
Designing synchronous algorithms for asynchronous processors

Ramesh Subramonian ,

University of California, Berkeley

Abstract

The PRAM model has proven to be a fertile ground

for algorithm development. However, it assumes that

processors operate synchronously, whereas most shared-

memory multiprocessors are asynchronous and i~re likely

to remain so. This has motivated the development

of simulations of PRAM programs on asynchronous

PRAMs. However, such simulations induce either a

time or work penalty.

Avoiding this penalty has meant designing specifi-

cally asynchronous algorithms. To date, the design

of these asynchronous algorithms has been ad-hoc and

non-intuitive. We show how many algorithms, designed

and analyzed assuming synchrony, can be easily and sys-

tematically converted so that the same work ;and time

bounds are maintained under arbitrary asynchmny. The

existence of lower bounds indicates that there exist

problems for which the same work and time bounds

cannot be maintained. However, this paper shows that

in far more cases than hitherto thought possik)le, asyn-

chrony does not induce a time or work penalty.

We suggest a radically new approach to the problem

of cache coherence. We show how appropriate architec-

tural support motivates the design of algorithms which

are immune to cache incoherence. 1

1 Introduction

In the commonly used PRAM model of sharedl memory

parallel computation processors are assumed to operate

synchronously. However, variations in processor execu-

tion speed can arise from a number of sources such as

clock skew, varying processor load, multi-programming,

interrupts, page faults, cache misses and differences in

processor speeds. These variations make it impractical

1

Permission to copy without fec all or part of thk material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. TOIcopy other-

wise, or to republish, requires a fee andfor specific permission.

SPAA ’92- 61921CA

@1992 ACM 0-89791-484-81921000610189 $1.50 189

to enforce synchrony for a large number of parallel pro-

cessors between each parallel step. Hence, a number

of recent papers have considered relaxing the PRAM

assumption of synchrony (see [Sub91] for a detailed sur-

vey).

We measure the performance of an algorithm in terms

of work which is the total number of instructions exe-

cuted by all processors during the execution of the pro-

gram. Work is simply a generalization of processor-time

product. In an asynchronous environment, time has no

meaning unless one defines the rate at which work is

being done. Purely for comparison purposes, we shall

assume that the rate of work is comparable to a syn-

chronous evaluation.

Several researchers have shown how PRAM programs

can be simulated on a variety of asynchronous and fault-

prone PRAMs [KPS90, MSP90, KS91, KPRS91, SM90].

The drawback of these simulations is that they impose a

penalty in terms of time or in terms of work compared to

the bounds for the simulated PRAM program. Improv-

ing on the bounds obtained using the general simulation

has required designing specifically asynchronous algo-

rithms. Specific algorithms for list ranking and tran-

sitive closure [MS90], connected components [CZ90],

and union-find [AW91] have been developed on asyn-

chronous PRAMs.

It is a general principle that the more powerful the

machine model, the simpler the algorithm design. The

weaker the model, the more practical and less expensive

to implement. Providing simulations of more powerful

models on weaker models usually entails accepting a loss

in performance. Designing specifically asynchronous al-

gorithms to avoid this penalty is unattractive. This pa-

per shows that for a large class of algorithms, one can

design and analyze with a more powerful model in mind

yet suffer no performance degradation on the weaker

model.

The key idea behind this paper is that there is of-

ten a certain structure to the way algorithms are de-

signed which can be gainfully exploited. Recognizing

this structure allows us to design and analyze algorithms

as if they were synchronous and yet, with minor modi-

fication, have them run on asynchronous machines with

the same work and time bounds. This is a radically dif-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F140901.140921&domain=pdf&date_stamp=1992-06-01

ferent approach from most research in this field which

has concentrated either on general simulations or on

specific algorithms.

The main contribution of this paper is providing a

cookbook for the design of synchronous algorithms so

as to make them immune to asynchrony. We claim that

the discipline that needs to be enforced is not burden-

some. We validate this claim by showing how funda-

mental algorithms designed by other researchers, with

a synchronous machine as the intended target, can be

trivially modified to conform to the discipline necessary

for their asynchronous t ransformat ion, For inst ante, in

the following examples, our techniques improve on the

bounds imposed by the general simulations by a loga-

rithmic factor. These include list ranking using deter-

ministic coin-tossing, tree contraction, maximal match-

ing, maximal independent set (on O(1) degree graphs),

Euler tours to compute a variety of tree functions such

as level, preorder number, number of descendants.

We use three fundamental paradigms to make sys-

tematic transformations from synchronous programs to

asynchronous ones: knowledgeable, indifferent and ap-

proximately synchronous algorithms. In a knowledge-

able algorithm, we can predict the last step in which

the variable being read was written to. In an indifferent

algorithm, we abandon the notion of a “step”. Instead,

we use tags both to guarantee progress and to prevent

errors arising from an old version of a variable being

used. In an approximately synchronous algorithm, the

notion of a step is probabilistic: it occurs after a certain

amount of work is expected to happen. We prevent

a processor with an incorrect idea of the current step

from doing damage by making only tentative decisions

and deferring final decisions to a synchronization point

that is executed when the algorithm is expected to have

terminated.

A significant contribution of this paper is conserv-

ing space in an asynchronous environment. In [Her90]

and [AW9 1], rather than changing the value of an ob-

ject in place, a new version of the object is created and

a pointer to it returned. In [SM90] and [KPRS91], to

avoid the overhead of synchronizing at every step, space

is allocated for all variables that will be written to be-

tween two synchronization steps. In contrast, our tech-

niques at most double the space requirement.

