impacted test cases.

3. CLASSIFICATION OF TEST CASES
Depending on whether they are impacted or not and whe-

ther they pass or not we classify the test cases as presented
in the following.

3.1 Classification definition
We define a first level for the classification:
Not Impacted(NI) and Impacted(I) test cases.
The NI class is the class of test cases that are not im-

pacted by the aspect. On the contrary, the I class is the
class of the test cases that are impacted according to the

previous definition. Those two classes are exclusive and can
be computed statically. At a second level of classification,
the I class is divided into two subclasses:

Impacted Passing(IP) and Impacted Failing(IF)
test cases.

The IP class contains the test cases that are impacted
and that still pass, i.e. the assertions for the oracles are all
satisfied. The IF contains the test cases that are impacted
and fails.

This classification has two benefits. First, test cases clas-
sified as NI do not need to be executed for regression testing
after the aspect weaving. As we discuss it in section 4, the
classification of NI and I test cases is performed statically,
thus the test cases that are not impacted by the aspect are
never executed. Second, the distinction between IP and IF
also offers valuable information for regression testing. In
particular, a test case that is impacted and that still passes
(IP) must be carefully studied. It is important to check if
the test case still passes because the aspect has not changed
the behavior it evaluates or if it passes because its oracle is
too weak and does not consider the new behavior inserted
by the aspect.

3.2 Classification exploitation
Once the test cases have been classified we can deter-

mine whether they should be modified, removed or kept un-
changed. This section describes how to consider the test
cases according to their class.

It is not necessary to execute the test cases of class NI.
As we are sure that they are not impacted, if they passed
before the weaving of the aspects, they should still pass. It
is a major contribution as it may save a lot of time in large
systems.

The test cases in class IP can evolve in three different
ways, depending on the oracle. It is important to check
the oracle because it might have become too weak. As dis-
cussed before the oracle is usually partial and some prop-
erties added by the aspect might not be checked. When it
is the case, the test case can evolve to fail – assertions are
added to the oracle and at least one of them fails – or it
can evolve to pass – assertions are added and they all pass.
When evolving, a test case checks new properties added by
an aspect. If the test case fails there is probably an error in
the aspect. The oracle may also not need any change and
the test case is kept unchanged.

For the test cases of class IF the tester must focus on the
input data. If the input data of a IF test case is still in the
input domain of the method under test then the expected
result must have change and the test case can evolve by
correcting the oracle. If the input data is no more in the
input domain, then it should be removed.

Table 1 shows a summary of the test case classification
with the different possible evolutions.

In the Stack example, Figure 2 shows three test cases.
Test case testPush is impacted as it calls an impacted
method, push. When executed this test case fails as it calls
push with a negative argument so it is in class IF. This
test case should be removed as its input data is no more
in the input domain of the method under test. Test case
testPushArray is impacted too but still passes so it is in
class IP. There is nothing new to check so the oracle is still
good and this test case should be kept unchanged. Finally
test case testPop is not impacted so it is kept unchanged

System

AspectMethod

-system

1

-aspects

0..*
-advisedBy

0..*

-advisedMethods

0..*

-methods

0..*

-system

1

Figure 4: Metamodel of the impacted methods
model.

Stack : System

Stack.pop : Method

Stack.push : Method NonNegativeArg : Aspect
+advised +advisedBy

+methods

+methods +aspects

Stack.pushArray : Method

+methods

Figure 5: Object diagram of the impacted methods
model of the stack example.

and not executed.

4. STATIC REGRESSION TEST SELECTION
To distinguish between NI and I test cases, we statically

analyze the Java base program, the aspects and the test
cases.

Thanks to the pointcut expression we can statically know
in which methods the aspect is woven. The analysis thus
consists of two steps. First, we build a model that captures
the relationships between aspects and the base code. Then
we analyze the static call graph of each test case in order to
determine if they are impacted.

4.1 Impacted methods model
When a Java program and an aspect are compiled with the

AspectJ compiler, the joinpoints where the aspect has to be
woven are statically identified. To evaluate the impact of the
aspects on the test cases we build a model that represents
the relationships between the aspects and the base code.

Figure 4 shows the metamodel we have designed to cap-
ture impacted methods. A system is composed of a set of
methods and a set of aspects, and there is a relation between
the aspects and the methods that represents the fact that
an aspect is woven within the code of a method.

We have extended the AspectJ compiler in order to build
an instance of this metamodel. The AspectJ compiler com-
piles the Java classes and weaves the aspects, directly gen-
erating woven byte code. The compiler offers an interface
to add a build listener (which is called after each compila-
tion). The compiler then provides a list of weaving relations
between the aspects and the different parts of the Java code
where the aspects are woven. We use those information to
build the impacted methods model.

As an example, figure 5 shows the model correspond-
ing to the stack example, in the form of an object dia-
gram. This model contains an instance of class Method
for each method of Stack and an instance of Aspect for
the aspect NonNegativeArg. As seen before, the advice of
NonNegativeArg is woven within Stack.push, so there

C1

+m()

C3

+m()

C2

+m()

TestC

+testM()

{C1 c;

C.m();}

Figure 6: Class diagram illustrating the overapprox-
imation with polymorphism.

testM

C1.m C2.m C3.m

Figure 7: The static call graph of testM.

is a relationship between the two instances.

4.2 Static call graph
The second step consists in checking if a test case can

reach an impacted method or not. This requires knowing the
methods that are reachable by the test case. The adopted
solution relies on a static call graph that allows us to know
which methods are reachable by a test case.

Static call graph.
A static call graph is a pair (N, A) where:

• N is a set of nodes that model methods in the system,
each method being represented by only one node.

