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Decision makers of companies often face the dilemma of whether to release data for knowledge
discovery, vis a vis the risk of disclosing proprietary or sensitive information. Among the var-
ious methods employed for “sanitizing” the data prior to disclosure, we focus in this paper on
anonymization, given its widespread use in practice. We do due diligence to the question “just
how safe is the anonymized data”. We consider both the scenarios when the hacker has no infor-
mation, and more realistically, when the hacker may have partial information about items in the
domain. We conduct our analyses in the context of frequent set mining and address the safety
question at two different levels: (i) how likely are the identities of individual items cracked (i.e.
reidentified by the hacker), and (ii) how likely are sets of items cracked. For capturing the prior
knowledge of the hacker, we propose a belief function, which amounts to an educated guess of
the frequency of each item. For various classes of belief functions, which correspond to different
degrees of prior knowledge, we derive formulas for computing the expected number of cracks of
single items and for itemsets, the probability of cracking the itemsets. While obtaining the exact
values for the more general situations is computationally hard, we propose a series of heuristics
called the O-estimates. They are easy to compute, and are shown to be fairly accurate, justified
by empirical results on real benchmark datasets. Based on the O-estimates, we propose a recipe
for the decision makers to resolve their dilemma. Our recipe operates at two different levels,
depending on whether the data owner wants to reason in terms of single items or sets of items
(or both). Finally, we present techniques using which a hacker’s knowledge of correlation in terms
of co-occurrence of items can be incorporated into our framework of disclosure risk analysis and
present experimental results demonstrating how this knowledge affects the heuristic estimates we
have developed.
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1. INTRODUCTION

Privacy-preserving data mining has attracted a lot of attention in recent years.
The primary objective is to strike a balance between two opposing forces: the urge
to mine data to gain further insights and knowledge, versus the responsibility to
protect the privacy and identity of individuals (e.g., patients, travelers). These two
forces manifest themselves in similar ways in business situations. Decision makers
of companies often face the dilemma of whether to release data for knowledge
discovery, given the risk inherent in disclosing proprietary/sensitive information
(e.g., identities of the better-selling products) to the public, particularly to potential
competitors. Consider the following scenarios.

Mining as a service: A company, with insufficient expertise in data mining,
wants to hire a data mining service provider to mine its data2. While there is
legal protection (e.g., non-disclosure agreements), the company still legitimately
worries about its data being leaked out somehow, and such leakages are often
hard to detect.

Mining for the common good: A company may want to participate in a
consortium, which involves sharing of data. The motivation of pooling data
together is to gain in scale and in diversity (e.g., geographical variations, de-
mographic differences). The dilemma is that partners of the consortium may
one day become competitors, or work with competitors.

One common approach to handling these situations is to release transformed data.
Among the well-known transformation techniques, anonymization is arguably the
most common. That is, if the objects in the domain are originally identified by
their social security number, product number, etc., these objects are now identified
by a generated number, typically as simple as a positive integer. Compared with
other transformation techniques, anonymization is simple to carry out, as mapping
objects back and forth is easy. Another advantage of anonymization is that it does
not perturb data characteristics. For both the above scenarios, changing the data
characteristics may affect the outcome too much that it defeats the original purpose
of releasing the data. Note that there are alternatives and more sophisticated
techniques (e.g. k-anonymization [L. Sweeney 2002]); and we are not recommending
the use of anonymization instead of those more sophisticated approaches. Our study
here is simply based on the observation that anonymization is already widely used
in practice. One prime example is clinical trial studies for new drugs in the medical
and pharmaceutical domain. Even though the US Food and Drug Administration
guidelines are well-known to be strict, anonymization (or de-identification) is still
considered adequate in the clinical trial circles for protecting the privacy of the
patients participating in the studies. 3

2An alternative is for the company to purchase off-the-shelf data mining software. However, data
mining is a process that involves not only the software or the algorithms, but also the expertise
in understanding and executing the many steps required – namely, from cleaning the data, pre-
processing, to feature selection and tweaking the parameters so that the results are interpretable.
Thus, many companies would consider the out-sourcing option to be more timely, reliable and
hence cost effective.
3Refer to Part 21: Protection of Privacy in Title 21, Chapter 1, Food and Drugs Administration
at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=21.
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The immediate question, however, is: Just how safe is the anonymized data?
where “safe” is interpreted as protection of the identities of the objects – either
as individual items or item sets. Hereafter, we use the term data “owner” to refer
to the party that owns the original data, and the term data “hacker” to refer to
the party that tries to identify or illegally reveal the true identities of anonymized
objects. We use the term “cracks” to refer to the objects whose identities are
detected or inferred by the hacker. The reason why we analyze cracking of items
is that this would enable the hacker who has access to the anonymized database
to identify sensitive patterns in the original data. We are interested in cracks at
the level of single items as well as at the level of item sets, since a set S as a
whole may be cracked even when no item in the set is individually cracked by
a hacker. An answer to the question of safety is complicated by an issue often
overlooked in the literature: How much partial information does the hacker have?
The assumption that there is no partial information out there is simply unrealistic
in this Internet era. Furthermore, as illustrated in the two application scenarios
above, a hacker may be from a competitor or a rival company. The hacker may
use his/her knowledge from his/her own data or data from similar sources, to
infer and gain knowledge about the anonymized data. It has been recognized that
incorporating partial knowledge in analyzing security is an important open research
problem. For instance, Yang and Li consider prior knowledge captured in functional
dependencies in secure XML publishing [X. Yang and Chen Li 2004]. Thus, the
safety question becomes: Just how safe is the anonymized data in the presence of
partial information?

One source of partial information is when the hacker has access to similar data.
In this paper, we develop a framework to answer the safety question by investigat-
ing various abstractions of similarity. Using frequent set mining as an illustrative
example, we model the hacker’s partial information in the form of a belief function
which represents the hacker’s educated guess about the frequency of each item from
such similar data. For each of these abstractions, we explore how to determine the
percentage of cracks when the hacker has access to the anonymized database and
partial information. In a preliminary version of this paper [Laks V.S. Lakshmanan
et al. 2005], we proposed the first framework for analyzing the safety of anonymized
data and developed methods for estimating the expected number of cracks for in-
dividual items in the presence of partial background knowledge by the user. In
this paper, while we give a brief summary of those results, our main focus in on
itemsets, which are significantly more complex than individual items. Specifically,
we address the question: given an itemset, how likely is it to be cracked by the
hacker given his/her partial knowledge about the item domain. It turns out the
model and recipe presented in [Laks V.S. Lakshmanan et al. 2005] are inadequate
for handling itemsets. Accordingly, we extend the model and present a new recipe
for use by the data owner to help them decide whether they should feel comfortable
releasing the data. Finally, we also show how our existing framework of disclosure
risk analysis can handle a hacker’s prior knowledge of co-occurrence of items. Our
contributions are the following:

—We first analyze two extremes of similarity (Section 3): When the hacker has
access to no data and when the hacker has access to “almost” identical data.
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This is captured in the form of ignorant and compliant point-valued belief func-
tions respectively. For both cases, we present exact formulas for determining the
expected number of cracks.

—While the extreme cases may be highly unlikely to occur in practice, their analy-
sis, nevertheless, is useful in building the necessary tools for more realistic scenar-
ios. We model the third abstraction of similarity where the partial information is
captured in a compliant interval(-valued) belief function (Section 4), which spec-
ifies a range of frequency values for each item. Each range is assumed to contain
the true frequency (hence compliant). This abstraction models the case when
the hacker has information about the true frequency of every item but is not
sure about its exact value (hence a range). The fourth abstraction of similarity
captures the most general notion of the hacker’s partial information: α-compliant
belief functions where the belief function only guesses the right ranges for a frac-
tion α of items (0 ≤ α ≤ 1).

—Not surprisingly, exactly determining the expected number of cracks for interval
belief functions turns out to be a hard problem, and even known estimation al-
gorithms have too high a complexity to be practical. Companies which need to
out-source data mining are most likely to be interested in only light-weight tools
for assessing the risk of releasing the data. Thus, it is our design objective to
develop light-weight tools for this purpose. To this end, we develop the O esti-
mate for the single items (Section 4.1) and the OS estimate for general itemsets
(Section 4.3). We show by evaluating through a systematic set of experiments
on benchmark data (Section 6) that these estimates are practically accurate for
the various similarity abstractions.

—The notion of the expected number of cracks may not be easy to be interpreted.
Thus, we translate the expected number of cracks to a level of compliancy that
we believe is easier for the data owner to make a decision. We propose lightweight
recipes, using which a data owner can determine the risk of releasing anonymized
data (Section 5). We show the effectiveness of these recipes (Section 6.2.2).

—Finally, we show how our disclosure risk framework can handle a hacker’s prior
knowledge of correlated pairs of items in the data. We show experimentally how
it impacts the heuristic estimates and present an extended recipe to handle this
kind of prior knowledge.

1.1 Related Work

Given that we analyze the disclosure risk in releasing anonymized data, the follow-
ing bodies of work are most relevant. First, anonymization is akin to the use of
substitution ciphers in secure communication. The idea there is to map the original
alphabet to a so-called substitution alphabet in a one-to-one way. This has been in
use since a long time ago. More details on substitution ciphers and their weaknesses
can be found in [Alan G. Konheim 1981]. The risk analysis conducted in this paper
is applicable to substitution ciphers as well.

Second, there is a substantial body of work on k-anonymization and its variants
[P. Samarati and L. Sweeney 1998; L. Sweeney 2002; Gagan Aggarwal et al. 2005;
A. Meyerson and R. Williams 2004]. See [Gehrke 2005] for a survey of more recent
work in this area. The basic idea is to generalize (and suppress) data records in
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such a way that each data item becomes indistinguishable from at least k− 1 other
items in the generalized data set. While this model is similar in spirit to our notion
of anonymization, it perturbs the data (in the simplest case, making more than one
item indistinguishable from each other), thus making reconstruction of patterns
difficult. In any event, this paper does not necessarily advocate anonymization
as the best method to limit disclosure. Rather, based on the observation that
anonymization is one of the most commonly used approaches, our work gives due
diligence to the analysis of the risk of releasing anonymized data. Furthermore,
our analysis addresses the often overlooked issue of considering whatever partial
information that the hacker may possess.

Third, the problem of record linkage has received significant attention. Though
similar in spirit to disclosure risk, the problem deals with how records in databases
can be linked to individuals based on other information about these individuals. For
more detailed results, the reader is referred to the studies by Winkler in [William
E. Winkler 1993; 1994; 1999] and the work by Domingo-Ferrer et. al. in [Joseph
Domingo-Ferrer and Vincent Torra 2002; Joseph Domingo-Ferrer et al. 2002]. While
the problem of record linkage uses statistical methods to re-identify individuals
with masked records, the framework of using bipartite graphs to measure the risk
of disclosing individual items in the data is not directly evident from this body of
work. More recently in [Stephen E. Fienberg and A.B. Slavkovic 2005], the authors
study the implications of selectively releasing association rules on the disclosure risk
of the original dataset and provide statistical and algebraic geometric connections.
While these implications are couched in terms of bounds, they do not consider how
these bounds can be converted into procedures that will help the data owner assess
the risk in disclosing these rules. Our approach differs from this work in two ways:
(1) We consider the risk when the entire dataset is disclosed in anonymized form
and not just patterns from this dirtiest. (2) We are interested in how our analysis
can translate into simple decision making procedures that can help a data owner
assess the disclosure risk.