A processor could read an old value of a variable if

it suffered a delay. Equivalently, it could read an old

value if it had a cached version of the variable which

had not been updated. We delineate the architectural

support needed to enable one to design algorithms that

are immune to cache incoherence. This enables one to

do away with expensive hardware and time-consuming

protocols to maintain exact cache coherence.

A motivation for this study has been to get an insight

into the inherent limitations imposed by asynchrony. It

has been shown that not all problems are amenable

to the techniques in this paper. An fl(n + plogn)

work bound has been proved for the CWA problem

(Lemma A.4) in [BR90, KPRS91, MS91]. An impor-

tant open problem is to provide a precise characteriza-

tion of problems for which asynchrony does not impose

a penalty.

Please see [Sub92] for detailed proofs and programs.

2 Model

The TPRAM [SM90] is a Tagged version of the

A-PRAM (Asynchronous Parallel Random Access Ma-

chine) [M SP90]. It consists of a collect ion of anonymous,

asynchronous unit cost RAMs that can perform atomic

read and write operations to shared memory without

contention. For ease of exposition, we present a model

which is close to the standard CRCW PRAM model.

In this model, time is divided into unit length slots in

which a single low level RAM instruction (read, jump,

write, . ..) can be executed. It is equivalent to an ap-

parently more asynchronous model where atomic reads

and writes occur at arbitrary real points in time.

To prevent a slow processor from writing an old, and

possibly incorrect, value, we design a tagged architec-

ture. Every memory cell contains a ordered pair of the

form (value, tag). A Write can alter the value of a vari-

able only if its tag is greater than the existing tag. A

write alters the value of the variable only after all the

reads have occurred. A read returns the value of a vari-

able at the end of the previous slot.

Write semantics. Let the write X ~ (VI, tl) be ex-

ecuted by processor p in slot s. Let X contain (v., to) at

the end of slot s – 1. Assume this is the only Write to X

in slot s. If tl > to, then the Write is said to succeed and

X contains (V1, tl) at the end of slot s; else, X continues

to contain (v., to). If there is more than one Write to

X in slot s with a tag greater than to,then an arbztrary

Write with a tag greater than tosucceeds. Tagged writes

are a masked equivalent of compare t! fswapand hence are

both practical and “universal” [Her88], In the Priority

TPRAM model, the write with the highest tag in a slot

succeeds, not just an arbitrary Write with a higher tag.

Equivalently, we could assume, as in [KRS90], that the

outcome of the concurrent execution of several memory

accesses is as if these accesses occurred in some serial

order (however, all accesses are executed in one slot).

Speed functions. We assume the most general form

of asynchrony: processors can proceed at arbitrarily

varying rates of speed and can fail at any time except

190

during a write instruction. Precisely, each processor, j,

is assigned, by an adversary, a speed function wlhich is a

possibly infinite ordered list t{, t;, . . . where t: is the slot

in which the jth processor executes its ith instruction.

Expected Work. V/e assume this worst case choice

of speed functions and average over the random~ choices

made by the processors. However, we require that the

processor speed functions should not be correlated with

the random numbers generated.

Dealing with cache incoherence. The clam of al-

gorithms we design are immune to cache incoherence.

More precisely, we define the notion of historical con-

sistency as follows. Let X be a variable ancl let X$

be the contents of X at the end of slot s. A read

that occurs in slot s can return any element of the set

{XIJ, X,,..., X,- 1}. This is necessary for correctness.

As long as the memory system is historically consistent,

the algorithms present here will be correct. However, to

maintain the performance bounds claimed, we require at

least a constant probability that a read that clccurs in

slot s returns X8– 1.

3 Notation

A variable consists of a (vaiue, tag) tuple. Variables

starting in uppercase (eg., X) are global variables and

variables in lowercase (eg., x) are local versions of the

corresponding global variable. We will often dleal with

variables whose value and tag are the same. In that case,

we shall use just the variable name, with no subscripts.

(An example of this is our use of loop counters where

all we want to ensure is that the new loop counter is not

clobbered by an old value.)

x ++R X means that x is assigned a value chosen

uniformly at random from the set X.

EO(~(n)) is shorthand for Expected O(f(n)).

For simplicity of exposition, we adopt the following

conventions.

1.

2.

3.

The algorithm is written for a named set cjf PRAM

processors.

The program for each processor is of the form

repeat

body of loop { consisting of O(1) work }

while computation has not terminated

Simulating this algorithm on anonymous, asyn-

chronous TPRAM processors is done as follows. A

physical processor picks a virtual processcm to sim-

ulate at random and performs one iteration of the

loop for that virtual processor. It continues to do

this until the computation terminates.

191

4.

5.

6.

7.

8.

4

With each processor, p, we keep an indicator of

how many logical steps have been performed for

it in Done ~]. When a physical processor chooses

to simulate p, it first determines which step, s, it

needs to simulate by s - Done~] + 1. On success-

fully completing that step, it updates the progress

indicator by Doneb] + s.

When a physical processor picks a virtual proces-

sor to simulate, it knows exactly how much of the

loop haa been processed and where it should pick

up from. (This is easily implemented using tagged

program counters. It is not necessary but simplifies

exposition.)

Premature reads. Consider a statement of the

form z + Y[s]. Unless otherwise stated, ff the

value of Y returned by the read is 1, the simulating

processor abandons the action and picks another

virtual processor to simulate at random.

