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Abstract
We propose an efficient scheme for evaluating nonlinear subspace forces (and Jacobians) associated
with subspace deformations. The core problem we address is efficient integration of the subspace
force density over the 3D spatial domain. Similar to Gaussian quadrature schemes that efficiently
integrate functions that lie in particular polynomial subspaces, we propose cubature schemes (multi-
dimensional quadrature) optimized for efficient integration of force densities associated with
particular subspace deformations, particular materials, and particular geometric domains. We support
generic subspace deformation kinematics, and nonlinear hyperelastic materials. For an r-dimensional
deformation subspace with O(r) cubature points, our method is able to evaluate subspace forces at
O(r2) cost. We also describe composite cubature rules for runtime error estimation. Results are
provided for various subspace deformation models, several hyperelastic materials (St.Venant-
Kirchhoff, Mooney-Rivlin, Arruda-Boyce), and multimodal (graphics, haptics, sound) applications.
We show dramatically better efficiency than traditional Monte Carlo integration.
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G.1.4 [Mathematics of Computing]: Numerical Analysis—Quadrature and Numerical
Differentiation
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1 Introduction
Recently, dimensional model reduction has gained attention due to the difficulty of simulating
detailed physical models at high rates for multimodal (graphics, haptics, sound) applications.
Such reduced-order methods construct a small, r-dimensional subspace that captures the salient
features of a much larger, N-dimensional model. If r≪N, simulating these reduced-order
models entirely in the r-dimensional subspace holds the promise of superior runtime
performance provided costs independent of N are achieved.

Unfortunately, efficient evaluation of internal forces for subspace deformation models has
proven difficult for arbitrary geometry and nonlinear materials. In particular, the inability of
many models to support more complex materials, such as biological materials for surgical
simulation, is unfortunate. Current force evaluation methods either have costs dependent on
N [Krysl et al. 2001] or that scale poorly (O(r4)) or are essentially restricted to particular
materials (St. Venant-Kirchhoff) in practice [Barbič and James 2005], or are inaccurate.
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In this paper, we present a general-purpose force evaluation method that applies to more general
materials, subspace kinematics, and geometry, while delivering fast N-independent force
evaluations at O(r2) cost (without exploiting sparsity). We achieve this scalability by
performing a cubature optimization preprocess that enables fast runtime evaluation.
Additionally, we provide evidence that our cubature schemes are computationally accurate and
efficient, are resistant to over-fitting, and provide clear improvements over traditional Monte
Carlo integration [Baraff and Witkin 1992].

Subspace Internal Forces
Our method can be applied to general subspace deformation models, but for concreteness of
exposition we will focus on the case of dimensional model reduction for detailed finite element
meshes [Krysl et al. 2001; Barbič and James 2005]. In a full FEM simulation with N degrees
of freedom, the displacement vector would be of length N. However, in dimensional model
reduction, the equations of motion have been projected into a linear, r-dimensional subspace
of deformations. The reduced-order equations of motion describing a mesh deforming in
subspace coordinates can be written as

(1)

where, M ∈ ℝr×r is the (often constant) mass matrix, q ∈ ℝr is the generalized displacement
vector of reduced coordinates, f(q) ∈ ℝr is the subspace internal restoring force, fext ∈ ℝr are
external forces, and the overdot denotes differentiation.

Unfortunately, the subspace internal force term f(q) in (1) is responsible for the poor O(rN)
and O(r4) scalings of previous methods [Krysl et al. 2001;Barbič and James 2005], so its
efficient evaluation is the focus of this paper. The subspace force can be formulated in terms
of a potential energy function, E(q) : ℝr → ℝ, given by the domain integral,

(2)

where ψ(X;q) is the nonnegative strain energy density at material point X of the undeformed
material domain Ω [Bonet and Wood 2008]. The subspace internal force is then the gradient
of this energy, and is given by the vector integral

(3)

where we denote the “reduced-force density” integrand by

(4)

Our approach is to approximate f(q) using an n-point cubature (multi-dimensional quadrature)
scheme,

(5)

We precompute estimates of the n positive cubature weights (wi), and n cubature points (Xi)
by minimizing f(q) integration error over a training set of (q, f(q)) pairs. Our proposed

An et al. Page 2

ACM Trans Graph. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preprocess is a greedy algorithm that incrementally selects cubature sample points, and
estimates their nonnegative cubature weights. In our discrete implementation, each cubature
point Xi corresponds to a linear tetrahedral element, since the force density ψ is constant over
each element. Runtime evaluation of subspace forces consists of evaluating only n deformed
tetrahedra, and accummulating their f(q) contribution. An overview of our preprocess and
runtime pipeline is shown in Figure 1.

Although no formal theory exists for cubature over nontrivial 3D domains, our empirical
evidence indicates that cubature schemes can be optimized for efficient subspace force
evaluation for (1) particular geometric domains, (2) particular materials, (3) particular
deformation subspace kinematics and/or motion examples, and (4) greatly accelerated
subspace force evaluation. See figure 2 for a preview of our results.

2 Other Related Work
For more than two decades, following the pioneering work of Terzopoulos, Barr, Witkin, and
others, the mathematical foundations of Lagrangian dynamics have been employed in computer
graphics to build dynamic physically based models of parametrized deformable shapes
[Terzopoulos et al. 1987; Terzopoulos and Witkin 1988; Witkin and Welch 1990]. Monte Carlo
methods were widely used to evaluate subspace force integrals (3); for example, Baraff and
Witkin [1992] mention that the gradient of the potential energy integral could be easily
computed for relatively simple examples (such as a quadratically deforming block) using
Monte Carlo integration: “For second-order polynomial deformations, a small number of
sample points (on the order of fifty) yields adequate results.” Unfortunately, we observe (Figure
8) that Monte Carlo is inefficient for more complex geometry, deformations, and materials.