Besides the above lines of work, there is a body of work of peripheral relevance
to this paper. We briefly discuss them below. Several approaches to privacy-
preserving data mining are based on perturbing the underlying data for enhancing
privacy protection. E.g., privacy has been studied in the context of association rule
mining [Vassilios S. Verykios et al. 2004; Alexandre Evfimievski et al. 2004; Murat
Kantarcioglu and Christopher Clifton 2004]. In [Alexandre Evfimievski et al. 2004],
Evfimievski et. al. propose a framework for mining association rules in which the
data items in transactions are randomized to preserve privacy of individual transac-
tions. They analyze the nature of privacy breaches caused by using the association
rules discovered from this database and propose randomization operators to limit
such breaches. The problem of hiding association rules by transforming the input
database is studied by Verykios et al. in [Vassilios S. Verykios et al. 2004]. The
authors are interested in modifying the input database such that a given set of
associations is hidden in the transformed database. Techniques like removing items
from transactions, adding new items to transactions are used. While their problem
of transforming data shares some commonalities with our work, they modify the
frequency of items in the original data. Furthermore, their studies do not deal with
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the hacker’s possible prior knowledge.

In [Rakesh Agrawal and Ramakrishnan Srikant 2000], Agrawal and Srikant pro-
pose an approach for privacy preserving classification that is based on mining on
perturbed data, with the perturbed distribution closely matching the real distri-
bution. Furthermore, Agrawal and Aggarwal in [Daksha Agrawal and Charu C.
Aggarwal 2001] discuss an expectation maximization algorithm which provides ro-
bust estimates of the original distribution based on perturbation and provides some
interesting results on the relative effectiveness of different perturbing distributions
in terms of privacy. In [Vijay S. Iyengar 2002], Iyengar uses the approaches of sup-
pression and generalizations to satisfy privacy constraints. The trade-off between
privacy and information loss in the specific context of data usage is considered, and
the search for the optimal trade-off is considered as an optimization problem for
which a genetic algorithm framework is used to search for a solution. In [Charu C.
Aggarwal and Philip S. Yu 2004], Aggarwal and Yu use an approach based on con-
densation groups to model indistinguishability of data records and use it to create
anonymized data that has similar characteristics to the original multidimensional
dataset and apply it to the classification problem.

In sum, all these studies focus on perturbing the data so that the results of
mining the perturbed data remain similar to the original data. Our work here is
very different in that it gives an analysis of the risk of releasing anonymized data.

The security problem in statistical databases deals with protecting the database
from returning information about an individual or answering a sequence of queries
from which individual information can be deduced, where the statistical databases
allow only queries that retrieve statistical information (like sum, average, median)
of certain subsets of records.

The various approaches used by the security control methods are categorized in
the survey by Adam and Wortmann [N.R. Adam and J.C. Wortmann 1989]. An
evaluation of three data perturbation methods to protect the confidentiality of nu-
merical attributes is presented in [K. Muralidhar and R. Sarathy 1999]. A majority
of work in disclosure limitation like [Richard A. Moore 1996; Stephen E. Fienberg
et al. 1998; Joseph Domingo-Ferrer et al. 2002] focus on applying statistical dis-
closure limitation methods for categorical and microdatasets. All these methods
use techniques like cell suppression, data swapping, rounding, sampling and gener-
ation of synthetic data as a means of achieving statistical disclosure control. While
limiting disclosure, they may perturb the characteristics of the original dataset.

Finally, there has been much work on location-based privacy. To the extent of
using graph models for privacy analysis, they share some common ground with our
work. An example is Beresford and Stajano [Alastair R. Beresford and Frank Sta-
jano 2004]. They consider releasing location information to third-party applications
via a middleware mechanism and conduct an analysis of privacy breach that can
be achieved by a hacker in this process. However, there are considerable technical
differences between the frameworks.
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2. BELIEF FUNCTIONS FOR ITEMS AND ITEMSETS

2.1 Anonymization

The original domain is a non-empty universe of items I. For the sequel, we assume
|I| = n. A database D is a sequence of transactions 〈T1, . . . , Tm〉. Each transaction
is a non-empty subset of I. As in [Rakesh Agrawal et al. 1993], the frequency of
an item x ∈ I is the fraction of transactions in D that contain x.

Let J be an anonymized domain of items such that |J | = |I| and J ∩I = ∅. An
anonymization mapping is a bijection from I to J . Transactions are anonymized
by replacing each item in the transaction with its anonymized item. Databases
are anonymized by anonymizing each transaction. Note that the anonymization
mapping is applied uniformly across all the transactions in the database. Hence, if
1 is anonymized to 1′,this happens in every transaction in the database.

Figure 1 shows a simple example, referred to hereafter as the BigMart example.
For the rest of the paper, the primed item, x′ ∈ J , will be used to denote the
anonymized item corresponding to x ∈ I.

1        {1’,2’,3’}
2        {1,2,3,4}
3        {4,6}
4        {3,4,5,6}
5        {5,6}
6        {6}
7        {1,2} 
8        {1,3,4} 
9        {1,3,5}

10        {2,4,6}

TID   Transaction

Big Mart’s Database

I = {1,2,3,4,5,6}

After Anonymization

J = {1’,2’,3’,4’,5’,6’}

TID   Transaction

2        {1’,2’,3’,4’}
3        {4’,6’}
4        {3’,4’,5’,6’}
5        {5’,6’}
6        {6’}
7        {1’,2’}
8        {1’,3’,4’}
9        {1’,3’,5’}

10        {2’,4’,6’}

1        {1,2,3}

Fig. 1. Example: Anonymized Database

2.2 Belief Functions for Items

In this paper, we assume that the hacker knows the domain I and captures this
prior knowledge about the domain in a belief function, β. A belief function maps
each item x in I to an interval [l, r], modeling the belief that the frequency of x in
the database is in the range [l, r] where 0 ≤ l ≤ r ≤ 1.

Two special belief functions are considered which represent extremes in the
hacker’s prior belief. When a hacker has no knowledge of the frequency of any
item in I, each item in I maps to [0, 1]. In this case, the hacker is ignorant of
the frequency of any item in I and the belief function is called an ignorant belief
function.

The other extreme is when the hacker has exact knowledge of the frequency of
every item in I, with each interval [l, r] essentially becoming a point value in the
interval [0, 1]. This belief function is called a point-valued belief function. A belief
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function is called an interval belief function if at least one item’s belief interval is
a true range, i.e., l < r.

A belief function is compliant, if for every item x ∈ I, the range [l, r] contains
the true frequency of x. A belief function is α-compliant if only a fraction α
(0 ≤ α ≤ 1) of items satisfy the requirement of true frequency containment. For
simplicity, whenever α = 1, we simply refer the belief function as compliant.

Figure 2 shows four belief functions f, g, h and k over Big Mart’s domain: f is
a compliant point-valued belief function; g is an ignorant (and compliant) belief
function; h is a compliant interval belief function; and k is 0.5-compliant, as it
guesses wrong on the first three items.

Belief Functions f, g, h, k:

k(1) = [0.1,0.4]
k(2) = 0.5
k(3) = [0.1,0.3]
k(4) = [0.4,0.6]

k(6) = 0.5
k(5) = [0.1,0.4]

Interval
0.5−Compliant

h(1) = [0,1]
h(2) = [0.4,0.5]
h(3) = 0.5
h(4) = [0.4,0.6]

h(6) = 0.5
h(5) = [0.1,0.4]

Compliant Interval

g(1) = [0,1]
g(2) = [0,1]
g(3) = [0,1]
g(4) = [0,1]
g(5) = [0,1]
g(6) = [0,1]

Ignorant

f(1) = 0.5
f(2) = 0.4
f(3) = 0.5
f(4) = 0.5
f(5) = 0.3
f(6) = 0.5

Compliant
Point−Valued

Fig. 2. Examples of Belief Functions

2.2.1 Inference and Consistency Assumptions. A hacker uses a crack mapping,
C : J → I, to identify anonymized items. We assume the hacker only uses 1-1
crack mappings, i.e., (s)he assigns exactly one item to each anonymized item.

An item x ∈ I is said to be cracked by C whenever the mapping correctly maps
the anonymized item x′ to x. The question here is which crack mappings are used
by the hacker. We assume that the hacker uses his/her belief function to derive
crack mappings. Specifically, let x′ be an anonymized item and let F (x′) be its
observed frequency in the database. Then, x′ is mapped by the hacker to only
those items in I whose belief interval contains F (x′). Such mappings are called
consistent mappings, as they are consistent with the prior knowledge a hacker has
about I. Henceforth, mapping always means a consistent mapping.

Consider for example the belief function h shown in Figure 2. By analyzing the
anonymized data, the hacker will surely find out the frequencies of 1′, 2′, 3′, 4′,
5′ and 6′ are respectively 0.5, 0.4, 0.5, 0.5, 0.3 and 0.5 (i.e., specified precisely by
the compliant, point-valued belief function f). What can be the true identity of 1′

then? To be consistent with the belief function h, 1′ can be mapped to 1, 2, 3, 4
and 6; h(5) = [0.1, 0.4] is the only range not containing 0.5. Similarly, the observed
frequency of 2′ is 0.4, and 2′ can be mapped to 1, 2, 4 and 5.

Given a belief function and an anonymized database, the space of all consistent
crack mappings can be represented by a bipartite graph G = (J ∪I, E), where each
mapping is a perfect matching in G. The edge (x′, y) in G denotes the fact that
a mapping used by a hacker can map the anonymized item x′ to the item y ∈ I.
Thus, for the ignorant belief function, we have a complete bipartite graph. Note
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that, if a belief function is compliant on item x, then the edge (x′, x) is present in
the bipartite graph.

Figure 3(a) shows the bipartite graphs corresponding to the belief functions f
and h in Figure 2. For the latter, as discussed in the previous paragraph, 1’ is
connected to 1, 2, 3, 4 and 6; 2’ is connected to 1, 2, 4 and 5; and so on.

1

2

3

4

5

6

1’

2’

3’

4’

5’

6’

1

2

3

4

5

6

1’

2’

3’

4’

5’

6’
(a) Space of Mappings for Items

2

5

1

3

4

6

2’

5’

1’

3’

4’

6’

3

5

2
4

1

6

1’

3’

4’

6’

2’

5’

(b) Space of Mappings for Frequency Groups

Fig. 3. Space of Consistent Mappings for f, h

Figure 3(b) shows an alternative presentation of the mappings of Figure 3(a) by
grouping the items in the anonymized domain and the original domain and viewing
mappings in terms of these groups. The anonymized items can be grouped based
on their observed frequencies. On the other hand, the items in the original domain
can be grouped based on the anonymized items that can map to them. Specifically,
items x and y in I belong to the same group if {w′|(w′, x) ∈ G} = {w′|(w′, y) ∈ G},
where G denotes the bipartite graph. Consider the group mapping corresponding
to the belief function h (of figure 2). Even though items 2 and 4 have different
belief intervals, they belong to the same group as the same set of anonymized items
can map to these two items.

Note that given a belief function and a corresponding bipartite graph, there may
not exist a perfect matching. As a simple example, let the original domain be {1,
2} and the corresponding anonymized domain be {1’, 2’}. The bipartite graph may
map both 1’ and 2’ to 2, with no anonymized item mapped to 1. Throughout our
analysis, situations like this are dealt with using α-compliancy (Section 4.2). Until
then, we consider only compliant belief functions.