Unique random numbers. Often we will need to

generate a random number for an element. To en-

sure that all processors use the same random num-

ber, we will first write to the global location and

then read from it. Only one write with a given tag

can succeed.

Termination detection. The program termi-

nates when a pre-determined set of locations all

have one of a set of possible final values. Deter-

mining when this haa happened is an instance of

the CWA problem (Lemma A.4).

A node is a frontaer node if it is unevaluated and

at least one of its inputs is evaluated.

(a) A frontier node is said to be ready if all its

inputs are evaluated.

(b) A frontier node is said to be unready if not all

its inputs are evaluated.

Knowledgeable and Indiffer-

ent Algorithms

Limitation of C-Circuit Theorem. If a compu-

tation can be cast as a C-Circuit (Section A. 1), it can be

performed asynchronously with no loss in work or time

compared to a PRAM evaluation of the circuit. How-

ever, many computations cannot be cast aa circuits. To

get around this problem, we show that the actions of

the asynchronous algorithm can be construed as if they

were evaluating the frontier nodes of a circuit. The cir-

cuit is defined by the data dependencies and is used to

derive efficiency bounds. The key points are (i) the cir-

cuit need not be known in advance; and (ii) the circuit

need not be specified explicitly.

What is “knowledgeable” ? In presenting

the asynchronous equivalent, every variable of the syn-

chronous program is replaced by a stream of variables,

indexed by step, A write: “X i-- v“ in step s is re-

placed by X[s] ~ v. Reads pose a problem. A Read

: “r - .X” in step s must be replaced by r i- X[s’],

s’ < s. It is the algorithm’s responsibility to determine,

to “know”, s’.

Preserving space optimality. Maintaining mul-

tiple versions of each variable increases the space re-

quirements. We first design a space-inefficient algo-

rithm. Then, we conserve space by maintaining only

the last successful write to each variable. The tagged

write semantics ensure that this will be the write with

the highest step number. A write: “X + v“ in step s

is replaced by X ~ (v, s).

What about a read: “z + X[s’]” ? This is replaced

by z - X. If %.tag = s’, all is well. If z.tug < s’, this

is treated as a premature read. If x.tag > s’, it appears

that we have lost necessary information. So, we provide

a means of inferring the value of X[s’] or show how to

make do with what we have.

The need for tags. We use Done[v] to record how

many steps of virtual processor v have been simulated.

After the sth step of w has been simulated, Done[v] is

set to s. Tags are necessary to prevent a slow processor

from over-writing the correct value of Done[v]. (Done

is used to ensure that processors pick nodes along the

frontier of the circuit used for analysis.) In the space

inefficient version of the algorithm, tags are necessary

to guarantee that the value of a given version of a given

variable is unique. In the space-conserving version, tags

are used to guarantee that the latest version of a variable

is not over-written by an earlier version.

Consider the processing of a given loop of a virtual

processor. If more than one processor is simulating that

loop, they may be at different stages of the loop. It is

easy to show that the writes issued by a processor fur-

ther behind in the loop or executing a previous iteration

of the loop must fail. In subsequent discussions, we will

ignore the actions of laggard processors.

A drawback of knowledgeable algorithms is their in-

ability to exploit immature data i.e., if X is requested

and is expected to have tag s, the knowledgeable algo-

rithm abandons the action if the tag of the value re-

turned is less than s. In an indifferent algorithm, we

can often make some progress with X8,, s’ < s, although

not as much as if we had X8. Tags are used to ensure

progress and to prevent a processor using an old version

of a variable from doing damage.

Program for sth step of jth virtual PRAM processor

repeat

k - Pointer[s – l,j] then

if Tank[k] = 1

i 4-- Pointer[s – l][k]

Pointer[s] [j] + 1

else { compute ~ank[j] }

rank[j] + 2s-1 + rank[kl

until Vi : r=ank[i] # 1

Figure 1: List Ranking: Synchronous Algorithm and

Knowledgeable Equivalent

5 Hidden Circuit

We show how a synchronous algorithm can be per-

formed asynchronously by (i) demonstrating the exis-

tence of a hidden circuit and (ii) restricting the asyn-

chronous algorithm to perform actions equivalent to

evaluating the hidden circuit. A hidden circuit has the

property that it can be constructed even before the in-

put is presented. However, the mapping of input ele-

ments to input nodes is done implicitly only after the

input is presented.

The example we shall use is Wyllie’s list ranking al-

gorithm [Wy181]. We start with an array /ink which

contains the initial links and an array rank, which is

set to 1 except for the end of list element, which has

rank O. For the asynchronous equivalent, we use an ar-

ray Pointer[O.. logn][l.. n] such that Pointer[s][j] will

contain the pointer from j of length 2’.

Hidden Circuit Construction. The precedence

constraints of Wyllie’s algorithm can be viewed as hid-

den circuit, the top layer of which is the links of length

1, the second the links of length 2, then 4,. .,, up to

n/2. The ith column represents the links computed for

the element with rank i. The knowledgeable algorithm

evaluates the entries of Pointer. Each data node of the

hidden circuit corresponds to an entry of Pointer. The

key point is that evaluating an entry of Pointer does

not require knowing which node in the circuit it corre-

sponds to. The circuit has width O(n), depth log n, and

0(n2) paths. Theorem 5.1 follows from Lemma A.5.