Our approach is inspired by Gaussian quadrature and related schemes from classical 1-D
numerical integration [Hildebrand 1956; Press et al. 1992], e.g., an n-point Gaussian quadrature
scheme for a proper integral is

(6)

where wi are n (positive) weights, and Xi are n abscissae chosen as roots of a suitable orthogonal
polynomial. Surprisingly, with only n quadrature samples, Gaussian quadrature can evaluate
integrals of polynomials of degree 2n−1 exactly, so that each function sample effectively kills
off a polynomial subspace of dimension two. If the function is very well approximated by a
degree 2n−1 polynomial, then the integral is also very well approximated. While Gaussian
quadrature and related quadrature schemes (Gauss-Radau, Gauss-Lobatto, Radau, etc.) are
widely used, variants for integrating higher-dimensional functions are restricted to tensor
product domains and other simple parameterizations [Hildebrand 1956; Press et al. 1992]. In
finite element analysis, integrals such as (3) are computed using related quadrature schemes
but only for simple element shapes and low-order basis functions [Bathe 1996]. Exotically
shaped elements have essentially avoided evaluation of (3) by using corotated linear models
[Kaufmann et al. 2008]. Sadly, no generalizations of Gaussian quadrature exist to nontrivial
multidimensional domains (where it is called cubature), or to nonpolynomial function spaces
relevant to subspace deformation forces.

Dimensional model reduction techniques use Galerkin projection onto a relatively low-
dimensional linear subspace (spanned by the columns of the dense basis matrix, U) to obtain
a smaller reduced set of equations of motion, the unreduced internal forces, F = F(Uq) ∈ ℝN

(evaluated in shape Uq) are projected to yield reduced forces, f = UT F(Uq) ∈ ℝr, equivalent
to (3). Linear eigenmode coordinates are often used for subspace dynamics to resolve weak
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material nonlinearities in small-strain configurations [Bathe 1996] or mode-mode coupling
[Vakakis 2001]. For more nonlinear problems, Krysl et al. [2001] formalized subspace
integration for finite element models by employing a posteriori dimensional model reduction
with “empirical eigenvectors” (or proper orthogonal decomposition (POD); principle
component analysis) subspaces. The principle benefits are fewer ODEs to integrate, and smaller
linear systems to solve (during implicit Newmark integration and Newton iterations).
Unfortunately the speedup is fundamentally limited by reduced force (and Jacobian) evaluation
since they are based on “brute force” evaluation of O(N) unreduced nodal force values (F) in
order to evaluate f via subspace projections (UT F)–an O(rN) cost. Related issues arise when
computing forces and gradients for general-purpose multi-scale basis formulations, e.g., the
basis-refinement formulation of CHARMS [Grinspun et al. 2002] (see also [Capell et al.
2002]) formalizes the (multi-resolution) scatter/gather integration steps of Galerkin subspace
projection, but again invokes fine-scale evaluation of reduced force (and Jacobian) components
for accurate evaluation of nonlinear force response. Other schemes rely on coarsened discrete
approximations for speed [Debunne et al. 2001], albeit at the cost of geometric and/or material
resolution.

Recently Barbič and James [2005] observed that for the special case of St.Venant-Kirchhoff
materials (large deformations, but linear stress-strain response), the reduced internal force (3)
was in fact a vector of cubic polynomials in the reduced coordinates, q ∈ ℝr. Subspace
integrators can thus be generated for large-deformation reduced StVK models using arbitrary
linear subspace bases, such as from PCA of training data, or linear and derivative modes using
mass-PCA [Barbič and James 2005]. While extremely fast for small r, and suitable for real-
time haptics [Barbič and James 2007], the cost complexity of the reduced force evaluation
scales as O(r4) so that only models smaller than, e.g., r = 30, offer significant speedups [Barbič
2007]. More general reduced kinematics would also be useful, but the model is limited to the
linear basis superposition typical of POD methods. In contrast, our proposed approximation
allows higher rank models due to its O(r2) force calculations for O(r) cubature points.

For linear quasistatics, condensation and other precomputations can enable output-sensitive
(subspace) evaluation of contact force/displacement responses [Cotin et al. 1999; James and
Pai 1999]. For linear elastodynamics, linear modal analysis allows efficient subspace force and
dynamics models to be precomputed and diagonalized, thereby enabling O(r) mode integration
using IIR filters [Pentland and Williams 1989; James and Pai 2002]. Linear modes have been
warped to approximate large deformation kinematics [Choi and Ko 2005].

Closely related to our approach, Key-Point Subspace Acceleration (KPSA) and caching have
been proposed to accelerate posing of deformable characters [Meyer and Anderson 2007]. The
selection and use of key points is analogous to our selection of cubature points (or key
elements). Unfortunately, KPSA does not solve the problem of estimating subspace forces and
Jacobians associated with subspace deformations (although it was never intended to). For
example, KPSA applied to subspace forces results in nonconservative force models with
nonsymmetric Jacobians due to KPSA's use of least-squares estimation. Instead, it is more
natural here to formulate reduced forces in terms of subspace derivatives of strain energy using
the solid foundations of numerical integration.

Articulated subspace deformation models are commonplace in character animation, and can
be used with cubature optimization. Pose space deformation interpolates shape correction
coefficients as a function of pose [Lewis et al. 2000]. For physics-based models [Kry et al.
2002], cubature could assist with estimating pose-specific subspace corrections potentially
avoiding high-dimensional interpolation and training difficulties.
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An alternative to runtime integration of g over Ω is to precompute a fast model of f(q) using
various system modeling techniques, such as data-driven interpolation using radial basis
functions [Nelles 2000] or neural networks [Grzeszczuk et al. 1998]. Other approaches tabulate
forces indirectly using compressed motion libraries for runtime playback, but simulation is
done in an unreduced setting [James and Fatahalian 2003]. In such approaches, challenges
include guaranteeing adequate data and model training, supporting high subspace
dimensionality, avoiding over-fitting, and ensuring energy conservation, passivity, and
stability. To a large extent, cubature avoids problems associated with approximating f(q) (or
dynamics) by estimating and storing just 2n cubature values (n sample indices, and n
nonnegative weights), thereby exploiting the redundant spatial structure of subspace
deformation, and the energy integrand's functional structure.