2.3 Belief Functions for Itemsets

So far, we have only focused on belief functions for single items, i.e., singleton
itemsets. Below we extend the notion introduced above to itemsets of arbitrary
size. There are two issues. First, when dealing with items, we are dealing with
a domain I of items of a reasonable size (say n). However, when we generalize
this directly to itemsets, we are suddenly dealing with an exponential number of
itemsets (2n possible itemsets). Even for a reasonably small domain of say 100
items, this is a large number of itemsets to deal with. Second, even if we do
manage to compute the expected number of itemsets that are cracked, the data
owner has no idea which are the individual itemsets that are more likely or less
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likely to be cracked. Suppose the expected number of cracks is 14000, the owner
has no idea which 14000 itemsets out of a possible 2n are likely to be cracked. For
the reasons discussed above, instead of dealing with the entire space of 2n itemsets,
the data owner picks Θ, a set of itemsets of interest. The data owner is interested
in ensuring that the fraction of itemsets from Θ that are likely to be cracked with
probability at least σ is not more than τ . We formally define this requirement as
follows and illustrate these parameters with some examples.

Definition 2.1 Tolerance Requirement for Itemsets. Let Θ be a subset of the pow-
erset 2I of items. We say that an itemset is vulnerable, if its probability of being
cracked is ≥ σ; we call σ, which is a real number in [0,1], the crack-danger thresh-
old. The tolerance requirement for itemsets states that the fraction of itemsets in Θ
which are vulnerable, must be ≤ τ . This is denoted by the predicate R(Θ,σ, τ, M)
which is true if the requirement is satisfied and false otherwise. The measure M
stands for heuristic measures or estimates in case the exact probability cannot be
computed.

Example 1: The data owner is interested in the set of all pairs of items and is
willing to tolerate at most 10% of the pairs being in-danger, Say, the data owner
sets the crack-danger threshold to be σ = 50%. Then, Θ0 = {X ⊂ 2I : (|X | = 2)}
and the thresholds are σ = 0.5 and τ = 0.1.
Example 2: Knowing that items which occur very frequently are likely to be
known by competitors, the data owner may decide to focus on the items that are
less obvious. For example, the data owner may be less interested in the top K% of
the most frequent items and their supersets, and may be more keen to protect the
identities of the 2-itemsets formed from the remaining items. For our experiments
to be shown later, we consider two values of K: (i) K = 10% and (ii) K = 20%. We
call the set of interested itemsets Θ1 when K = 10% and Θ2 when K = 20%. Thus,
for Θ1 (resp., Θ2) and parameters τ = 0.1 and σ = 0.5, the owner is interested in
ensuring that 90% of the itemsets in Θ1 (Θ2) are each cracked with a probability
less than 0.5.

These examples present only a small set of possibilities out of what can be spec-
ified by the model. One can still explicitly enumerate all the itemsets of interest
or specify them succinctly using other means and also specify different thresholds
for τ and σ for different classes of subsets of items. One could use constraints to
specify such classes (e.g., as in [Raymond T. Ng et al. 1998]). We do not explore
these issues further. Henceforth our focus is on the disclosure risk of item sets,
unless otherwise specified.

3. THE PROBABILITY OF CRACKING AN ITEMSET - THE EXTREME CASES

To decide whether to release the anonymized data, the data owner needs to assess
the risk of disclosure. Given the bipartite graph corresponding to the belief function,
there are many possible crack mappings, giving rise to different numbers of cracks.
Throughout this paper, we assume that each consistent crack mapping is equally
likely. (In practice, the hacker may use additional prior knowledge to favor one crack
mapping over another. We consider this beyond the scope of this work.) Hence,
the risk of disclosure can be reasonably measured by the expected percentage or
number of cracks. We first consider the two extreme cases of prior knowledge and
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derive exact formulas for the probability of cracking a k-itemset in each of these
cases.

3.1 The Ignorant Belief Function

When the hacker is ignorant of the frequencies of items in I, (s)he can map an
anonymized item to any item in I and the space of mappings is a complete bipartite
graph. Consider the ignorant belief function g in Figure 2. There are 6 items in the
domain I. What is the probability that the itemset {1, 2} is cracked? Those crack
mappings in which the items 1 and 2 are mapped to the items 1′ and 2′ (irrespective
of order) are the mappings in which the itemset {1, 2} is cracked. The number of
such mappings is given by 2×4! = 48. The total number of crack mappings for the
complete bipartite graph is 6! = 720. Hence the probability that {1, 2} is cracked is
48
720 = 0.067. Since the bipartite graph is complete, this is the probability that any
itemset of size 2 is cracked independently of others. Generalizing this analysis, let us
compute the probability of a k-itemset {i1, . . . , ik} being cracked out of a domain
of n items. Mappings in which the item set {i1, . . . , ik} is cracked are precisely
those mappings in which the items i1, ..., ik are mapped to the items i′1, . . . , i

′
k (not

necessarily in that order. The set {i1, . . . , ik} can map to {i′1, . . . , i
′
k} in k! ways

and the remaining items can be mapped in (n− k)! ways. There are thus a total of
k! × (n − k)! mappings in which the k-itemset is cracked. The complete bipartite
graph on n items admits a total of n! crack mappings and thus the probability
of the k-itemset being cracked is k!×(n−k)!

n! = 1
(

n
k

) . We just proved the following

lemma:

Lemma 3.1. Let G = (J ∪I, E) be a complete bipartite graph modeling the crack
space of an ignorant belief function f . The probability of cracking a k-itemset using
a consistent mapping from G, is 1

(n
k)

.

Proof. Follows from the arguments above.

Lemma 3.2. Let G be a complete bipartite graph. Let X be a random variable
representing the number of k-itemsets that are cracked by a randomly chosen map-
ping obtained from G. Then the expected number of cracks, E(X) = 1.

Proof. Follows from Lemma 3.1 and the observation that there are
(

n
k

)

itemsets
of size k.

As a result of the lemma, the expected fraction of cracks 1

(n
k)

is small for large

domains and thus, for large domains, when the hacker is ignorant,4 anonymization
is indeed a good option for the data owner. What can we say about the expected
number of cracks, when only a subset of k-itemsets are of interest to the data
owner? We can consider this question in two ways, depending on how the itemsets
of interest are specified: (1) “all k-itemsets chosen from a subset of items I1 ⊂ I
are of interest” or (2) the enumerated set of k-itemsets S1, S2, ..., S! are of interest.
The above lemma can be generalized to yield the expected number of cracks as
follows.

4In practice, the hacker is seldom ignorant. The main message of this analysis is that cracking an
itemset by chance is very unlikely for large domains.
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Lemma 3.3. Let G be a complete bipartite graph. (1) Let I1 ⊂ I be a subset
of items of interest and let |I1| = n1. Let X be a random variable representing
the number of interested k-itemsets (that are subsets of I1) that are cracked in
a mapping obtained from G. Then the expected number of interested k-itemsets

cracked is E(X) =
(n1

k )
(n

k)
. (2) Let S1, S2, ..., S! be the k-itemsets of interest. Then

the expected number of k-itemsets of interest that are cracked is E(X) = !
(

n
k

) .

Proof. Follows from the fact that any k-itemset has a probability of 1
(

n
k

) of

being cracked. In (1) the number of interested k-itemsets is
(

n1

k

)

while in (2) this
number is %.

3.2 Compliant Point-Valued Belief Function

A paranoid data owner may analyze risk assuming that the hacker has exact knowl-
edge of every item’s frequency. Note that this extreme case may be unrealistically
conservative. Nonetheless, the analysis leads to interesting observations. The com-
pliant point-valued belief function which models this exact knowledge, partitions
the bipartite graph of crack mappings into components based on the frequency of
the items. Consider the compliant point-valued belief function f shown in Figure 2
and the bipartite graph representing its crack space shown in Figure 3(a). Let us
compute the probability of cracking the itemset {2, 3, 4}. Note that items 3 and 4
have the same frequency and hence lie within the same frequency group. The item
2 has a distinct frequency and is in a singleton frequency group. Hence the item 2 is
cracked perfectly (with probability 1). However, the items 3 and 4 lie in the group
consisting of the items {1, 3, 4, 5} and within this group, the hacker has no further
knowledge to distinguish between the items. Also, the cracking of items 3 and 4
is independent of cracking the item 2 as they lie in different frequency groups. By
Lemma 3.1, the probability of cracking the itemset {3, 4} in the group {1, 3, 4, 5}
is 1

(4

2)
= 1

6 . Hence the probability of cracking the itemset {2, 3, 4} is the product

1 × 1
6 = 1

6 . This result is generalized and formally stated as follows.

Lemma 3.4. Let G = (I∪J , E) be a bipartite graph representing the crack space
of a compliant point-valued belief function. Let G1, . . . , Gc be the items in I in the
various connected components of G and let |Gi| = mi, for 1 ≤ i ≤ c . Let Ik ⊂ I be
a k-itemset and let Xi = Ik ∩Gi and |Xi| = xi, for 1 ≤ i ≤ c. Then, the probability
of cracking the itemset Ik using a consistent mapping from G is

∏c
i=1

1

(mi
xi

)
.

Proof. The items in Ik that lie in different frequency groups of G are given by
the sets X1 = Ik ∩G1, . . . , Xk = Ik ∩Gk respectively. Cracking items within each
Xi is independent of cracking items in Xj , j -= i. Hence, the probability that Ik is
cracked is the product of the probability of cracking each of the Xi. Since there are
mi items in the group Gi and each component is a complete bipartite graph, the
probability of cracking the items in Xi is 1

(mi
xi

)
, and multiplying the probabilities

across the groups proves the claim.

Let us next consider the situation where there are g distinct observed frequencies
for the anonymized items, thus splitting the graph G into g connected components
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G1, ..., Gg. Note that each Gi is a complete bipartite graph. What can we say about
the expected number of k-itemsets that can be cracked using a mapping obtained
from G? For simplicity, let us assume |Gi| ≥ k and also that k ≤ g.

Lemma 3.5. Let g be the number of distinct observed frequencies of the anonymized
items. Let G be a bipartite graph modeling the crack space of the compliant point-
valued belief function. Let X be a random variable denoting the number of cracks
in a mapping obtained from G. Then the expected number of cracks, E(X) =
∑

1≤i≤k

(

g
i

)(

k−1
i−1

)

.

Proof. Let S be a k-itemset. In general, S is partitioned into S ∩ G1, S ∩
G2, ..., S ∩ Gg. Let mi = |Gi| and xi = |S ∩ Gi|. Then the probability that S is
cracked is the probability that each of the sets above is cracked. Cracking of itemsets
in different components is clearly independent of each other. The probability of
S∩Gi (whose cardinality is xi) being cracked is 1

(mi
xi

)
. So, the probability of S being

cracked is 1

(m1
x1

)×···×(mg
xg

)
. Notice that itemset S′ such that |S′ ∩Gi| = xi, 1 ≤ i ≤ g

has the same probability of being cracked as S. There are precisely
(

m1

x1

)

×· · ·×
(

mg

xg

)

such itemsets, so the expected number of k-itemsets that may be cracked, among
those that are split between the g components exactly like S, is 1. The number
of k-itemsets that have a non-empty overlap with i components is the number of
ordered partitions of k into i parts, and is

(

k−1
i−1

)

. The total expected number of

cracks of k-itemsets is thus
(

g
1

)

+
(

g
2

)(

k−1
1

)

+
(

g
3

)(

k−1
2

)

+ · · ·+
(

g
i

)(

k−1
i−1

)

+ · · ·+
(

g
k

)(

k−1
k−1

)

=
∑

1≤i≤k

(

g
i

)(

k−1
i−1

)

.