• A ⊂ N × N is a set of edges that represent poten-
tial calls. If n1, n2 ∈ N respectively represents the
methods m1 and m2, then n1× n2 ∈ A means that m1
potentially calls m2..

The notion of potential call is related to polymorphism.
Figure 6 shows a class diagram where C1 is a class defining
a method m and C2 and C3 are two classes inheriting from
C1 and overriding m. The testing class TestC has a test
that calls m on an object declared with class C1, but in the
general case we cannot know statically know which is the
actual type of the object at runtime and which method is
actually executed. That is why testM can potentially call
C1.m, C2.m and C3.m. Figure 7 shows the static call graph
of testM.

To determine if a test case is impacted we then traverse its
static call graph. For each encountered method we check re-
fer to the impacted methods model to know if it is impacted
by an aspect. For instance in the static call graph of Figure
8, which shows the static call graph of the testPushArray
test case, the Stack.push method is called, and the im-
pacted methods model from Figure 5 shows that there is an
aspect woven within Stack.push, so the testPushArray
is impacted.

In the example of Figure 6, if we consider that only C2.m is
impacted, as it is reachable by testM (Figure 7), we consider
testM as impacted. This is an overapproximation as we
cannot be sure that C2.m is actually executed by testM.

This overapproximation of the methods reachable by a
test case allows us to guarantee that the test cases detected

Stack.push

Stack.pop

Cell

EmptyStackError

testPushArray

Stack.pushArray

Figure 8: Example of static call graph, correspond-
ing to the testPushArray test case.

as non-impacted are actually not impacted. This overap-
proximation is also the only way to perform a static impact
analysis that allows us to never execute the non-impacted
test cases. This overapproximation also ensures that all im-
pacted test cases will be detected. Thus, this static analysis
allows us to perform a safe regression testing selection as
defined by Rothermel et al. [6]. All test cases that have to
be executed for regression testing are identified in the set of
I test cases.

5. RELATED WORKS
AOSD introduces a number of challenges for testing. For

instance it is difficult to unit test an advice as it should be
woven within a base program to be executed. For this reason
the testing techniques for object-oriented programs cannot
be directly applied on AOSD programs.

Xu et al. [10] have extended a regression test selection
technique for Java introduced by Harrold et al. [1] to take
aspects into account. Their approach is based on a special-
ized control-flow graph, called AJIG that extends the JIG
introduced by Harrold et al.. This approach requires the
construction and traversal of two CFGs, one for each ver-
sion of the program.The impacted edge are identified during
the traversal, and if a test case exercise an impacted edge it
is rerun. The contribution of this work is the identification
of the test cases that do not need to be executed, which our
approach allows too, but on the contrary to our work they
do not consider the evolution of the impacted test cases.

Xie et al. [9] have introduced a framework for detecting
redundant unit tests in AspectJ programs. Aspects are usu-
ally unit tested in the context of the impacted classes as it
not possible to execute them alone. So it is possible to use
automated test generators for Java to test AspectJ aspects,
but they produced a lot of redundant test cases. The frame-
work proposed by Xie et al. removes the test cases that do
not exercise a new behavior. This approach could be ap-
plied to regression testing as the introduction of an aspect
can introduce redundancy in the test cases.

6. CONCLUSION
In this paper we have presented a classification for regres-

sion test cases in case of aspect-oriented evolution. This
classification distinguishes the test cases that are not im-
pacted by the aspects (class NI) from the test cases that
are impacted by the aspects (class I). We have also pro-

posed a static analysis to automate the impact analysis of
aspect weaving on a set of test cases. This analysis takes
advantage of the pointcut expression to evaluate the impact
of aspects on the test cases.

In future work, we will completely implement the impact
analysis in order to experiment with our test regression se-
lection technique on aspect-oriented programs. We also plan
to investigate a refinement of the test cases classification us-
ing the aspect classification of Rinard et al. [4]. This would
improve the evolution of the test cases and the fault local-
ization. For instance the test cases impacted by an aug-
mentation aspect should be executed but they must pass,
otherwise we are sure that the fault is localized in the as-
pect. Also, a a better understanding of the impacts of an
aspect will probably help the evolution of the test cases.

7. REFERENCES
[1] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,

M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In
OOPSLA’01: Proceedings of the 16th conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 312–326, 2001.

[2] H. K. N. Leung and L. White. Insights into regression
testing. In ICSM’89: Proceedings of the 5th

International Conference on Software Maintenance,
pages 60–69, 1989.

[3] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. SIGSOFT Software
Engineering Notes, 29(6):241–251, 2004.

[4] M. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In FSE’04: Proceedings of the 12th

international symposium on Foundations of Software
Engineering, pages 147–158, 2004.

[5] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEE Transactions on
Software Engineering, 22(8):529–551, August 1996.

[6] G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM Transactions
on Software Engineering Methodology, 6(2):173–210,
1997.

[7] F. I. Vokolos and P. G. Frankl. Pythia: a regression
test selection tool based on textual differencing. In 3rd

International Conference on Reliability, Quality and
Safety of Software-Intensive Systems, pages 3–21,
London, UK, UK, 1997. Chapman & Hall, Ltd.

[8] T. Xie and J. Zhao. A framework and tool supports
for generating test inputs of AspectJ programs. In
AOSD’06: Proceedings of the 5th international
conference on Aspect-Oriented Software Development,
pages 190–201, 2006.

[9] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detecting
redundant unit tests for AspectJ programs. In
ISSRE’06: Proceedings of the 17th International
Symposium on Software Reliability and Engineering,
pages 179–190, 2006.

[10] G. Xu and A. Rountev. Regression test selection for
AspectJ software. In ICSE ’07: Proceedings of the
29th International Conference on Software
Engineering, pages 65–74, 2007.