3 Subspace Deformation Model
Subspace Kinematics

Given the time-dependent parameters of an r-dimensional subspace deformation, q = q(t) ∈
ℝr, the subspace deformation is specified pointwise by the deformation operator, φ=φ(X;q),

(7)

where x ∈ ℝ3 is the deformed image of the undeformed material point, X ∈ ℝ3.
Computationally, we assume that the cost of evaluating a deformed point using (7) is O(r)
flops. The partial derivatives of φ are important kinematic quantities: (1) the deformation
gradient,

(8)

and (2) the displacement sensitivity matrix,

(9)

Materials are defined via the strain energy density, ψ(X;q), which are used to evaluate the
deformation potential energy and subspace force integrals (2-3). Materials used in this paper
are given in Appendix A.

Discrete Setting
To support reduced-order model construction, we will employ an underlying discrete model.
Without loss of generality, our implementation uses tetrahedral finite element models with
linear shape functions. We will refer to nodal positions as a vector of position quantities: given
Nv nodal vertices, let the unde-formed material positions be X = (X1,X2, …,XNv)

T ∈ ℝ3Nv,
and the deformed positions be x = (x1,x2, …,xNv)

T ∈ ℝ3Nv, such that xi = φ(Xi;q). An important
displacement-like matrix quantity is the gradient of the position with respect to q,

(10)
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For the important case of linear shape models, U is a constant matrix of displacement modes,
which has the important consequence of making the mass matrix M constant.

4 Discrete Cubature
We use optimization to estimate an n-point cubature scheme (5) that approximates the reduced
force f(q) integral in (3). It follows that our approximation of the gradient of the reduced force
vector, or the stiffness matrix, is

(11)

Observe that by choosing nonnegative weights, wi≥0, we are guaranteed that K inherits the
same semi-definiteness properties of the integrand.

Element-based Cubature Schemes
Cubature optimization would suggest considering continuous positions, X Ω, and thus a
continuous-valued, constrained optimization problem. However, in reduced-order modeling
we may only have access to discrete representations of the integrand. Therefore, we consider
discrete optimization schemes, wherein the candidate cubature “points” (and hence g) are
chosen from a finite set.

In our implementation, we use linear tetrahedral finite elements with constant deformation
gradients. The tetrahedrons are features which can be seen as generalized cubature “points.”
The reduced-force integrand g(Xi;q) of any point Xi ∈>2 Ω is equal to the response of the
containing element.

Complexity of Cubature Evaluation
The cost of evaluating internal forces (5) using an n-point cubature scheme is O(rn), since each
cubature point's contribution can be accumulated in O(r) operations (assuming dense matrices
and global deformation support). For example, a tetrahedron used in a cubature scheme can be
deformed in O(r) operations using (7), the resulting 12-vector of vertex forces can be computed
at O(1) cost, and these forces can be projected into subspace force contributions using a 12-
by-r matrix-vector multiply at O(r) cost. Evaluating the stiffness matrix approximation (11)
involves O(r2n) cost (assuming dense matrices). For example, a 12-by-12 tetrahedral stiffness
matrix, Ke, can be computed using (7) at O(r) cost, however computing its contribution to the
r-by-r subspace stiffness matrix K(q) involves a subspace projection of the form, ,
which incurs an O(r2) cost.

Assuming n ∝ r (as we observe in practice (§7)), we therefore obtain O(r2) cost for force
evaluation and O(r3) cost for stiffness evaluation. However, we show in §6.2 that a fast O(r2)
stiffness matrix-vector product is possible if the stiffness matrix need not be formed explicitly.
Finally, while complexity analysis can show costs independent of N, an important result is that
subspace computations are still fast in practice (see Figure 3).

5 Optimizing Cubature
We model the cubature optimization problem as a discrete subset selection problem, where we
attempt to select cubature points/elements that, when weights are optimized using nonnegative
least squares (NNLS), will tend to minimize fitting error of (3). The optimization estimates
cubature quality via the error of the subspace force estimate using T training data samples,
{(f(t),q(t))}t=1…T where we compute f(t) = f(q(t)) for the shape q(t) using standard methods,
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e.g., subspace projection of unreduced forces [Krysl et al. 2001]. We now describe the
procedures for estimating weights (§5.1), greedy cubature optimization (§5.2), training data
generation (§5.3), and cubature validation (§5.5).

5.1 Estimating Nonnegative Cubature Weights
Given a set  of n cubature points, we estimate cubature weights  (that multiply the

integrand samples, ), by minimizing the error in predicting (3) over the training
data's T reduced force values, f(t), t = 1…T. To avoid over-fitting and preserve the spectral
properties of stiffness matrices, we estimate nonnegative weights using nonnegative least
squares (NNLS) by solving:

(12)

subject to nonnegativity constraints, w ≥ 0. Here A is a dense rT-byn matrix, and b is an rT-
vector. Each r-vector in row t of A and b is scaled by ∥f(t)∥−1 in order to minimize relative error
instead of absolute error. Larger absolute errors will be tolerated for larger training forces, so
a small number of very large samples will not distort the fitting process.

Such problems can be solved efficiently using available NNLS implementations [Lawson and
Hanson 1974]. In practice, we can estimate nonnegative cubature weights with one NNLS call
in less than a minute for a relatively complex model with T = 1000 poses, r=100 dimensions,
and n=200 samples. However, for challenging examples, such as the “Menger shell” (Figure
2), NNLS calls can be expensive: 36 minutes for T = 1000, r=200, and n=800. Given that solve
times scale roughly as O(rTn2), we will address the superlinear scaling of NNLS with n and
r later in §5.4.