To get a feel for what this means, let us consider an example. Let n = 100, g = 4,
m1 = · · · = m4 = 25 and k = 3. The total number of k-itemsets in the domain
is

(

100
3

)

. The expected number of k-itemsets cracked is 4 +
(

4
2

)(

2
1

)

+
(

4
3

)(

2
2

)

= 20,

which is a very small fraction of
(

100
3

)

. The analysis above easily extends to the case
where |Gi| < k for some components, or k > g, or both. The details are omitted.

Note that even if the hacker has exact knowledge, the expected number of cracks
need not necessarily be

(

n
k

)

, as the items with equal frequencies provide camouflage
to each other so that their true identities are protected. The above lemma can be
generalized to handle a subset I1 ⊂ I of items of interest by using Lemma 3.3 on
each frequency group independently.

Lemma 3.6. Let g be the number of distinct observed frequencies of the anonymized
items. Let m1, . . . , mg be the size of each of the frequency groups. Let c1, . . . , cg be
the number of items the data owner is interested in, for each of the frequency groups.
Let G = (J ∪I, E) be the bipartite graph representing the space of all mappings and
let X be a random variable representing the number of interested k-itemsets cracked
by a mapping obtained from G. Then, the expected number of interested k-itemsets

being cracked is E(X) =
∑g

i=1

(

g
i

)

×
∑

x1+···xi=k & xj %=0,1≤j≤i

(c1
x1

)···(ci
xi

)
(m1

x1
)···(mi

xi
)
.

Proof. The main difference with the proof of Lemma 3.5 is that in Lemma 3.5,
every collection of k-itemsets with an overlap of x1 items from G1, x2 items from
G2, ..., xi items from Gi had an expected number of cracks of 1. In the current
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lemma, however, this expectation drops to
(c1

x1
)···(ci

xi
)

(m1
x1

)···(mi
xi

)
. Thus instead of the factor

(

g
i

)

, we must instead use the weighted sum
∑

x1+···xi=k & xj %=0,1≤j≤i

(c1
x1

)···(ci
xi

)
(m1

x1
)···(mi

xi
)
. The

remaining steps of the reasoning are identical and are omitted.

4. COMPLIANT INTERVAL BELIEF FUNCTIONS

The analysis of risk for extreme cases is not very realistic in practice. From the
data owner’s perspective, the risk analysis for exact knowledge is the worst case.
In this section, we analyze the more realistic situation when the hacker’s belief is
a compliant interval belief function, where the hacker associates arbitrary intervals
tighter than [0, 1] with various items in the domain. The belief function h in figure 2
is an example of an interval belief function.

4.1 The O-Estimate for Items

Let us begin with the simpler case of dealing with singleton itemsets, i.e., k = 1.
Even for this simplification, a direct method to compute the expected number
of cracks for an arbitrary compliant interval belief function involves computing
permanents of the bipartite graph representing the crack space and its many induced
subgraphs. For more details of the exact formula, the reader is referred to [Laks V.S.
Lakshmanan et al. 2005]. The problem is that computing the permanent is known
to be very difficult – more precisely, a #P -complete problem [Leslie G. Valiant
1979]. Various approximations have been developed for computing permanents
[Mark Jerrum and Umesh Vazirani 1996; L.E. Rasmussen 1994]. The state of the
art is the polynomial-time randomized approximation scheme presented in [Mark
Jerrum et al. 2001]. However, the running time is of the order of O(n22)! Thus,
for arbitrary interval belief functions and realistic domain sizes, it is not feasible
to use the direct approach to compute the expected number of cracks. Below we
provide a heuristic algorithm that applies to a general interval belief function and
computes an approximation to the expected number of cracks.

Note that the proof of the previous lemmas on singleton itemsets repeatedly
apply a well-known result from statistics. Let X and Y be two random variables.
Then it is the case that E(aX + bY ) = aE(X) + bE(Y ). This identity does not
require that X and Y be independent. Thus, for a general bipartite graph, we can
still analyze the expected number of cracks by examining each item in an isolated
fashion.

Let β be an interval belief function and let G be the bipartite graph representing
the space of all mappings. For each x ∈ I, let Ox denote the outdegree of the
node x in G. The outdegree of x basically denotes the number of anonymized items
that can be mapped to it. Note that the probability that the anonymized item x′

correctly maps to x is given by 1
Ox

(under the compliancy assumption, this edge is
always guaranteed to exist in the space of mappings). Thus, the expected number
of cracks can be estimated by summing this probability across all the items in I.
We call this heuristic the O-estimate (”O” standing for ”Outdegree”) (denoted
OE(β,D)) and it is defined as

∑

x∈I
1

Ox
. Figure 4 outlines a procedure to compute

the O-estimate, given a belief function and a database. A little analysis shows that
the total running time of an efficient implementation is O(|D|+n log n) (for details
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Algorithm O-estimate

Input: β - interval belief function over I, D - Anonymized Database over J
1. Compute frequency of single items in J from D.
2. Compute the frequency groups g1, . . . , gk.

Let n1, . . . , nk be their sizes and f1 < f2 · · · < fk be their frequencies.
3. Initialize Oest = 0
4. For each x ∈ I

a. Compute nx, the number of anonymized items that can map to x.
b. Oest = Oest + 1

nx

5. return Oest;

Fig. 4. The O-estimate Heuristic

Algorithm Propagate

Input: G - A fully compliant bipartite graph over I ∪ J
1. while there is a node with degree 1 in G

Let x be this node (the same holds for x′).
a. Remove the nodes x and x′ from G and their incident edges.
b. For each y such that the edge (x′, y) is just removed, decrement Oy by 1.

Fig. 5. Reducing the Outdegrees by Propagation

see [Laks V.S. Lakshmanan et al. 2005]).
Let us try to understand why the O-estimate is not exact. Consider the example

in Figure 6(a). The outdegrees of 1, 2, 3 and 4 are 1, 2, 3 and 4 respectively and the
O-estimate is 1+ 1

2 + 1
3 + 1

4 = 25
12 . However, consider node 1. Only 1′ can map to it

in any perfect matching. This leads to the other edges on 1 to be removed from the
graph. As a consequence, 2′ is the only node that can map to 2 and this cascades
to the scenario when 1′, 2′, 3′ and 4′ map to 1,2,3 and 4 respectively. Hence, the
number of cracks is 4. The same argument can be given by starting with node 4′

(which is also of degree 1).
As a result, when the outdegree of a node is 1, propagation may reduce the

outdegrees of other items. Figure 5 outlines an O(ve) procedure to handle this
propagation, where v is the number of nodes in the graph and e is the number
of edges in the graph. Even though the propagation may go on for v steps in the
worst case, the fixed point is often reached in much fewer iterations in practice. This
propagation procedure should be applied after step 4(a) in Figure 4. Hereafter, we
assume that propagation has been done before computing outdegrees.

The discussion so far focuses on a special case when an (anonymized) item has
an outdegree 1. A similar phenomenon occurs when the outdegree is 2 or higher.
The example in Figure 6(b) differs from that in Figure 6(a) in that no item can be
surely cracked. However, no perfect matching can contain the edge {2′, 3} and this
edge is hence irrelevant. Yet, the O-estimate counts the edge for the outdegree of
item 3.

In spite of the shortcomings discussed so far, O-estimates have a nice property,
namely, monotonicity. As the belief interval for an item x gets wider, the number
of anonymized items that can map to it increases and hence, the expected number
of cracks drops.
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Fig. 6. Inexactness of the O-estimates

Definition 4.1. Let β1 and β2 be two interval belief functions on I. Then, β1 .
β2 whenever ∀x ∈ I, β1(x) ⊆ β2(x). We say that an interval [l1, r1] ⊆ [l2, r2]
whenever l1 ≥ l2 and r1 ≤ r2.

As the uncertainty in belief (width of intervals) grows, we would expect it to be
more difficult on the average to crack individual items as captured by the following
lemma. We will see in the next section how this property can be made use of.

Lemma 4.2 Monotonicity of OE. Let D be an anonymized database. Let
β1 and β2 be two compliant interval belief functions such that β1 . β2. Then,
OE(β1,D) ≥ OE(β2,D).

4.2 α-Compliant Belief Functions for Items

All our derivations so far have assumed full compliancy, i.e., for each item, the
hacker’s belief interval contains the true frequency of the item. This is possible
if the hacker has very good knowledge about the items, or if the intervals are
wide or conservative. In practice, there is no reason to believe full compliancy is
always possible, or even likely and hence, we examine α-compliant belief functions.
However, they are tricky to deal with because the hacker would have no idea which
ones of his/her guessed intervals are not correct. (Had (s)he known, (s)he would
have changed them in the first place!) We defer this issue to the next section and
proceed with the analysis of computing the expected number of cracks, assuming
that we somehow know which items are guessed wrong.

Let β be a belief function on I such that for IC ⊂ I, the function is compliant and
for I − IC the function is non-compliant. Thus, α is defined as the ratio of |IC | to
that of |I|. We apply the O-estimate to approximate the expected number of cracks.
However, the consistency assumption guarantees that the items x ∈ (I − IC) will
not be cracked. Thus, the O-estimate for β simply sums over those items x ∈ IC

and is defined as OE(β,D) =
∑

x∈IC

1
Ox

.
Intuitively, when belief functions become more and more non-compliant, the ex-

pected number of cracks should decrease, as non-compliant items cannot be cracked
by a consistent mapping. The following lemma formalizes this monotonicity.

Definition 4.3. Let β1 and β2 be two interval belief functions on I. Let β1 be
compliant on the set of items I1

C ⊂ I, and β2 be compliant on I2
C ⊂ I. We say

that β2 .C β1 whenever: (i) I2
C ⊆ I1

C ; and (ii) ∀x ∈ I2
C , β1(x) ⊆ β2(x).

The above definition imposes a partial order on α-compliant belief functions,
based on the subset of compliant items. As this subset becomes smaller and smaller,

ACM Journal Name, Vol. V, No. N, September 2008.



On Disclosure Risk Analysis of Anonymized Data · 127

the expected number of cracks becomes smaller as the guessed intervals of the
compliant items do not shrink.

Lemma 4.4 Monotonicity of OE for α-compliancy. Let D be an anonymized
database. Let β1 and β2 be two interval belief functions such that β2 .C β1. Then,
OE(β2,D) ≤ OE(β1,D).

4.3 The OS Estimate for Itemsets

The cracking of different items in a set is usually dependent on each other. The
O-estimate heuristic for items basically relaxes this assumption and computes the
probability of cracking an item independent of others and uses this to compute the
expected number of cracks. We use a similar technique and propose two heuristics
for estimating the probability of cracking itemsets.