Theorem 5.1 List ranking requires EO(n log n) work

(O(n logn) space] using p < n processors.

Other examples. The [CV86b] algorithm to com-

pute a 2-ruling set in O(log” n) time can be modified so

that a hidden circuit can be constructed for it. Parallel

prefix can be computed in EO(n) work using p s &

processors.

192

6 Prior circuit

In this section, we show how an asynchronous algorithm

can be analyzed by constructing a prior circuit. A prior

circuit can be constructed in entirety before the com-

putation starts but only after the input is presented.

The example we shall use to illustrate this is Luby’s

[Lub86] algorithm for Maximal Independent Set (MIS),

restricted to graphs of constant degree.

In each step of the synchronous algorithm, each node,

v, picks a random number, stored in H[v], such that with

high probability, the numbers picked are unique. A node

is put into the IS if its number is strictly smaller than

that of its neighbors. All nodes adjacent to a node in

the IS are then deleted and we repeat the algorithm on

the sub-graph induced on the remaining nodes,

Intuition behind asynchronous transforma-

tion. Consider the processing of node v in step s. If v’s

membership in the IS has been decided (klis[v] # L),

we have nothing to do. Else, we need the random num-

bers generated by v’s neighbors in step s. Consider a

neighbour w. If w’s membership in the IS has not been

decided prior to step s, then we need w’s sth random

number. If w‘s membership in the IS has been decided,

then if w is in, v is out and if w is out, we can ignore

it. In short, in processing v in step s, we need either

A4is[w] [s – 1] or II[w][s] to be defined and only one of

them can be 1. If both are -L, the read was prema-

ture and is abandoned. The dependency constraints so

defined induce a prior circuit, to which we can apply

Lemma A.5. The prior circuit haa an infinite number

of identical levels. The vth computation node in the

sth row, C[v] [s], corresponds to the actions performed

by the vth virtual PRAM processor in step s and is

described in Figure 2.

Conserving space. To conserve space, we replaced

pW * IIIW] [s] with pW i- IIIW]. If pW .t ag > s, itcan

be inferred that w does not pose an impediment to v’s

induction into the IS in step s. Further, if v is in-

ducted into IS in step s, then w cannot be placed in

MIS. Similarly, we replaced the read of Afis[w] [s – 1]

with misW t &fis[w]. If Mis[w] # J_, then that

is its final value. If llis[w] = 1, this might not be

the correct value of ikfis[w].– 1 because the write to it

might be delayed. However, we show that assuming that

Mis[w]$– 1 = 1 does not cause an error.

Theorem 6.1 MIS for constant degree graphs requires

O(n + m) space and EO((n + m) log n) work using p <

(n+ m) processors.

Proof Sketch. Since the algorithm is knowledge-

able, the asynchronous equivalent evaluates a prior cir-

cuit induced by the synchronous algorithm. The circuit

Program for sth step of vth virtual PRAM processor.

repeat

if Mis[v] = 1 then

II[v][s] ++R {1, . . . n4}; pv + II[v][s]

{ Each node picks a random number}

in.mis t true

for w E N(v) do { for all neighbors of v }

case Mis[w] [s – 1] of

false: NOP

true : J4is[v][s] t false

1 : pW + II[w] [s]; if pw ~ pu then

in-mis + false

if in.mis = true then

Mis[v] e true

else

Mis[v][s] e Mis[v][s – 1]

until VU : it4is[v] + J-

Figure 2: Knowledgeable MIS Algorithm

has depth EO(log n) [Lub86]. It has width O(n), degree

= A = O(l), and 170(nA’Og”) paths. The proof follows

from Lemma A.5. U

Other examples. One can construct a prior circuit

with width O(1) and depth O(1) for the [TV85] algo-

rithm for finding an Euler tour for a tree. By concate-

nating this with a hidden circuit for list ranking, (with

appropriate initial weights) we can obtain other tree

functions such as depth-first search, pre-order number-

ing, level numbers, number of descendants. Therefore,

for these algorithms, the same work and time bounds

hold on a TPRAM as on a PRAM.

7 Dynamic Circuit

There are algorithms for which we can construct

only the edges into and out of frontier nodes of the cir-

cuit induced by the synchronous computation. Such

a circuit is called dynamic. We explicate the idea of

dynamic circuits by designing a new asynchronous al-

gorithm for connected components. This is a significant

departure from the [SV82] paper based on tree-hooking

and asynchronous variations thereof [CZ90]. It illus-

trates how knowing that a knowledgeable algorithm is

the target influences, but does not hamper, the design

of the synchronous algorithm.

Problem description. The input is an undirected

graph G = (V, E), presented as a list of edges in some ar-

bitrary order, .E[l..m]. The eth edge is the arc (e.u, e.v).

The output of the algorithm is an array P[l. .n] such that

193

if u and w are in the same component, then P[U] = P[V].

Initially, VU : P[U] = u. Without loss of generality, we

assume that the graph is connected and that each edge

is stored twice, once as (u, v) and once as (v, u).

Outline of Synchronous Algorithm. Initially,

all nodes have a pointer to themselves and are called

leaders. A node which points to a node other than it-

self is called a foliower. In an iteration, each edge tries

to make one of its endpoints the “owner” of the other.

Write conflicts are resolved arbitrarily. After all edges

have written, each leader has an owner. We would like

each leader to create a pointer to an owner such that

there is no cycle in the pointers created. We use the

Random Mate strategy [MR85]. Each leader picks a sex

at random. If it is male and if its owner is female, it cre-

ates a pointer to its owner. We expect a quarter of the

leaders to create such a pointer and become followers.