Example sorted nonnegative weights (for “Menger shell”) are:

Error estimator, ε—In subsequent optimizations, we choose to minimize RMS relative L2-
norm error over all samples, as described by the following error metric:

(13)

All following training and validation convergence plots were done using this metric. Given the
scaling by ∥f(t)∥−1, this is equivalent to the relative residual error ∥r∥/∥b∥ optimized by the
NNLS problem and the greedy algorithm that follows.
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5.2 Greedy Estimation of Cubature Points
We propose a simple, iterative, greedy, subset-selection algorithm1. At every iteration, we add
a key element e such that ge is the most positively parallel to the current NNLS residual. This
will reduce the size of the residual the most. Then, we update the residual and iterate again.
The algorithm is as follows:

GREEDYCUBATURE(A, b, TOL)

1.  ← ∅

2. r←b

3. while ∥r∥/∥b∥ > TOL

4.
SELECTCANDIDATEPOINTS( )

5.
e←

6. ← ∪{e}

7. w←NNLS(A ,b)

8. r←b−A w

9. return ( ,w)

Here  is the set of key elements, r is the current NNLS residual, w is the vector of cubature
weights, and A  is the A matrix with columns corresponding to elements in .

Lazy Evaluation—The sub-function SELECTCANDIDATEPOINTS must choose the remaining elements/
points most likely to reduce the residual error. The most thorough implementation is to return
all remaining elements not already in . However, for high-resolution meshes, storing or
calculating the ge vectors for all elements is impractical. Instead, we pick a random subset of
the remaining elements and calculate the ge vectors needed for the argmax step. The full A
matrix is never actually computed or stored, so the algorithm has modest memory requirements,
even for meshes with hundreds of thousands of elements. These column computations are also
trivial to parallelize.

One adjustable parameter of the algorithm is the number of random candidates, | |, to consider
at each iteration. We found that for our examples, increasing the value of | | beyond 1000
elements does not significantly improve the quality of the cubature after 10% error is reached.
Figure 4 demonstrates that considering only 100 candidates per iteration is about the same as
considering 10000, suggesting that optimal selection at any greedy step is not critical.

5.3 Training Data Generation
Various methods may be used to collect cubature training samples:

• A simple approach is to use pre-simulated motion for reanalysis [Krysl et al. 2001]
of non-interactive simulation conditions, possibly with forcing variations, e.g., in
gravity, wind, or inflation conditions of a balloon. The q values produced during the
simulation can then be recorded to disk and sampled for training and validation.

1Our greedy algorithm is analogous to one proposed for multipole source placement [James et al. 2006], although here the data is real-
valued, and NNLS solves are used at each iteration.
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• Manual interaction (or user sketches) with a reduced simulation using fully projected
forces can be used, but can be slow for large meshes. To work around this, manual
input can be recorded and then simulated off-line [Barbič and James 2005].

• For a linear modal analysis basis used for small-strain subspace integration [Bathe
1996], training data can be generated automatically by randomly sampling a Gaussian
distribution for each mode (component of q), with standard deviations proportional
to the inverse of the mode's frequency.

Once the q(t) values are known for the poses, we can lazily compute the columns of A for
training, as needed.

5.4 Optimization Complexity Analysis
Scaling with N—The algorithm cost and memory requirements are linear in the size of
discrete model, which is mandatory for reduced-order modeling. This N-dependence arises
from the computation of T training force values, f(t). The “Menger shell” model illustrates that
our method can support large tetrahedral models.

Scaling with r—For higher rank models, one may need hundreds of cubature points to
achieve low error. For such problems, the optimization process can become impractical.
Informally, NNLS exhibits O(rTn2) complexity, so that high r and n values can be slow. To
limit this bottleneck, we use subset training, wherein NNLS regression is done on a small
subset of Ts training samples. Before the NNLS call, we randomly choose this subset, perform
NNLS only on the subset to update the residual, and then on the next iteration we greedily
select the point most fit with respect to the residual. Although the residual is inaccurate, each
iteration is much faster. However, one can occasionally do NNLS on the full training set to
check the actual error and output a final cubature rule. In our experiments, we used Ts = 10
and do a full regression every O(r) iterations to obtain cubature schemes that appear to achieve
training errors within 5% of comprehensively trained (Ts=T) rules. For high-rank models, such
as r = 200 for the detailed Menger shell, optimization times became hours instead of days.

Complexity Summary—The optimization bottleneck is repeated calls to the NNLS routine.
Characterizing the cost of NNLS as O(rTn2), then since every iteration calls NNLS with one
more cubature sample the total complexity is O(rTn3). If only a subset of the training set is
used each iteration the cost is O(rTsn3).

5.5 Cubature Validation
In some ways, the requirement of training data is a weakness of cubature optimization.
However, a strength of cubature optimization, perhaps due to the fact that the method only
learns cubature points and nonnegative weights, is that it resists over-fitting. To assess the
quality of a given cubature rule, we evaluate it on a validation set, {(f(v),q(v))}v=1…V, obtained
in ways similar to training set generation (§5.3). To estimate validation error, we use the
training error metric (13) on the validation set. Our experiments show that cubature
optimization is surprisingly resistant to over fitting: for all examples, the training and validation
convergence plots are nearly identical. The two representative plots are shown for the rope
bridge example in Figure 5.