Let G be the bipartite graph representing the space of crack mappings for an
interval belief function β. Let Ik = {i1, i2, . . . , ik} be a k-itemset. Let N(ij)
denote the set of neighbors of ij in G. A consistent mapping in G can thus map
ij to any of the anonymized items in N(ij). The itemset Ik is cracked whenever
each item in Ik maps to any of the anonymized items I ′

k = {i′1, . . . , i
′
k}. Let us

first consider the item i1. The probability that item ij maps to any of the items in

I ′
k (independent of others) is given by |N(ij)∩I′

k|
|N(ij)|

. By assuming the independence

of events, the probability that the items in Ik map to the items in I ′
k is given

by
∏k

j=1
|N(ij)∩I′

k|
|N(ij)|

and we call this estimate the OS heuristic (”OS” standing for

”Outdegree for Sets”). Whenever N(ij) is empty for even a single ij, the resulting
estimate is assumed to have a value of 0. More formally,

OS(Ik,β) = 0 , if ∃x ∈ Ik : N(x) = ∅

=
∏

x∈Ik

|N(x)∩I′
k|

|N(x)| , otherwise

We have considered a second way to estimate the probability of cracking Ik by
treating the entire set of items as a single entity. In doing so, we merge all the
nodes corresponding to the items in Ik and take the union of the neighbors of the
items in Ik. If the union contains only a part of I ′

k, then the probability of cracking
the itemset Ik is zero. Otherwise, we merge the items corresponding to I ′

k in the
union and compute the probability as the ratio of 1 over the size of this union. This
estimate is called the OS2 heuristic and is formally defined as

OS2(Ik,β) = 0 , if I ′
k -⊆

⋃

x∈Ik
N(x)

= 1
|
⋃

x∈Ik
N(x)|−k+1 , otherwise

However, in all our experiments, OS almost always dominates OS2 and hence,
we drop further discussion on the OS2 estimate.

Note that the definition of OS directly applies to α-compliant belief functions,
under the same assumptions as discussed in Section 4.2. Figure 7 outlines a pro-
cedure to compute the OS estimate for a single itemset X . Step 1 makes one pass
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Algorithm Compute-OS-Estimate

Input: X - An itemset over I, β - Belief Function, D - Anonymized Database over J
1. For each x′ ∈ J , Compute the frequency F (x′) in D.
2. OS = 1
3. For each x ∈ X

a. Compute nx =| N(x) |.
b. ix = 0
c. For each x′ ∈ X ′

if F (x′) ∈ β(x), increment ix
d. OS = OS × ix

nx

4. return OS.

Fig. 7. Computing the OS Estimate

over the database D and uses O(n) space, where |I| = |J | = n. Step 3 runs for
|X | iterations. Step 3(a) takes O(n) time and O(n) space. Step 3(c) takes O(|X |)
time. Thus, step 3 in total takes O(n × |X |) time and O(n) space.

Let us illustrate the OS estimate with an example. Consider the crack space
shown in Figure 6(b). There are four possible consistent mappings for this crack
space. The probability of cracking itemset {1, 2} is 1 as every consistent mapping
maps the items 1 and 2 to the items 1′ and 2′. According to the OS heuristic, the
probability of 1 mapping to the items 1′ and 2′ is 1 as N(1) = {1′, 2′}. The same
goes for 2 and hence the OS heuristic for {1, 2} gives a value 1.

Consider the itemset {1, 3}. The actual probability of cracking this itemset is
1
4 . However, the probability of 1 mapping to the itemset {1′, 3′} is 1

2 and the
probability of mapping 3 to the itemset {1′, 3′} is 1

3 and hence OS({1, 2}) = 1
2×

1
3 =

1
6 . Similarly, it can be seen that for the itemset {2, 3}, the exact probability of
cracking this itemset is 1

4 while OS({2, 3}) = 1
3 . Note that while the OS heuristic

underestimates the probability of cracking {1, 3}, it overestimates the probability
of cracking {2, 3}. The discrepancy is due to the assumption that cracking these
itemsets are independent. We will study its behavior in detail in the experimental
section.

The OS estimate has the nice property of monotonicity which is formalized for
compliant and α-compliant interval belief functions below. For the following results
. and .C are given by Definitions 4.1 and 4.3 respectively.

Lemma 4.5 Monotonicity of OS. Let D be an anonymized database and let
β1 and β2 be two interval belief functions such that β2 . β1. Then, for an itemset
X ⊆ I, OS(X,β1) ≥ OS(X,β2).

Proof. Let G1 and G2 be the bipartite graph representing the crack spaces for
β1 and β2 respectively. Then, for each x ∈ X , N1(x) ⊆ N2(x) where N1 and N2

are the neighbors in graphs G1 and G2 respectively. The proof essentially follows
from this observation and the definition of OS.

The proof of monotonicity for α-compliancy is similar and follows from the defi-
nition of .C .

Lemma 4.6 Monotonicity for α-compliancy. Let D be an anonymized database
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and let β1 and β2 be two interval belief functions such that β2 .C β1. Then, for an
itemset X ⊆ I, OS(X,β1) ≥ OS(X,β2).

5. RECIPES FOR RISK ASSESSMENT

Thus far, we studied various belief functions as a means of capturing information
that a hacker may possess. We now tackle the original dilemma facing the data
owner, of whether to release the anonymized data: Just how safe is the anonymized
data in the presence of partial information?

5.1 A Recipe for Items

Let us begin with the absolute worst case: the compliant, point-valued belief func-
tion. We feel that for most applications, the worst case is too conservative, as it
is unrealistic to expect the hacker to know each frequency precisely. The expected
percentage of cracks is typically unrealistically high in this case. Thus, the owner
is ill advised to decide based on this value, unless (s)he is paranoid. It makes sense
to relax the worst case in the following two ways. First, the compliant point-valued
belief function can be extended to a compliant interval belief function, i.e., if fx

denotes the true frequency of item x, then the interval guessed by the compliant
interval belief function is set to [fx − δ, fx + δ]. For the data owner, this corre-
sponds to the hacker being accurate in guessing a right “ball-park” frequency range
for every item. The question here is what is an appropriate value of δ to use. As a
heuristic, we propose using the median frequency gap for every item. That is, the
differences between two successive frequency groups in the data are computed, and
the median of these differences is used.

While more details of experiments will be given in the next section, the table in
Figure 10 shows various statistics of the benchmark datasets: the number of items
in the domain, the number of transactions, the number of distinct frequency groups,
the number of singleton frequency groups, and the mean, median, minimum and
maximum frequency gap between successive groups. We make two observations.

—These datasets are chosen to represent various characteristics. For instance, the
130 items of the CONNECT dataset form 125 distinct frequency groups, 122 of
which consists of a single item. In contrast, the 7120 items of the PUMSB items
cluster into 651 frequency groups. Nevertheless, the large number of singleton
frequency groups confirm that for real datasets, the compliant point-valued belief
function gives too high an estimate on the percentage of cracks.

—For all the datasets, the median frequency gap is much closer to the minimum
than to the maximum. In contrast, the average frequency gap is much larger than
the median. Thus, by choosing the median value as the width δ of the intervals
(hereafter denoted as δmed), the data owner errs on the conservative side (by
monotonicity Lemma 4.2). Thus, as compared with using the median, using the
average may under-estimate the percentage of cracks. Other alternatives for the
width of intervals are discussed in Section 6.2.3.

Figure 8 shows a recipe we suggest to a data owner to assess the risk of releasing
anonymized data. Steps (1) to (7) follow what we have discussed so far. Notice
that the recipe requires an input percentage τ , called the degree of tolerance, which
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Algorithm Assess-Risk

Inputs:τ - degree of tolerance; D - Anonymized Database
1. Compute g based on Lemma 3.5.
2. If g ≤ (τ × |I|), disclose D and stop.
3. Compute the frequency groups from D, and the median gap M between frequency groups
4. Set width δmed to be M .
5. Set up β(x) = [fx − δmed , fx + δmed] for x ∈ I, where fx denotes the frequency of x ∈ I.
6. Compute the O-estimate OE(β,D) according to Figure 4.
7. If OE(β,D) ≤ (τ × |I|), disclose D and stop.
8. Set α to be 1.
9. Perform a binary search on α to determine the largest α so that the corresponding α-compliant

belief function β satisfies the condition OE(β,D) ≤ (τ × |I|).
10. Return the value of α.

Fig. 8. A Suggested Recipe for Risk Assessment

gives a fraction of the items I that the data owner can tolerate being cracked. If
the expected number of cracks based on the compliant point-value belief function is
already within the tolerance, then it is an easy decision to release the anonymized
data, and the algorithm stops in step (7). In a more likely case, however, this
estimate is too high. The recipe then suggests computing the O-estimate based on
the compliant interval belief function with the width δmed (i.e., steps (3) to (7)).
Note that we use a uniform width of 2 × δmed for all the intervals. This does not
restrict a hacker from using a non-uniform width as (s)he might have varying levels
of knowledge about different items. But even if this is true, there is little reason to
believe that the data owner has access to the hacker’s belief function. Thus, in the
recipe, it is a reasonable simplification to use a uniform width.

It is possible that the O-estimate based on the compliant interval belief function
is still higher than the owner’s tolerance. After all, it is unlikely that the belief
function is fully compliant, particularly if the domain is large. Thus, we resort to a
second possible relaxation of the worst case, namely, α-compliant belief functions.

Applying the O-estimate for an α-compliant β, is tricky in practice. The difficul-
ties are that (i) it is not clear which values of α could be used, and (ii) even if an
α value is established, which specific subset of compliant items IC should we use.

Instead of picking specific α values to use, our approach is to examine the risk
over a range of α values. Specifically, we use the data owner’s specified tolerance τ
to determine the largest α value for which the O-estimate falls within the tolerance.
Given the monotonicity stated in Lemma 4.4, we can use a binary search to find this
value αmax. Essentially, it says that in order for the hacker not to crack more than
the fraction τ of items that the owner can tolerate, the hacker must not correctly
guess the frequency intervals of more than αmax × |I| items. It is up to the owner
to decide whether αmax is high enough for comfort. For example, if αmax = 0.8,
then the data owner may decide to disclose the data because the owner considers it
highly unlikely that the hacker can guess correctly the frequency intervals, within
δmed, of 80% of the items, particularly when the domain is large. On the other
hand, if αmax = 0.2, the data owner may decide to withhold the data because 20%
correct guesses may be too small for comfort. Later in Figure 15, a heuristic is
proposed to evaluate whether αmax is high enough.

Steps (8) and (9) in Figure 8 outline the binary search. There is, however,
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one important detail. The binary search is based on the monotonicity stated in
Lemma 4.4, which requires a partial ordering on the subset of compliant items IC .
This brings us back to the general issue of how to determine membership in IC .
Our approach is to take a random selection of items and average over a few runs.
For example, let us say that when α = 1, step (7) gives too high an expected
number of cracks. Thus, the algorithm enters into the first iteration of the binary
search, with α = 0.5. Say the algorithm averages over 5 runs. Thus, there are five
subsets of compliant items I1

C , . . . , I5
C , each having 50% of items randomly picked

to be non-compliant. These subsets give rise to five 0.5-compliant belief functions
β1, . . . ,β5. Thus, the average value of OE(β1,D), . . . , OE(β5,D) is used in the
condition check in Step (9). Let us suppose that the above average value is still
beyond the owner’s tolerance, and the binary search continues with α = 0.25. In
that case, half of the compliant items in each of I1

C , . . . , I5
C are randomly picked to

be non-compliant. The search then continues as discussed before. Anchoring step
(9) in this manner over multiple IC ’s satisfies the requirement of Lemma 4.4.