Followers do not perform the above actions. Instead,

after the leaders have done the above, they “pointer-

jump” so that they always point to a leader. At the end

of an iteration, we update all edges so that the endpoints

of the edges are leaders. This is done by replacing each

endpoint with the node it points to, which is necessar-

ily a leader. As a consequence, some edges may become

redundant (both endpoints equal) and will not be used

thereafter.

Lemma 7.1 No node points to a follower. Precise!y,

vu : P[P[U]] = I’[u]

Lemma 7.2 All edges are between !eaders. Precisely,

ve=(x, y): P[x]=x AP[y]=y

Lemma 7.3 The number of leaders can only decrease.

Lemma 7.4 In a step, the probability that a leader be-

comes a fo!lower is ~.

.Lemma 7.5 The number of steps before all edges are

redundant M EO(log n)

Proof. From Lemma 7.3 and Lemma 7.4, we can as-

sert the following probabilistic recurrence relation on

the steps before all edges are redundant. T(n) =

1 + T(h(n)),where T(1) = 1, 17[h(n)] = ~. By The-

orem 1 of [Kar91], it follows that P[T(n) ~ w + 1 +

[logq,~ nj] ~ $/(”-1) -~. A little manipula-
4/3

tion yields P[T(n) ~ (w+ 2)([logqi~ n + lJ)] ~ ~ The

proof follows. ❑

Theorem 7.1 Computing the connected components of

an undirected graph requires EO(log n) work using p <

n processors on a TPRAM.

Proof Sketch. Since the algorithm is knowl-

edgeable, the asynchronous equivalent, evaluates some

(based on how writes are arbitrated) dynamic circuit

induced by the synchronous algorithm. The circuit has

depth EO(log n), width O(n + m), degree = A = O(1)

and EO((n + rn)AIOgn) paths. By Lemma A.5, the the-

orem follows. ❑

Conserving space. In the following discussion,

we assume that s is the tag expected and that s’ is

the tag returned. Since we store only the latest version

(with the highest tag), we must specify what happens

when s’ > s. (Recall that if s’ < s, it is treated as a

premature read and the loop abandoned.) If s’ > s, it

would appear that we have lost X.. In that case, we

resort to one of the following approaches. (i) We prove

impossibility: s’ $ s, unless the simulating processor

had suffered a delay. As discussed in Section 31 this

case can be ignored. (ii) We provide a means of inferring

the lost value, X.. (ii) We show how using X$) hss the

same effect as if the computation had had all necessary

intermediate values. This speeds up circuit evaluation

and is called short-circuiting. Starting with the first

short-circuit and working backwards, we show that the

effect of short-circuiting ‘is the same as if we had used

the intermediate values and performed the steps one at

time. The following discussion pertains to asynchronous

program in Figure 3.

1. We replace SU +- Sez[u] [s] with Su +- Sex[u]. But

s’ ~ s unless the processor fell behind,

2. Inferring lost value. We replace SO - Sez[o] [s] with

SO +- Sez[o], Sex was used to ensure that if u

became a follower of o in step s, then o did not

become a follower in step s. If Sex [o] tag > s, we

show that o did not become a follower in step s.

Hence, u infers that it can point to o in step s.

3. Impossibility. We replace o +- Owner[o][s] with

o 4- Owner[u]. Owner[u] = (o, s’) a 3e =

((Zl,o),s’- 1) (which wrote (o, s’ – 1) to O[u]) (Line

C of Figure 3). But this implies that P[u].tag ~

s’ – 1 > s – 1 (Line E) which implies that the pro-

cessor has fallen behind.

4. Short-circuiting.

We replace gpu + P~a, s]; P[u, s] + gp~ with

9P. - nld;p[u] - gpu.

5. Short-circuiting. In program for eth processor, we

replace p. ~ P[u] and p. - P[V] by:

9PU - PIuI; 9fh - PIvI;~[el + ((9zkj 9P.), s’)

where s’ = min(gpu tag, gp. tag) z s. (W.l,o.g.,

we assume that writing the two endpoints of the

edge can be done atomically.)

194

Program for uth processor,

repeat

1. pu + P[u][s – 1]

2. ifp. + u then

3. 9P. +- HP.l[sl
4. P [u] [s] + gp.

5. else

6. 0 + Owner-[u] [s]

7. Sez[u][s + 1] e~~ {M, F’}; su t Sex[u][s]

8. SO 6 Sex[o] [s]

9. if Sti = M and SO = F then

10. P[u] [s] t o

11. else

12. P[rl] [s] +- u

until Ve E E : E[e] .U = E[e] .V { all edges redundant }

Program for eth processor, 1 ~ e ~ m

rep eat

A. u t- E[e][s– 1].u; v + E[e][s – 1].v;

B. if u # w then

c. Owner[u] + (v,s)

E, p. - P[u] [s]; p. + m [4
F. E[e,4 +- (A,P.)
until Ve E E : E[e] .U = E[e] .V { all edges redundant }

Figure 3: Algorithm ACC

Other examples. We mention a few fundamen-

tal algorithms for which the dynamic circuit technique

is applicable. Therefore, these algorithms, with minor

modifications, can be simulated on a TPRAM with the

same work and time bounds as on a PRAM. qlee con-

traction of an n-leaf binary tree using O(n) work and

p < * processors [KR90]. Finding a random per-

mutation in EO(n) work using p < & processors

[MR85]. Using the prior circuit for constructing the

2-ruling set and the hidden circuit for list-ranlking and

the dynamic circuit for the bucket-sort, list-ranking us-

ing ~O(n) work and P S logn~og. ~ processors [CV86b].