6 Implementation Details
6.1 Fast Integrand Evaluation

For a constant displacement sensitivity matrix U, equation (5) can be accelerated using level-2
BLAS matrix-vector multiplies. Re-shaping the deformation gradient for element e as a 9-
vector, it can be calculated as Fe = Eeq+I, where Ee ∈ ℝ9×r can be derived and pre-computed
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using U (c.f. [Barbič 2007]). Furthermore, all deformation gradients for cubature elements can
be calculated in one matrix-vector multiply by stacking all Ee matrices into a single matrix
E ∈ ℝ9n×r. All energy density gradients with respect to the deformation gradient, gĩ, can then
be evaluated for each sample element (invoking the constitutive model) in an O(n) loop. Finally,
the subspace projection and summation can be evaluated as another matrix-vector multiply, f
= HT [g̃1 … g̃n], where the matrix H ∈ ℝ9n×r can be pre-computed using U and the cubature
weights wi. Similar optimizations exist for Jacobian matrix evaluation. In our implementation,
this level-2 BLAS optimization provided nearly a two-fold speedup in force evaluation.

6.2 O(r2) Dense Stiffness Matrix-Vector Products Fast
Fast matrix-vector product evaluation with the stiffness matrix, K ∈ ℝr×r, is often required for
stiffness proportional Rayleigh damping, or implicit integrators. Unfortunately, for dense U,
the stiffness matrix is dense, and therefore evaluating each cubature sample's contribution to
all entries of K involves O(r2) work, so that the total cost of forming the stiffness matrix is O
(r2n). Fortunately, many iterative Krylov-Newton solvers only require evaluation of matrix-
vector products. Consequently we can exploit the fact that each cubature sample only
contributes a low constant-rank update to K, so that matrix-vector products, Kv, can be
constructed in O(rn) (or O(r2) for n=O(r)). The Kv matrix-vector product can be written

(14)

where Ue ∈ ℝ 12×r is the displacement matrix for tetrahedral element e, and Ke ∈ ℝ12×12 is
the element's stiffness matrix. The product KeUe takes O(r) flops to compute, and can be
precomputed and cached. For the Kv product, we first compute t=(KeUe)v, and then , both
of which take O(r) flops per cubature sample.

7 Results
We now provide numerical results and analysis; please see our accompanying video for
animation results. Model statistics and algorithm timings are provided in Table 1. We note that
graphical renderings were done using unoptimized implementations of ambient occlusion
[Hoberock and Jia 2008], and offline renderings.

Comparison to Gaussian quadrature
Although we do not target 1-dimensional or tensor-product integration applications, out of
curiosity, we compared our Greedy-NNLS cubatures to Gaussian quadrature on the [−1,1]
interval. To do so, we randomly generated suitably normalized degree-n polynomials using
Chebyshev basis functions, then trained our cubature using N = 1000 uniformly distributed
candidate abscissae. We observe that while an n-point Gaussian quadrature rule can exactly
integrate a degree 2n − 1 polynomial, on average our n-point Greedy-NNLS scheme can
integrate only an n-degree polynomial for 0.5% training error. Results are shown in Figure 6.

Scaling with rank for given error tolerances
Analogous to the 1-dimensional comparison, we also investigated how n scales with the rank
of the reduced model. For a given reduced model of rank r, how many cubature samples n are
necessary to achieve a given error tolerance? Figure 7 shows that the greedy algorithm can
produce cubature rules that satisfy the error tolerance with n=O(r) sample elements. The
constant factor varies depending on the error tolerance and the geometry of the mesh. As
expected, more cubature samples are needed to meet lower error tolerances.
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Cubature error analysis and comparisons
Figure 8 provides error convergence plots as a function of the number of cubature samples/
elements used. The results indicate that our Greedy-NNLS cubature schemes tend to perform
well in practice, especially for low error (ε) and high rank (r) situations, and is dramatically
efficient than Monte Carlo integration.

Error Estimation
Classical quadrature schemes often provide error estimators that can be used with little
additional computation during evaluation. For example, a Gauss-Kronrod pair consists of an
n-point Gaussian rule and a (2n+1)-point Kronrod rule that reuses all of the points from the
Gaussian rule [Heath 2002]. The Kronrod rule is used as the integral approximation, while the
difference between the two rule values is an error estimate.

Analogously, given 2n cubature elements, we run NNLS on the first n elements to compute
the nonnegative weights of a coarser cubature rule C. The relative error estimate is calculated
as ∥fC − f∥/∥f∥ where fC is the force estimated by the coarser rule C. Like a Gauss-Kronrod
pair, this requires no additional evaluations of the integrand. Figure 9 illustrates estimator
performance.

Comparison to reduced St.Venant-Kirchhoff
In Figure 10 we compare a cubature-based reduced-force evaluation to an optimized reduced
St.Venant-Kirchhoff (StVK) model where reduced forces are exactly represented by an r-
vector of polynomials cubic in the components of q [Barbič and James 2005]. Unlike our O
(r2) approximation, 4 exact evaluation of StVK reduced forces requires O(r4) operations, and
can be prohibitive for larger r values. For a fair timing comparison, we use the optimized level-3
BLAS implementation of the authors of [Barbič and James 2005], and the level-2 BLAS
implementation of our reduced-force evaluation (§6.2).

Rope bridge
To illustrate that cubature can be optimized for structures with complicated topologies, we
considered a jungle-like rope bridge (see Figure 11). This polygon soup model was discretized
into 29,800 tetrahedra using a voxel embedding approach [Barbič and James 2005], and then
approximated using an StVK model with tuned parameters. Because their dynamics looked
reasonable, we used a linear modal basis shape model, and relied on the StVK nonlinearity to
avoid large-deformation distortion.

Reanalysis
Another method of generating a basis is to perform proper orthogonal decomposition (POD),
or principle component analysis (PCA), on full simulation data [Krysl et al. 2001]. For our
example, we simulate a balloon being inflated by constant air pressure forces (see Figure 12).
Our reduced model can then recreate the dynamics of inflation at interactive rates, allowing
the user to control the amount of air pressure2 interactively.