5.2 A Recipe for Itemsets

Recall that for the case of itemsets, the data owner provides three parameters: Θ,
a set of itemsets that the owner wishes to protect, σ, a probability threshold and τ ,
a fraction of itemsets in Θ for which a breach can be tolerated. This is modeled as
the tolerance requirement given in Definition 2.1. The recipe for risk analysis for
itemsets is very similar to that for items except that we now analyze the fraction of
Θ that are cracked with a probability of at least σ, for the various belief functions.
The data owner may start risk analysis with the absolute worst case and analyze
the risk when the hacker has exact knowledge, namely, the compliant point-valued
belief function. We feel that this case is too conservative in practice and since many
items are cracked perfectly under this assumption, the itemsets are also likely to
be cracked with a very high probability (due to the presence of a large number of
singleton frequency groups and groups of small cardinality). Hence, it makes sense
to relax the worst case and this relaxation is done by relaxing the belief function
exactly as in Section 5.1.

Algorithm Assess-Risk-Itemsets
Inputs:σ - Probability Threshold; D - Anonymized Database, τ - Fraction of Itemsets;

Θ - Itemsets of Interest
1. For each X ∈ Θ, Compute exactly, the probability of cracking X using Lemma 3.4.
2. If this satisfies the tolerance requirement of Definition 2.1, disclose D and stop.
3. Compute the frequency groups from D, and the median gap M between frequency groups
4. Set width δmed to be M .
5. Set up β(x) = [fx − δmed, fx + δmed] for x ∈ I, where fx denotes the frequency of x ∈ I.
6. Compute OS estimate for each X ∈ Θ.
7. If the tolerance requirement of Definition 2.1, R(Θ, σ, τ, OS) is true, disclose D and stop.
8. Set α to be 1.
9. Perform a binary search on α to determine the largest α so that the corresponding α-compliant

belief function β satisfies the tolerance requirement R(Θ, σ, τ, OS).
10. Return the value of α.

Fig. 9. A Recipe for Risk Assessment for Itemsets

Figure 9 shows a new recipe that we suggest to the data owner for disclosing
anonymized data when risk analysis is done for itemsets. Note that the recipe is
essentially the same as that for items in terms of considering the various belief
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functions and their compliancy. The selection of the width of intervals and deter-
mining the degrees of compliancy are exactly as in Sections 5.1 and 4.3. The one
change is the estimate that is computed and its interpretation. Instead of com-
puting the O-estimate for the expected number of cracks, the recipe computes the
fraction of itemsets in Θ that are cracked with a probability at least σ and this
fraction is compared with the owner’s tolerance threshold τ . This is first computed
for the compliant interval-valued belief function – the data owner assumes that the
hacker has a compliant interval belief function. If the fraction is too high, then
the tolerance requirement is not satisfied. In many cases, the assumption that the
hacker’s belief function is fully compliant may also turn out to be too conservative.
The recipe thus computes the estimates for an α-compliant belief function. Instead
of picking a specific value for α, the risk is analyzed over a range of compliancy
values and the largest compliancy value αmax, for which the tolerance requirement
is satisfied is returned to the data owner. The value αmax thus models the smallest
fraction of items on which the hacker has to be compliant to breach the tolerance
requirement. Like before, instead of explicitly making a decision about disclosure,
it is for the owner to decide whether αmax is high enough for comfort.

6. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the accuracy of the various estimates and
the effectiveness of the recipes.

6.1 Experimental Setup

The table in Figure 10 shows the characteristics of the benchmark datasets obtained
from [S. Hettich and S.D. Bay 1999; FIMI 2003] used in our experiments. The
domain varies from 75 to 16470 items, and the number of transactions varies from
3196 to 340184. In many datasets, the number of singleton frequency groups is high
in relation to the total number of items confirming that compliant point-valued
belief functions are too conservative in practice. However, the RETAIL dataset is
very different. The ratio of the number of transactions to the domain size is 1-2
orders of magnitude smaller than those for the other datasets. We label this dataset
as “sparse”. The table also shows the average, median, minimum and maximum
gap between frequency groups.

All procedures were implemented in C++. The code to simulate the expected
number of cracks for a given interval belief function needs to generate many con-
sistent matchings from the bipartite graph that represents the crack space. This
generation of samples is complicated by the fact that we need matchings that are
perfect, consistent, and as much as possible, random. To do so, the generation
procedure initially starts with a perfect matching where every edge is of the form
(i′, i) i.e, every item is cracked. Then, for a fixed number of iterations (100, 000),
a random permutation P of I is generated. For each i ∈ I, the edge (i, x) in the
matching is swapped with the edge (P (i), y) in the matching if the resulting edges
(i, y) and (P (i), x) are still consistent. This gives a seed matching. Then the pro-
cedure applies another 10,000 iterations as before to generate the first sample. The
iterations continue and for every 10,000 iterations, a new sample is generated. In
this way, the procedure generates 250 samples. At this point, a new seed match-
ing is re-generated from scratch, and another 250 samples are generated. For the
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Dataset # items # Trans. # Gps. Size 1 Gps.
CONNECT 130 67557 125 122

PUMSB 2113 49046 650 421
ACCIDENTS 469 340184 310 286

RETAIL 16470 88163 582 218
MUSHROOM 120 8124 90 77

CHESS 75 3196 73 71
(a) General Statistics

Dataset Mean Median Min. Max.
CONNECT 0.0081 0.0029 0.000015 0.0519

PUMSB 0.00154 0.000041 0.00002 0.0536
ACCIDENTS 0.00324 0.000176 0.000029 0.04966

RETAIL 0.00099 0.0000113 0.0000113 0.30102
MUSHROOM 0.01124 0.00394 0.00049 0.1477

CHESS 0.01389 0.00657 0.000313 0.0494
(b) Frequency Gap Statistics

Fig. 10. General and Frequency Gap Statistics for Various Benchmarks

results reported below, we used 5,000 samples.

6.2 Evaluation for Items

The remainder of this section is divided into two parts. The first part considers
singleton itemsets, and the second part considers itemsets of arbitrary size.

6.2.1 Accuracy of the O-Estimates. Figures 11 and 12 compare the O-estimates
with the estimates from simulation on the benchmark datasets for various compli-
ancy values. Recall that the average simulated estimates is obtained from 5 runs.
We also recorded the standard deviation on the simulated estimates. In almost
all the cases, the differences between the O-estimates and the average simulated
estimates are well within one standard deviation. This accuracy shown by the O-
estimates also confirms that the recipe’s choice of using δmed as the width of the
intervals works out well. Incidentally, even for the RETAIL dataset, it takes only
a few seconds to compute the O-estimate.

6.2.2 The Effectiveness of the Recipe for Items. Figure 13 illustrates how the
proposed recipe in Figure 8 works for real datasets. The x-axis shows the values of
α and the y-axis shows the O-estimates expressed in fractions of the domain size.
Let us say that the data owner has a tolerance level of τ = 0.1, as shown by the
horizontal line. First, for the RETAIL dataset, it is a clear decision to release the
anonymized data. In fact, even if the hacker correctly guesses all the frequency
intervals, the expected fraction of cracks is still below 0.02.

The other datasets are different from RETAIL. For the PUMSB dataset, a tol-
erance level of 0.1 corresponds to a compliancy αmax ≈ 0.7. In other words, the
hacker needs to have correctly guessed the intervals for 70% of items. This per-
centage is probably high enough to make the data owner feel secured in releasing
the data. The situation is similar for the ACCIDENTS dataset. For CHESS and
MUSHROOM, the compliancy returned is around 0.45 and 0.55 respectively and
the decision to disclose is based on the comfort level of the data owner.

The situation for CONNECT is very different. The tolerance level of 0.1 corre-
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Fig. 11. O-estimates vs Average Simulated Estimates at various Compliancy levels for
Benchmark Datasets
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Fig. 12. O-estimates vs Average Simulated Estimates at various Compliancy levels for
Benchmark Datasets
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sponds to αmax ≈ 0.2. Thus, the comfort level of the data owner is only about 20%
of the items, which corresponds to 26 items to be exact. The data owner may want
to think twice before releasing the data.

The shapes of the curves in Figure 13 are interesting. For RETAIL and CON-
NECT, the curves are approximately linear. Notice that CONNECT has a small
number of items but a relatively large number of transactions, whereas the situa-
tion is rather contrary for RETAIL. Yet, their curves look similar. In contrast, the
curves for PUMSB and ACCIDENTS are super-linear. Thus, how the O-estimates
vary with the degree of compliancy does not appear to be determined directly by
domain size or transaction size. Finally, Figure 13 also shows that the O-estimates
and the simulated estimates are close to each other, confirming the accuracy of the
O-estimates.

6.2.3 Degrees of Compliancy from Similar Data. As shown above, the data
owner needs to wrestle with the decision whether αmax is high enough, particu-
larly if the hacker may have gained partial information based on similar data. The
question is how to define “similar” data. Below, we experiment with the idea that
the data owner simulates similarity by sampling.
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Fig. 14. Degrees of Compliancy from Similar Data

For the ACCIDENTS and RETAIL datasets, Figure 14 shows the variation in
the degree of compliancy of a belief function created from samples of varying per-
centages. Rather surprisingly, the degrees of compliancy can be high even for small
samples. For instance, for a sample of 10%, the α value is above 0.7 for ACCI-
DENTS. This information can be very significant for the data owner. For the
ACCIDENTS dataset, recall from our earlier discussion based on Figure 13 that
for a tolerance of τ = 0.1, the corresponding αmax = 0.65. Seeing that even a 10%
sample, corresponding to a somewhat similar data set, can easily give an α value
higher than 0.7, the owner may decide not to disclose the data after all.

In [Christopher Clifton 2000], Clifton argues that releasing a small random
sample poses no threat to the data owner as little information can be revealed. In
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the context of compliancy, this does not appear to be true for every dataset. In
a follow up study, Ramesh [Ganesh Ramesh 2005] considers the effect of various
parameters of sampling on the quality of knowledge that can be constructed from
samples and concludes that even small samples released without replacement can
yield prior knowledge of very high quality. The study considers various types of
prior knowledge including belief functions and other types of parameters like order
and rank.

As shown in Figure 14, for the RETAIL dataset, there is a gradual drop in
compliancy as the sample size increases until the size reaches 50% of the original
size. This is counter-intuitive on first sight. But there is an interesting subtlety here.
For a normal dataset, like ACCIDENTS, as the sample size increases, the sampled
median gap between frequency groups increases. Thus, the width of the intervals
increases, making compliancy easier to satisfy. Hence, there is a gradual increase
in compliancy as the sample size increases. In contrast, the RETAIL dataset is
abnormally sparse. In particular, for a 10% sample, there are only about 8800
transactions over a domain of about 16,000 items. Thus, the items tend to cluster
together as their frequencies are under-determined. As the sample size increases,
some of the items in one frequency group, start to separate into more frequency
groups. Thus, the sampled median gap between frequency groups drops, narrowing
the intervals of the belief function. Hence, the compliancy drops accordingly. This
phenomenon persists until the number of frequency groups stabilizes; from that
point on, the normal trend kicks in. Incidentally, if instead of the sampled median,
the sampled average gap is used as the width of the intervals in the belief function,
the degree of compliancy is at 0.99 (not shown in the figure), uniformly across all
sample sizes. This again confirms that using the average can be misleading.