8 Approximate synchrony: us-

ing negative information

A limitation of the techniques we have presented so far

is their inability to make use of negative infc)rmation.

To illustrate this, consider the algorithm for maximal

mat thing, based on Luby’s Maximal Independent Set

algorithm [Lub86] on the Max-PRAM model. This is a

strong PRAM model which assumes that if there is more

than one write to a location in a step, the write with

the highest value succeeds. We use the more powerful

Priority TPRAM model. Each edge is assigned a unique

random number with high probability. Each edge writes

its number into its endpoints. The highest write into a

node succeeds. An edge is put into the matching if both

its writes are successful. All edges incident on an end-

point of a matched edge are deleted and the procedure

repeated on the residual graph. It requires EO(log m)

steps using m processors.

Under asynchrony, an edge cannot put itself in the

matching until it is sure that all competing edges have

committed their writes. This is equivalent to the CWA

problem. Hence, an optimal asynchronous equivalent

seemed unlikely, but for the following key observation.

Observation 8.1 If in each step, an edge that suc-

cessfully writes anto both its endpoints puts itself in the

matching with at least a constant probability, the asymp-

totic complexity is unchanged.

An approximate step. We assume that we have

a bell which goes off after m expected work has been

performed. A processor becomes aware that the bell

has gone off only after completing an iteration of the

loop it is executing. Each time the bell goes off, the

processors move on to the next step, as specified by the

bell. Such a bell can be simulated by a coin toss.

Outline of algorithm. An edge writes into a

node with the value field as its identity and the tag

field consisting of two sub-fields, (s, r), s for the step

and r for the random number. A write of step s must

necessarily overwrite a write of step s – 1.

An edge e = (u, v) writes into either u or v only if

they have not been touched by a matched edge. Let

II[u].va/ = e = (u, w). If II[w].va/ = e = (u, w) then

u is touched by the matched edge (u, w). It is possi-

ble that an edge that seems matched at time t may be

unmatched at time tf> t.

Consider an approximate step in which some m edges,

chosen at random, were simulated. Consider an edge

that would have placed itself in the matching had it been

selected. The probability that it is selected is (~ ~)

(Lemma A. I). Hence, by Observation 8.1, the asymp-

totic rate of progress is the same.

All judgements as to whether an edge is matched are

tentative. When the probability of termination is at

least a half, we freeze 11[1. .n] .vai by copying it into an

auxiliary array and then determine whether the match-

ing is maximal. If not, we repeat.

Theorem 8.1 Finding a maztmal matchang requires

O(rn + n) space and EO((m + n) log n) work using

(m+ n) processors on a TPRAM.

195

Other examples. This idea can be extended to con-

struct a spanning tree in EO((rn + n) log n) work using

p ~ (m + n) processors.

9 Possible Circuits

The key idea here is not to restrict the computation

to follow a particular path but to restrict the analysis

to count only progress made along one fixed possible

path. Not counting progress made by actions not rep-

resented in the possible circuit can only over-estimate

the work and does not cause an error because the final

answer is unique. The example we shall use is transi-

tive closure, In the synchronous program, the (i, j, k)

PRAM processor performs “if A[i, j] = 1 A A[j, k] = 1

then A[i, k] + 1“ log n times. In the indifferent al-

gorithm, the (i, j, k) virtual PRAM processor performs

“if A[i, j] = 1 A A[j, k] = 1 then A[i, k] - 1“ until the

computation terminates.

Constructing a possible circuit. We construct a

layered circuit, L, which represents one of the possible

ways in which the computation could have proceeded.

To distinguish between the digraph A and the circuit

being constructed, we shall refer to nodes in the circuit

as gates and edges in the circuit as wires. A gate in

the circuit L represents an edge in the transitive closure

A*. Therefore there are at most n2 gates in this circuit.

A wire from (a, b) to (c, d) in L means that (a, b) was

one of the edges in A used to construct (c, d) in A. We

define 1, the length of edge (i, j), to be the length of the

shortest path from i to j in the graph represented by

A. If edge (i, j) has length 1, then gate (i, j) is in layer

k = [log q .

Therefore, layer O consists of the gates corresponding

to the initial edges given. These are edges of length 1.

Now, each edge of length 1 could be constructed in at

least I – 1 ways. However, our circuit will only allow

an edge in A to be constructed in a unique fashion.

We insist that edge (i, k) of length 1, be constructed

from two edges of length [1/21 and li/2J. Let us say

that these edges are (i, j) and (j, k). So, in L we shall

construct a wire from (i, j) to (i, k) and from (j, k) to

(i, k). There may be several values of j which satisfy

the above constraint but an arbitrary single j value is

chosen. These are the edges from layer [log 11 – 1 or

[log i] – 2 to layer [log Z1. This means that each gate

in L has a constant in-degree of 2. Therefore, L has

0(n3) paths. It is easy to see that the circuit has depth

O(logn).