Haptic force-feedback rendering
can exploit reduced-order models for simulation speed, and output-sensitive collision
processing [Barbič and James 2007]. Optimized cubature enables complex nonlinear material
models for real-time haptic rendering applications. As a proof of concept, we simulated a

2Pressure forces were modeled as a linear function of the form, Pq + f0, where the constant matrix, P ∊ ℝr×r, and offset f0 model the
subspace force resulting from a unit pressure applied to an internal tetrahedron's face whose deformed normal is approximated by
transforming the material-frame normal by the deformation gradient (a quantity linear in q).
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hollow rubber-like structure using both StVK and Mooney-Rivlin material models; without
loss of generality, linear modal analysis (LMA) was used to generate an r=10 shape basis. The
Mooney-Rivlin material gives clearly different behavior than the StVK model (see Figure 14).

Hyperelastic material test
To investigate the ability of optimized cubatures to approximate nonlinear material response,
we performed virtual compression tests on cubes (see Figure 15) made using three hyperelastic
constitutive models: St. Venant-Kirchhoff, Mooney-Rivlin and Arruda-Boyce (see Appendix
A). In each case we precompute a compression test to estimate a PCA basis and reduced model
for optimization and simulation3. Results of the compression tests are in Figure 13, and
illustrate that optimized cubature can accurately reproduce nonlinear force responses when
given a suitable subspace deformation model. For the StVK sample, our parameters were λ =
1000 and μ = 5000. For the Arruda-Boyce, we used μ = 5000, N=5, and K=1×105. For the
Mooney-Rivlin sample, we used μ10=1×105, μ01=10, and K=1×105.

Nonlinear modal sound synthesis:
Linear modal analysis is widely used for vibration modeling of effectively rigid objects since
the runtime space and time complexity of integrating r modes with an IIR filter is only O(r)
flops [James and Pai 2002], after which the modal coefficients q can be used to evaluate sound
radiation [James et al. 2006]. However, for objects such as thin shells, even small deformations
can induce nonlinear dynamics, and effectively “coupling” linear modes. To avoid the N-
dependent costs of a fully nonlinear vibration analysis, such as in [O'Brien et al. 2001], we
apply cubature optimization to nonlinear StVK forces based on sampling the space of linear-
mode shapes. Optimized cubature provides an efficient O(r2) evaluation of subspace forces,
suitable for long-time explicit Newmark subspace integration [Krysl et al. 2001]. Subspace
integration provides easy access to modal coordinates q(t) used in sound radiation models (here
we use the farfield, low-frequency, monopole radiation model (see (15) in [James et al.
2006])). Results are shown in Figure 2, and the accompanying video. We compared our
cubature approximation to a brute-force subspace simulation [Krysl et al. 2001] and obtained
nearly identical sounds. However, computing f(q) by evaluating O(N) unreduced forces,
followed by subspace projection (multiplication by UT), at each explicit timestep was
approximately 110× more expensive; 16-core parallelization was used to compute the
comparison.

8 Conclusion and Discussion
In summary, optimized cubature is a simple and mathematically sound way to build reduced-
order force models for subspace integration. It is not restricted to any particular shape model,
and it supports various hyperelastic material models. Cubature can be trained for geometrically
complex examples, and fast subspace integration performance can enable interactive graphics,
large multibody simulations, or simulations requiring high temporal rates such as haptics and
sound synthesis. Although cubature schemes depend on training data, they also are surprisingly
robust to over-fitting.

3We compress a cube of the material by constraining the nodes of the top-face and lowering them by a small amount in a quasi-static
simulation. When the material response reaches equilibrium, we record the total upward forces on the top-face nodes and record the
displacement state. We then perform PCA on these recorded states to produce a linear basis, use these states to train a cubature rule, and
observe the upward forces reproduced by the cubature rule. Because the top-face nodes are constrained in the original simulation, we
need to artificially include them in the PCA basis for training cubature and reduced simulation. If U′ is the basis produced by PCA of the
simulation data, then the basis we use for the reduced simulation is U = [U′,utop], where utop is a normalized 3N basis vector with
positive vertical displacement for the top-face nodes. This allows us to measure the total upward force on the top-face nodes reproduced
by the cubature force model by unprojecting the reduced force using U.
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Discussion and Limitations
We have provided some examples to provide evidence in support of cubature optimization,
however there are many other ways to realize its benefits, and also other limitations to
overcome.

Exploiting sparsity is important for fast evaluation and training of high-rank r models, whereas
our current analysis is limited to models with dense U bases. Generating sparse bases and
cubature schemes can lead to linear-time O(r) schemes for reduced force and sparse stiffness
matrix evaluation. The existence of an O(r) algorithm for reduced force evaluation using dense
rank-r displacement bases remains an open problem.

Although cubature schemes support general subspace deformations, we have mostly
considered linear (constant U) shape models here, however many other successful models exist,
e.g., modal derivatives [Barbič and James 2005]. We have also constructed cubature schemes
for articulated and skinned mesh models [James and Twigg 2005], however such models
require more efficient implicit Newmark subspace integrators with efficient sparse matrix
solves and/or preconditioning for similar performance. Physically based character animation,
especially detailed skin deformation and facial animation, are areas likely to benefit from fast
cubature schemes. Some shape models may be more susceptible than others to element
inversion, and non-element-based approaches for evaluating g may help. For example, we
implemented subspace deformations based on modal warping [Choi and Ko 2005], however
we found element-based cubature schemes susceptible to element inversion, presumably due
to highly extrapolated element deformations.

Future work includes applying subspace-based cubature optimization to the simulation of
physical phenomena other than volu-metric deformable objects, e.g., shells, MEMS, etc.
Efficient error estimators allows the possibility of adaptive simulation. For general kinematics,
the mass matrix can be time dependent and potentially expensive to evaluate. Optimized
cubature might also be used for fast estimates of the mass matrix, ∫ΩU(x)TU(x)ρ(x)dΩ.