We provide a simple procedure shown in Figure 15 that implements the idea
of simulating similarity by sampling. It uses multiple samples of varying sizes to
generate the kind of curves shown in Figure 14 for a given dataset. This curve
can then be used in conjunction with the recipe in Figure 8. Specifically, the recipe
returns the αmax value. The data owner can then use the curve to ascertain whether
αmax is high enough based on the corresponding sample size value.

Procedure Similarity-by-Sampling

1. For a given range of sample sizes p

a. Get a sample Dp of the database D.

b. Determine the frequency f̂x ∀x ∈ I in Dp.
c. Determine the sampled median frequency gap δ′med of the frequency groups in Dp.
d. Determine the degree of compliancy α by checking if ∀x ∈ I, fx ∈ [̂fx - δ′med, f̂x + δ′med].
e. Repeat (a) to (d) for 10 samples and get the average αp.

Fig. 15. Data Similarity by Sampling

6.3 Evaluation for General Itemsets

For a given interval belief function, the simulation generates many consistent match-
ings from the bipartite graph representing the crack space. These consistent match-
ings were generated exactly as described in Section 6.1. However, the only augmen-
tation required was to compute the number of matchings in which the itemsets in
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Θ were cracked. To do so, a vector of counts was initialized for the itemsets in
Θ and for each consistent matching M generated by the simulation, the count for
an itemset X ∈ Θ was incremented if X was cracked by M . This augmentation
is shown in Figure 16. Once the simulation completes generating all the samples,
the count for each itemset X ∈ Θ is divided by the number of samples. This gives
the probability of the itemset X being cracked across all the samples. We call this
probability the simulated probability of cracking itemset X . The OS estimate for
the itemsets in Θ are computed using the procedure given in Figure 7.

For our experimental results, to keep the size of Θ manageable and to place the
estimates on a fair ground for comparison, we consider the three examples Θ0, Θ1

and Θ2 discussed in Section 2.3.

Procedure Count-Match
Inputs:M - A Consistent Matching; Θ - Itemsets of Interest, Count - A vector of size |Θ|
1. For each X ∈ Θ: If the itemset X is cracked in M

Increment Count(X)

Fig. 16. Counting the Itemsets Cracked by a Matching

6.3.1 Accuracy of the OS Estimate. Figure 17 compares the OS estimate with
the simulated probability (in log scale) on three benchmark datasets for various
compliancy values of the belief functions. Note that the estimates and the simulated
probability are averaged across all the pairs. The simulated probability and the
estimates are themselves averaged based on values obtained from 5 runs. From
the plots, it can be seen that for most of the compliancy values the average OS
heuristic value is a fairly accurate estimate of the average simulated probability. For
the lowest compliancy value of 0.1, the OS heuristic overestimates the simulated
probability. However, for the most part, the margin of error in estimation for the
OS estimate was around 10%.

The tables in figure 18 show the comparison of the simulated probability with
the OS estimate for k-itemsets for k > 3, for two of the benchmark datasets (AC-
CIDENTS and MUSHROOM). We used fully compliant interval valued belief func-
tions for this experiment. To keep the itemsets of a manageable size, we chose
10000 random k-itemsets for k = 4, 5, 6 respectively, and measured the average
simulated probability and OS estimate. These average values are computed for a
run of 500 samples each and are further averaged across 5 runs. From the values
in the tables, we observe that the OS estimate is almost always larger than the
simulated probability, sometimes by a factor of 10. Recall from Figure 17, that the
OS estimate for 2-itemsets is fairly accurate. From the table, we observe a general
trend that the OS estimate deteriorates as the itemset size increases. However,
it is worth noting that the OS estimate is often an overestimate of the simulated
probabilities, resulting in a conservative decision for the data owner.

6.3.2 Evaluating The Recipe for Itemsets. Figures 19,20 and 21 demonstrate
the effectiveness of the recipe for three benchmark datasets. All the plots have the
compliancy values in the x-axis and the fraction of itemsets in Θ that are cracked
in the y-axis. We consider the three examples discussed in Section 2.3 as the set
of itemsets of interest. The first collection, Θ0, is the set of all pairs of items.
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Fig. 17. Simulated Probability VS. OS estimate averaged over all 2-itemsets
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K Simulated OS Estimate
4 0.005346 0.016249
5 0.001008 0.005076
6 0.0003626 0.00193

K Simulated OS Estimate
4 0.00196 0.0304
5 0.000335 0.0121
6 0.00029 0.0057

Fig. 18. Average OS Estimate Comparison for k-Itemset Collections (k > 3) for ACCIDENTS
and MUSHROOM

The second collection Θ1, is the set of all pairs of items where the items are not
among the top 10% of the most frequent items. The third collection Θ2 is the same
as Θ1 except the items are not among the top 20% of the most frequent items.
We experimented with various values of thresholds τ and σ but for the sake of
illustration, we present results for σ = 0.5 and τ = 0.1. That is, the data owner
has a privacy breach tolerance of 10%, where he regards as a breach a probability
of crack of 50% or more for those items (s)he is interested in.

Let us first consider the recipe on the CONNECT dataset shown in Figure 19.
For Θ0 and Θ1, the compliancy value returned when using the OS estimate is
around 0.6 while using the actual simulated probability value would have returned
a higher value (0.65 or closer to 0.7), as seen from the intersection of the threshold
line (at 0.1) with these curves. For these two cases, the OS estimate is more
conservative than the actual simulated probability value, as the data owner gets
the picture that a hacker’s belief function needs to be compliant on only 60% of the
items (as opposed to a higher value specified by the simulated average) to breach
the tolerance requirement. The same conclusions, more or less, can be drawn in
analyzing Figure 20 for the CHESS dataset.

It is important to note that the purpose of the recipe is to determine a yes or no
answer to releasing data. As observed in all three plots in Figure 19, even though
the OS estimate is not perfect, the data owner makes the right yes decision when
the compliancy is less than 0.6 and the right no decision when the compliancy is
greater than 0.7. Obviously, these values depend on the tolerance threshold chosen
by the data owner. However, the general point is as follows: Even though, the
OS estimate may not be accurate over a wide range of α-compliancy, the subrange
within which the data owner makes the wrong decision is significantly smaller.

For the MUSHROOM dataset in Figure 21, it is interesting to study why the
OS estimate turns from a conservative value in Figure 21(a) to a very liberal value
in Figures 21(b) and 21(c), for high values of compliancy. Note that for Θ0, we
consider all pairs of items. When we consider the set of itemsets in Θ1, the pairs
involving the top 10% of the frequent itemsets are omitted from consideration and
those involving the top 20% of items are omitted when considering Θ2. If the OS
estimate is accurate for the pairs that are very frequent, then there is a considerable
loss in accuracy when these pairs are suddenly omitted from consideration. This
can happen when there are a large number of singleton groups in the higher end
of the frequency spectrum and these groups are well separated. This accounts for
the jump in the OS estimate. For the lower compliancy values, the OS estimate
is fairly consistent in being conservative. However, once again, for the tolerance
threshold of 0.1, the underestimation does not pose any significant impact on the
owner’s decision to release the dataset. It is only when the data owner lowers the
threshold to a very low level such as 0.02, we see a wider subrange of compliancy

ACM Journal Name, Vol. V, No. N, September 2008.



142 · Laks V.S. Lakshmanan et al.

values leading to a wrong decision.

7. HANDLING KNOWLEDGE OF CORRELATION BETWEEN ITEMS

Thus far, our risk analysis is modeled based on the prior knowledge a hacker has
on the frequency of individual items in the domain. In practice, the hacker may
have other types of knowledge about the domain. In this section, we consider prior
knowledge in which the hacker (in addition to knowledge of single items and their
frequency) also has some knowledge of which items occur together in the dataset.
For example, the hacker may know that hamburger and ketchup occur together
90% of the time, while hammer and lipstick rarely occur together. We refer to such
information as correlation knowledge.5 In particular, the first example is an instance
of positive correlation while the second is an instance of negative correlation. We use
positive correlation to highlight our approach for integrating this prior knowledge
into our existing framework of disclosure risk analysis. Specifically, we first discuss
possible attack models by a hacker based on correlation knowledge. We then explain
how the proposed framework can be easily adapted to apply the heuristic estimates.
At the end of this section, we briefly discuss how negative correlation can be handled
as well.

7.1 Using Positive Correlation to Refine the Bipartite Graph

Let us consider the simplest case. Suppose that a hacker knows that items 1 and 2
occur together in every transaction and from the anonymized dataset, the hacker
computes the frequency of pairs of items and discovers that items 1′ and 2′ are
the only ones that occur together all the time. The hacker then associates the
pair of items (1, 2) with the pair of anonymized items (1′, 2′). In this case, not
only is the itemset {1, 2} cracked but this knowledge can also be used as follows.
In the space of crack mappings, the items 1 and 2 map only to the anonymized
items 1′ and 2′. All other edges other than those between (1, 2) and (1′, 2′) can be
removed from the space of crack mappings. Consider the space of crack mappings
in Figure 3(a) that correspond to the belief functions f and h in Figure 2. In this
context, the knowledge that (1, 2) identifies with the pair (1′, 2′) will lead to the
removal of the edges (1′, 3), (1′, 4), (1′, 6), (3′, 1), (4′, 1) and (6′, 1) in the bipartite
graph corresponding to the belief function f and the removal of the edges (1′, 3),
(1′, 4), (1′, 6), (2′, 4), (2′, 5), (3′, 1), (3′, 2), (4′, 1), (4′, 2), (5′, 1), (6′, 1) and (6′, 2) in
the bipartite graph corresponding to the belief function h. Additional items may
get cracked as a result of the removing these edges.

The above example is an extreme case where the hacker is able to exactly as-
sociate a pair of correlated items with a pair of correlated anonymized items. In
practice, there may be many pairs of anonymized items with a high frequency of
co-occurrence 6, leading to the hacker associating the pair (1, 2), e.g., with, say
k pairs of anonymized items (i

′

11, i
′

12), (i
′

21, i
′

22),. . . , (i
′

k1, i
′

k2). Then, all edges be-

5The reader should note that, by correlation, we mean the co-occurrence of items in a transaction.
The conventional statistical definition of correlation coefficient has a different meaning.
6In the context of frequent itemsets, a higher order correlation can be handled with pairs of
correlated items. For example, if we know that (1,2,3) are correlated, this can be modeled with
the pairs (1,2), (2,3) and (1,3).
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Fig. 19. Recipe for the CONNECT dataset

ACM Journal Name, Vol. V, No. N, September 2008.



144 · Laks V.S. Lakshmanan et al.

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

tio
n 

of
 P

ai
rs

 C
ra

ck
ed

Degree of Compliancy

CHESS (All Pairs) - Recipe (Probability atleast 0.5)

Simulated
OS

Threshold

(a) Θ0 - All Pairs,σ = 0.5,τ = 0.1

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

tio
n 

of
 P

ai
rs

 C
ra

ck
ed

Degree of Compliancy

CHESS (Top 10%) - Recipe (Probability atleast 0.5)

Simulated
OS

Threshold

(b) Θ1, σ = 0.5, τ = 0.1

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

tio
n 

of
 P

ai
rs

 C
ra

ck
ed

Degree of Compliancy

CHESS (Top 20%) - Recipe (Probability atleast 0.5)

Simulated
OS

Threshold

(c) Θ2, σ = 0.5, τ = 0.1

Fig. 20. Recipe for the CHESS dataset
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Fig. 21. Recipe for the MUSHROOM dataset
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tween the items (1, 2) and any anonymized item that is not i
′

ij , for i = 1, 2, . . . , k
and j = 1, 2, can be removed from the bipartite graph of crack mappings. This
process is formally illustrated in Figure 22 as Procedure FilterSinglePairEdges.