Lemma 9.1 The work done before TC is computed is

Eo(n3 log n)

Proof Sketch. If gate (i, k) in L has incoming wires

from (i, j) and (j, k), then selecting triple (i, j, k) is

equivalent to selecting gate (i, k). We can define a block

of 0(n3) work consisting of selecting n3 triples such that

each gate of L has at least a constant probability of be-

ing selected. L has 0(n3) paths and a depth of O(log n).

The proof follows from Lemma A.3. ❑

We check for termination at the end of an approx-

imate step of @(n3 log n) work. We freeze the matrix

and count the number of 1 entries. We then perform

A +- A+ A2 which requires EO(n3 log n) work using n3

processors. We re-count the 1 entries in A and we know

if that the count has not changed, the computation has

terminated. Else, we repeat.

10 Hypothetical circuits

We now present an algorithm for which constructing any

kind of circuit seemed hopeless. This was because it left

behind no trace which we could follow as in previous

examples. So, we created a hypothetical circuit, which

was the trace the algorithm would have left behind had

it operated synchronously. Then, rather than mapping

the actions of the algorithm to a colouring of the circuit,

(see Lemma A.5), we mapped the progress made to a

colouring. We then lower bounded the expected rate at

which the colouring occurred, thereby lower bounding

the expected rate at which progress was made. The

example we use is list ranking.

We store only one link for each item. Each link is

tagged with its length. Initially, Vi : Iink[i] tag = 1,

except the end of list element which has a tag of O.

During the computation, if /ink [i] = (j, /), itmeans

that list item i has a pointer of length 1 to item j.

The algorithm picks items at random. If /ink[i] =

(j, /i), then item i has a pointer of length li to j. If

link[j] = (k, lj), j has pointer to k of length lj. We

update i’s pointer to point to k and to be of length

Ii + lj by /ink[i] ~ (k, L + lj). The tags ensure that

the length of an item’s pointer never decreases. Since

the pointer and its length are written atomically, con-

sistency is maintained.

Theorem 10.1 Ltst ranking requires O(n) space and

EO(n log n) work using p ~ n processors.

Intuition behind proof. The main difficulties in

proving what seemed an obvious result was (i) the num-

ber of hops from a node to the tail of the list could in-

crease and (ii) the effect of different pointer jumps was

not independent. So, we need to define a ready node

(see Section A. 1) in the hypothetical circuit in such a

196

manner that Lemma 10.1 holds.

P[j, i] is a frontier node if 2~’1 s link[i] tag < 2j Let

/ink[i] = (k, ii). This means that i has a pointer to k

of length 1;. Let the last successful write to iink[~] have

occurred at time ti. Let /ink[k] = (m, /k) at time ti.

P~, i] is ready if/i +/k ~ 2~+1; and P~, i] is unready if

[i + [k < 2~+1.

Lemma 10.1 A ready node can neuer become unready.

Theorem 10.2 List ranking,

EO(n log n) work using up to n

11 Conclusions

using TLR2, r-equires

processors.

We have outlined simple and practical yet powerful ar-

chitectural support for asynchrony using tags. We have

shown how a large class of synchronous PRAM algo-

rithms can be designed so that fault-tolerant simulations

on asynchronous PRAMs do not impose a time, work

or space penalty. A fundamental open questicm that

remains is the precise characterization of problems for

which asynchrony does not impose a penalty compared

to the best PRAM algorithm.

Acknowledgements. I would like to thank Richard

Karp, Charles Martel

fruitful discussions.

References

and Abhiram Ranade for many

[AW91]

[BR90]

[CV86a]

[CV86b]

[CZ90]

R. Anderson and H. Well. Wait-free lparallel

algorithms for the union-find problem. In

Proc. of 23rd STOC, pages 370-380, 1991.

J. Buss and P. Ragde. Certified write-all on

a strongly asynchronous pram. Technical re-

port, U of Waterloo, 1990. manuscript.

R. Cole and U. Vishkin. Deterministic coin

tossing and accelerating cascades: Milcro and

macro techniques for designing parallel algo-

rithms. In Proc. of 18th STOC, pages 206–

219, 1986.

R. Cole and U. Vishkin. Deterministic coin

tossing with applications to optimal jparallel

list ranking. Information and Control, 70:32-

53, 1986.

R. Cole and O. Zajicek. The expected advan-

tage of asynchrony. In Proc. of 2nd SPA A,

pages 85-94, 1990.

[Fe157]

[Her88]

[Her90]

[Kar91]

[KPRS91]

[KPS90]

[KR90]

[KRS90]

[KS91]

[Lub86]

[MPS89]

[MS90]

[MS91]

W. Feller. An Introduction to Probability

Theory and Its Applications. John Wiley &

Sons, 1957.

M. Herlihy. Wait-Free Synchronization, In

TOPLAS, Jan 1991.

M. Herlihy. A methodology for implementing

highly concurrent data structures. In Proc.

of POPL, March 1990.

R. M. Karp. Probabilistic recurrence rela-

tions. In Proc. of 23rd STOC, pages 190-197,

1991.

Z. M. Kedem, K. V. Palem, A. Raghunathan,

and P. G. Spirakis. Combining definite and

tentative executions for dependable parallel

computing. In Proc. of 23rd STOC, pages

381-390, 1991.

Z. M. Kedem, K. V. Palem, and P. G. Spi-

rakis. Efficient robust parallel computations.

In Proc. of 22nd STOC, pages 138-148,1990.

R. M. Karp and V. Ramachandran. A sur-

vey of parallel algorithms for shared memory

machines. In Theoretical Computer Science.

North Holland, 1990.