Finally, we have proposed a greedy algorithm for cubature optimization, however, a stronger
theoretical footing is desirable for automatic cubature generation. For example, it is tempting
to think of cubature as some sort of critical points of some class of functions, similar to the
definition of Gaussian quadratures as the zeros of Legendre polynomials and other functions.
It appears that similar accuracy may be possible using half as many cubature points if Gaussian-
quality cubatures could somehow be learned, thus leading to a two-fold speedup in reduced
force evaluation.
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A Material Strain Energy Densities, ψ
This appendix reports strain energy densities, ψ, used in this paper [Bonet and Wood 2008].
The St. Venant-Kirchhoff model is

(15)
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where λ and μ are the Lamé constants, and μ corresponds to the shear modulus. The Arruda-
Boyce model uses

(16)

where IC is the first deviatoric strain invariant, μ is the initial shear modulus, and N is the
number of rigid links for the model [Liu et al. 2004]. The Mooney-Rivlin constitutive model
uses

(17)

where IIC is the second deviatoric strain invariant, and μ10 and μ01 are material constants. The
last two models do not enforce incompressibility, so we add a penalty term Klog(J2) to
approximately conserve volume, where K is the bulk modulus, and J = det(F).
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Figure 1. Overview of Cubature Optimization
Given a subspace deformation model with N elements, we generate (sample or simulate) a set
of training poses for input to the cubature optimization preprocess. The optimization procedure
estimates n≪N cubature elements/points, and associated nonnegative weights, wi, such that
the the cubature approximation of f(q) well-approximates the training force/pose data. At
runtime, the cubature scheme uses the force response of only the n cubature elements to provide
a fast approximation to internal forces, therein accelerating integration of subspace deformation
dynamics.
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Figure 2. Optimizing cubature for nonlinear modal sound
(Left) A 900-element cubature scheme optimized for integrating the nonlinear 200-mode
subspace vibrations of (Middle) a complex Menger-inspired thin shell (one cube thick)
modeled with 393216 tetrahedra, and a St.Venant-Kirchhoff material model of aluminum.
(Right) Nonlinear shell vibrations (amplified 4× for display). Optimized cubature permits
explicit Newmark subspace integration of audio-rate (44.1 kHz) nonlinear sound simulations,
with significant and audible nonlinear mode coupling effects, at greatly reduced costs: for a
5.0 second sound clip, nonlinear sound synthesis using optimized cubature and subspace
integration (Δt = 1ms/88.2) required 3.5 single-core hours for subspace vibration (and radiation
calculations), whereas sounds integrated using a parallelized implementation of subspace-
projected unreduced forces [Krysl et al. 2001] required 4 days on 16 cores. The resulting sounds
are virtually indistinguishable.
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Figure 3. Complexity of force and stiffness evaluation
Assuming n = O(r) cubature samples, internal force evaluation costs O(r2) flops, whereas dense
stiffness matrix evaluation is O(r3) (although a fast matrix-vector multiply exists (§6.2)). These
timings were done using n = r cuba-ture schemes.
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Figure 4. Comparison of different values of | |
Below 10% error, the quality of the cubature does not degrade significantly when considering
less candidates per iteration. Thus, the greedy cuba-ture optimization algorithm is practical for
high-resolution meshes. The bridge model of 29,800 elements was used for this plot.
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Figure 5. Training and validation convergence plots
for the rope bridge example (r=100) illustrate characteristic resistance of cubature optimization
to over-fitting. Five cubatures were optimized for each n value.

An et al. Page 20

ACM Trans Graph. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Comparison to Gaussian quadrature
In the 1-D case, our greedily-optimized quadrature rules require about twice as many samples
as the corresponding Gaussian quadrature rules to achieve 0.5% error.
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Figure 7. Scaling with rank for given error tolerances
In practice, n = O(r) cubature samples are sufficient to achieve a given error tolerance, but the
constant factor depends on the example and the desired error tolerance.
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Figure 8. Cubature Convergence Analysis
Plots of reduced-force training error, ε, as a function of the number of key elements, n. Results
are shown for the uniformly weighted Monte Carlo scheme (MC), MC-sampled positions but
NNLS-estimated weights (MC-NNLS), and our greedy approach (Greedy). We used T = 1000
training samples for the bridge and Menger shell, and T = 50 (from the full inflation simulation)
for the balloon. For these plots, we do a full NNLS regression per-iteration, so Ts = T (no subset
training), in order to get accurate error measurements, however, subset training (§5.4)
accelerates optimization, e.g., of our n=900 Menger cubature scheme (ε=6.4%).
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Figure 9. Error Estimator
results for two cubature pairs: n=50 (& 25) and n=100 (& 50) samples (rope-bridge example
with r = 100). Each point in the plot represents the validation error of a random deformable
pose. Here the n=100 error estimate appears conservative, since its estimate is higher than the
actual error, i.e., points are above the “y=x line.”
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Figure 10. Comparison to StVK reduced-force evaluation costs
We compared a St.Venant-Kirchhoff (StVK) polynomial model, versus a cubature-based
approximation using n = r elements. Our O(r2) reduced-force evaluation becomes faster
around r = 23, and scales substantially better that the O(r4) StVK polynomial model. When
evaluating both reduced forces and stiffness matrices (O(r3)), the cubature scheme becomes
faster around r=35.
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Figure 11. Optimizing cubature for an embedded rope bridge
(Far-Left) Rasterized polygon-soup bridge with cubature tetrahedra/points highlighted. (Mid-
Left) The undeformed bridge is subjected to a sideways impulse at its midpoint, and simulated
using the (Mid-Right) unreduced implicit Newmark integrator, and the (Far-Right) implicit
Newmark subspace integrator. Optimized cubature achieved 200 timesteps/second (implicit
Newmark subspace) whereas unreduced implicit Newmark (with PARDISO solver) achieved
0.25 timesteps/sec.

An et al. Page 26

ACM Trans Graph. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12. Reanalysis of balloon inflation
using cubature optimized from PCA-based simulation data. The dynamic Mooney-Rivlin
rubber balloon can be inflated interactively.
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Figure 13. Virtual compression test
The force response reproduced by optimized cubature closely matches the full simulation for
all compression amounts tested. The Arruda-Boyce and Mooney-Rivlin materials could not be
compressed beyond 85% due to element inversion, whereas the St.Venant-Kirchhoff (StVK)
material softened significantly at about 35% compression, ultimately leading to inversion and
stiffness matrix indefiniteness.
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Figure 14. Haptic force-feedback rendering examples
The implicit Newmark subspace integrators could deliver 5000 Hz rates.
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Figure 15.
Compressing the Arruda-Boyce material cube

An et al. Page 30

ACM Trans Graph. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

An et al. Page 31
Ta

bl
e 

1

M
od

el
 st

at
is

tic
s i

nc
lu

di
ng

 n
um

be
r o

f t
et

ra
he

dr
a 

(N
te

t);
 ra

nk
 (r

) o
f l

in
ea

r d
ef

or
m

at
io

n 
ba

si
s U

; n
um

be
r o

f c
ub

at
ur

e 
po

in
ts

/e
le

m
en

ts
 (n

); 
tim

e 
to

 e
va

lu
at

e 
bo

th
f(q

) a
nd

 K
(q

); 
tim

e 
to

 so
lv

e 
an

 r-
by

-r
 d

en
se

 sy
m

m
et

ric
 p

os
iti

ve
-d

ef
in

ite
 li

ne
ar

 sy
st

em
 u

si
ng

 L
A

PA
C

K
 fo

r i
m

pl
ic

it 
N

ew
m

ar
k 

su
bs

pa
ce

 in
te

gr
at

io
n;

 ti
m

e-
st

ep
pi

ng
 ra

te
 o

f N
ew

m
ar

k 
su

bs
pa

ce
 in

te
gr

at
io

n 
us

ed
 in

 d
em

os
, f

or
 e

ith
er

 e
xp

lic
it 

or
 se

m
i-i

m
pl

ic
it 

(o
ne

 N
ew

to
n-

R
ap

hs
on

 it
er

at
io

n)
 sc

he
m

es
; t

im
e 

fo
r t

he
cu

ba
tu

re
 o

pt
im

iz
at

io
n 

pr
ep

ro
ce

ss
 (u

si
ng

 4
-1

6 
X

eo
n 

co
re

s)
; r

el
at

iv
e 

tra
in

in
g 

er
ro

r ε
 o

f t
he

 re
su

lti
ng

 c
ub

at
ur

e 
sc

he
m

e.
M

od
el

M
at

er
ia

l
N

te
t

B
as

is
R

an
k 

(r
)

n
f E

va
l

K
 E

va
l

So
lv

e
T

im
es

te
ps

/s
ec

O
pt

im
iz

at
io

n
E

rr
or

B
rid

ge
*

St
. V

en
an

t-K
irc

hh
of

f
29

,8
00

LM
A

10
0

10
0

0.
48

 m
s

3.
0 

m
s

0.
29

 m
s

26
5 

(im
pl

ic
it)

47
 se

cs
8%

B
al

lo
on

*
M

oo
ne

y-
R

iv
lin

11
8,

20
8

PC
A

30
90

0.
15

 m
s

0.
88

 m
s

0.
03

 m
s

94
3 

(im
pl

ic
it)

34
 se

cs
1.

5%
M

en
ge

r*
St

. V
en

an
t-K

irc
hh

of
f

39
3,

21
6

LM
A

20
0

90
0

9.
7 

m
s

75
 m

s
2.

2 
m

s
10

1 
(e

xp
lic

it)
1.

8 
ho

ur
s

6.
4%

H
ap

tic
†

St
. V

en
an

t-K
irc

hh
of

f
21

,3
76

LM
A

10
32

0.
02

 m
s

0.
19

 m
s

0.
00

8 
m

s
42

30
 (i

m
pl

ic
it)

10
 se

cs
3%

H
ap

tic
†

M
oo

ne
y-

R
iv

lin
21

,3
76

LM
A

10
12

0.
01

 m
s

0.
07

 m
s

0.
00

8 
m

s
87

50
 (i

m
pl

ic
it)

5 
se

cs
3%

* W
ith

 th
e 

ex
ce

pt
io

n 
of

 c
ub

at
ur

e 
op

tim
iz

at
io

n,
 th

e 
tim

in
g 

ex
pe

rim
en

ts
 w

er
e 

do
ne

 o
n 

a 
2.

4G
H

z 
In

te
l C

or
e2

† Th
e 

ex
pe

ri
m

en
ts

 o
n 

a 
3.

0G
H

z I
nt

el
 X

eo
n.

 T
he

 In
te

l M
at

h 
K

er
ne

l L
ib

ra
ry

 w
as

 u
se

d 
fo

r B
LA

S 
op

er
at

io
ns

 (d
ua

l-c
or

e 
en

ab
le

d)
. C

ub
at

ur
e 

tr
ai

ni
ng

 w
as

 d
on

e 
us

in
g 

th
e 

G
re

ed
y 

al
go

ri
th

m
 w

ith
 |

| =
 1

00
(e

xc
ep

t f
or

 th
e 

ba
llo

on
 a

nd
 h

ap
tic

 e
xa

m
pl

es
 w

hi
ch

 u
se

d 
|

| =
 1

00
0)

 a
nd

 su
bs

et
 tr

ai
ni

ng
 (T

s =
 1

0,
 fu

ll 
N

N
LS

 so
lv

es
 e

ve
ry

 r/
2 

ite
ra

tio
ns

; e
xc

ep
t h

ap
tic

 e
xa

m
pl

es
 u

se
 c

om
pr

eh
en

si
ve

 tr
ai

ni
ng

, T
s =

 T
).

ACM Trans Graph. Author manuscript; available in PMC 2009 December 1.