C. Kruskal, L. Rudolph, and M. Snir. A

complexity theory of efficient parallel al-

gorithms. Theoretical Computer Science,

71:95-132, 1990.

P. Kanellakis and A. Shvartsman. Efficient

parallel algorithms on restartable fail-stop

processors. In Proc. of 10th PODC, 1991.

M. Luby. A simple parallel algorithm

for the maximal independent set problem.

SIAM Journal of Computing, 15(4):1036-

1053, 1986.

C. U. Martel, A. Park, and R. Subramonian.

Work-optimal asynchronous algorithms for

shared memory parallel computers. SIAM

Journal of Computing, Dec 1992.

C. U. Martel and R. Subramonian. Asyn-

chronous algorithms for list ranking and

transitive closure. In Proc. of ICPP, pages

60-63, 1990.

C. U. Martel and R. Subramonian. On

the complexity of certified write all algo-

rithms. Technical Report CSE91-24, UC

Davis, 1991.

197

[MSP90] C. U. Martel, R. Subramonian, and A. Park.

[MR85]

[SM90]

[Sub91]

[SV82]

[Sub92]

[TV85]

[Wy181]

Asynchronous PRAMs are (almost) as good

as synchronous PRAMs. In F’roc. 0$ 30th

FOCS, pages 590-599, 1990.

G. Miller and J. Reif. Parallel tree contrac-

tion and its applications. In Proc. of 26th

FOCS, pages 478-489, 1985.

R. Subramonian and C. U. Martel. How to

emulate synchrony. Technical Report CSE

90-26, UC Davis, 1990.

R. Subramonian. Asynchronous Algorithms

for Shared Mmeory Parallel Computers. Phi)

thesis, UC Davis, 1991.

Y. Shiloach and U. Vishkin. An O(log n)

parallel connectivity algorithm. Journal of

Algorithms, 3:57-67, 1982,

R. Subramonian. Designing synchronous al-

gorithms for asynchronous processors. Tech-

nical report, UC Berkeley, 1992.

R. Tarjan and U. Vishkin. Finding bicon-

nected components and computing tree func-

tions in logarithmic parallel time. SIAM

Journal of Computing, 14:862-874, 1985.

J. C. Wyllie. The Complexity of Parallel

Computation. PhD thesis, Cornell U, 1981.

A Background results

Lemma A.1 [Fe157] If m selections are made with re-

placement from m items, the probability that a given

ztem IS not selected is (1 – ~)m. Vm ~ 2, ~ ~ (1 –

+)m 5:

Lemma A.2 [MS91] Let A be an algorithm whzch con-

swts of a main loop such that at most k instructions

are executed in a complete loop iteration, and let p be

the number of processors execut~ng A. Then for any

W ~ pk, the parallel execution of A can be broken up

into consecutive blocks of @(W) work such that each

block contains at least ~ complete iterations of the main

loop.

Lemma A.3 [MPS89j’ Constder a circuit of depth d

with P paths from the inputs to the outputs. In each

step any gate which has all its inputs computed has at

least a constant probability c >0 of computing its out-

put. Then, the expected number of steps until all outputs

are computed is ~ ~(d + log P) and the probability that

more than ~(d •I- log P) steps are used is less than ~.

The CWA problem The problem of providing a syn-

chronization primitive is well abstracted by the CWA

problem: “given an array A[l. .n] and a flag ~, all ini-

tialized to O, set all entries of A to 1 and then set f to
~.,,

Lemma A.4 [MS91] The CWA problem can be solved

in E@(n + p log n) work using p processors.

A.1 C-Circuits

We define a class of highly structured computations,

which can be represented by C-Circuits. A C-Circuit is

a directed acyclic graph with two types of nodes, data

nodes and computation nodes. A subset of the data

nodes are input nodes which have indegree zero, and

output nodes which have outdegree zero. All arcs in

the graph go from data nodes to computation nodes

or from computation nodes to data nodes. Each data

node, input and output nodes excepted, has arbitrary

indegree and outdegree. Each computation node has

bounded indegree and outdegree. Each computation

node N has associated with it a constant length se-

quence of RAM instructions. These instructions read

from the data nodes which have arcs directed into N.

They write a single value to each data node which has

an edge directed from N.

The size, S, of a C-Circuit is the number of compu-

tation nodes. The depth, D, is the longest path from an

input to an output. We provide an intuitive description

of the wzdth of a circuit. Initially, we consider the in-

puts of the circuit as its data items. As a computation

node in the circuit is evaluated, the data items are said

to move from the inputs of the computation node to its

outputs. If the fan-in is greater than the fan-out, data

items are said to be destroyed. If the fan-in is smaller,

data items are created. The width of a is the maximum

number of dat a items present at any time, for any legal

order of evaluation.

Lemma A.5 [C-Circuit Lemma] [SM90] Any C-

Circuit of width O(n) and depth d > log n can be eval-

uated on a TPRAM using EO(nd) work and up to n

processors i.e., with no asymptotic loss in work or time

compared to a PRAM evaluation.

Note. Lemma A.5 holds for circuits whose depth

D is a random variable such that E[D] = ~ and

P[D > kdl <$ It might appear that Lemma A.5 is in-

applicable for circuits with depth o(log n) (eg., O(log* n)

depth circuit for a 2-ruling set [CV86a]). However, it is

still useful because one can concatenate many shallow

circuits so that the resultant circuit has the necessary

depth.

198