Procedure FilterSinglePairEdges

Inputs:Pair (i, j), i, j ∈ I, Crack Bipartite Graph G = (I
⋃

J , E),
Anonymized item Pairs (a′

u, b′u) for u = 1, 2, . . . , k

Output:New Crack Bipartite Graph G after filtering edges
1. Let A′ = {a′

1, b
′

1, . . . , a
′

k, b′k}.
2. For each x′ ∈ J − A′

a. If (i, x′) ∈ E, E = E − {(i, x′)}.
b. If (j, x′) ∈ E, E = E − {(j, x′)}.

Fig. 22. Removing edges using correlation knowledge of a single pair of items

A hacker may also have very general knowledge about co-occurrence of pairs of
items. For example, the hacker may know that the pairs (1, 2), (13, 15) and (20, 25)
always occur together in almost all the transactions but may not have an exact
value for these co-occurrences. In such cases, it is reasonable for the hacker to map
these item pairs to the high frequency pairs of anonymized items computed from
the database7. In this case, the hacker may repeatedly apply procedure FilterSingle-
PairEdges on each pair of items with the set of high frequency pairs of anonymized
items identified from the database.

Procedure IdentifyAndFilterEdges

Inputs:Pairs (ai, bi), ai, bi ∈ I, for i = 1, 2, . . . , w that are believed to co-occur frequently,
Crack Bipartite Graph G = (I

⋃

J , E), Anonymized Dataset D′

Output:New Crack Bipartite Graph G after filtering edges
1. Compute the frequency/correlation between all pairs of anonymized items from D′.
2. Identify the top k most frequent pairs of anonymized items as candidates for the

w input pairs (ai, bi). Call this set A.
3. For each (ai, bi), i = 1, 2, . . . , w

a. Call FilterSinglePairEdges using (ai, bi), A and G.

Fig. 23. Identifying and Matching frequent co-occurring pairs and Removing Edges

Procedure IdentifyAndFilterEdges in Figure 23 gives a procedure using which a
hacker can identify k candidate pairs of anonymized items and match them with the
w pairs of items which are believed to co-occur frequently. Using these candidates,
the hacker then repeatedly applies the procedure FilterSinglePairEdges to remove
edges in the crack bipartite graph. Note that k can be greater than or equal to w.

We have looked at one kind of usage of knowledge of co-occurrence. The hacker
may also use knowledge of co-occurrence to refine the belief of frequency of items.
To illustrate this, let us consider an example. Suppose that the hacker knows that
whenever item 1 occurs in a transaction, item 2 almost always occurs and vice
versa. This knowledge will lead to the conclusion that the frequency of items 1 and

7A threshold may be used to identify which set of pairs of anonymized items are candidates.
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Procedure RefineBeliefs

Inputs:Pair of items (a, b) that co-occur frequently, β - Belief Function
Output:New Belief Function with refined belief for a and b

1. If β(a)
⋂

β(b) %= ∅
a. β(a) = β(a)

⋂

β(b).
b. β(b) = β(a).

Fig. 24. Refining Belief Frequencies of co-occurring item pairs

2 in the database are roughly the same. Let us assume that the belief intervals for
1 and 2 are [l1, r1] and [l2, r2] respectively. The hacker can refine the belief about
the frequency of items 1 and 2 to the intersection of their belief intervals8. This
is illustrated in Figure 24 in procedure RefineBeliefs. This revision may in turn
translate into removal of more edges from the crack bipartite graph.

Once the crack bipartite graph is pruned (or the prior beliefs are refined), all the
previously proposed heuristic estimation techniques can be applied without any
change.

7.2 Changing the Recipe

There remains one last piece in the analysis. How does the data owner model
the correlation knowledge of the hacker? From a data owner’s point of view, the
correlation knowledge possessed by the hacker is unknown. We could take a stance
that is similar to the single item case and start with a paranoid model where the
data owner assumes that the hacker knows the co-occurrence value of every single
pair of items and can correctly map it to the anonymized item pairs. However, this
is unrealistic9. For the remainder of this section, we consider the situation when
the data owner assumes that the hacker’s knowledge of the w pairs of correlated
items are exactly the top k most co-occurring pairs. As it is, the hacker is already
very knowledgeable. We do not consider an even stronger case when the hacker
knows the exact rank of the top-k most frequently co-occurring pairs of items.

Figure 25 gives a modified recipe for risk assessment. The first 9 steps are similar
to the corresponding steps in Figure 8. These steps use the belief function on
frequency of items to determine the risk of disclosing the data. When this risk is
tolerable, then the recipe checks to see whether additional items can be breached
due to correlation knowledge starting from step 11. As discussed in the previous
subsection on refining the crack bipartite graph, this estimation requires a value for
the parameter k. This value could be input by the data owner who may decide to
try different values of k before making a decision.

8If the intersection is empty, then the prior knowledge may be inconsistent and there are multiple
ways in which the refinement can be done. For the purposes of this paper, we will assume that
the refinement is done only when the intersection is nonempty and the belief functions are not
altered when the intersection is empty.
9Even for the single item case it is unrealistic to expect the hacker to know exact frequencies of
all the items. The number of pairs is much larger than the number of single items (order of square
of the number of items) and it is very unlikely that a hacker will exactly know this information
for each pair.
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Algorithm Assess-Risk-Corr
Inputs: τ - degree of tolerance; D - Anonymized Database; k - Positive Integer
1. Compute g based on Lemma 3.5.
2. If g ≤ (τ × |I|), go to step 11.
3. Compute the frequency groups from D, and the median gap M between frequency groups
4. Set width δmed to be M .
5. Set up β(x) = [fx − δmed, fx + δmed] for x ∈ I, where fx denotes the frequency of x ∈ I.
6. Compute the O-estimate OE(β,D) according to Figure 4.
7. If OE(β,D) ≤ (τ × |I|), go to step 11.
8. Set α to be 1.
9. Perform a binary search on α to determine the largest α so that the corresponding α-compliant

belief function β satisfies the condition OE(β,D) ≤ (τ × |I|).
10. Return the value of α. If α is found to be reasonable, go to step 11.
11. Compute the top k most frequently occurring pairs in D.
12. Use these pairs to filter edges from the bipartite graph of cracks mappings (or to refine the belief functions).
13. Compute the new O-estimate. If this is ≤ (τ × |I|) then disclose D else do not disclose D.

Fig. 25. The Modified Recipe for Risk Assessment

7.3 Experimental Evaluation of the Impact of Correlation Knowledge of Pairs

Below, we present experimental results on how knowledge of correlation affects the
O-estimate values. Figure 26 shows two plots for the MUSHROOM and CONNECT
datasets. Each plot shows the original O-estimate and the adjusted O-estimate
when the hacker has knowledge of all the top w(= k) most frequently co-occurring
pairs in the dataset. This is labeled as ”Adjusted O-estimate” in the plots. The
O-estimate labeled ”Adjusted 100” (and referred to as adjusted 100 O-estimate
in our discussion) is computed by removing the edges when the w pairs of known
correlated pairs of items are matched with the top 100 correlated pairs from the
anonymized data.

One would expect the adjusted O-estimate and adjusted 100 O-estimate to in-
crease as the value of w increases. While this general trend is true, there are
two interesting observations. First, sometimes the adjusted O-estimate remains
the same as w increases. For example, for the MUSHROOM dataset, the top 8
most frequently occurring pairs of items are (in order): (85, 86), (34, 85), (34, 86),
(85, 90), (34, 90), (86, 90), (36, 85), (36, 86). When w = 1 = k, the hacker knows
the pair of items (85, 86) and when w = 2 = k, the hacker knows the pairs (85, 86)
and (34, 85). Since there is one new item 34 whose outgoing edges may be re-
moved, the O-estimate may increase from w = 1 to w = 2. Consider what happens
when w = 3 = k. The addition of the knowledge of the new itemset (34, 86) does
not cause any new edges to be deleted. Hence, the adjusted O-estimate does not
increase when w changes from 2 to 3.

The second observation is that when w increases from 20 to 25 for the CONNECT
dataset, the adjusted O-estimate decreases. This decrease can be attributed to the
following reason. When w is 20, the matching of the original item pairs was with
the top 20 pairs of anonymized items. Hence, the edges between these items and
the anonymized items occurring in the pairs from 21 through 25 will be removed.
However, when w is 25, the edges between these pairs will be retained and hence
the O-estimate might actually decrease, as seen in this instance. Thus, in general,
the extent of disclosure risk does not necessarily have a monotonic behavior as
w increases. However, as shown by the curves for the adjusted 100 estimate, the
monotonic behavior is preserved i.e., when k > w and is kept constant, increasing
w leads to increasing disclosure risk.
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Most importantly, it is interesting to note that even when the hacker knows all the
top 50 correlated pairs of items, the additional disclosure caused by this knowledge
is increased by only a small percentage - e.g. 2% for the CONNECT dataset
(increase of 1.5 items out of 130) and 7% for the MUSHROOM dataset (increase
of 8 items out of 120). We believe that for a universe of a little more than 100
items, knowing the top 50 correlated pairs is perhaps unrealistically conservative.
Contrary to our belief, this observation shows that knowing correlated knowledge
may not have too significant an impact on disclosure.
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Fig. 26. Original VS. Adjusted O-Estimates for Single Items With Knowledge of Top w frequently
Co-occurring item pairs

So far, we have mainly focused on positively correlated pairs. What can we
say about negative correlation? Let us take an example – suppose the hacker
knows hammer (item #1) and lipstick (item #2) rarely occur. Suppose we want to
combine this knowledge of negative correlation with frequently co-occurring pairs of
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anonymized items, to possibly prune edges from the crack bipartite graph. Let us
suppose that (3′, 4′) is a frequently co-occurring pair of anonymized items. Can we
eliminate edges matching (1, 2) to the set of items {3′, 4′} based on this knowledge?
It turns out that doing so is not sound. All we know is that not both of the edges
representing 3′ 3→ 1, 4′ 3→ 2 can occur simultaneously. The problem is either one
of them can occur separately and we do not know which one. The general point is
that dealing with negative correlation requires reasoning at the level of mappings
rather than at the level of edges. We explore this in future work.

8. DISCUSSION

8.1 Beyond Frequent Sets

Much of the results presented here can carry over to situations other than frequent
itemset mining, as long as the bipartite graph representing the space of crack map-
pings is set up by some means. Specifically, Lemmas 3.2 to 3.6 are already expressed
in terms of the underlying bipartite graph. At present, Lemmas 4.2 and 4.4 are ex-
pressed in terms of the belief functions, mainly for ease of understanding. However,
they can re-stated solely from the perspective of the underlying bipartite graph.
As an example, Lemma 4.2 can be restated as follows:

Let G1 and G2 be bipartite graphs with the vertex set I ∪ J and edge sets E1 and E2

respectively, modeling the space of crack functions β1 and β2. Then, if G1 is a subgraph

of G2, then the O-estimate for G2 is smaller than that of G1.

As an example of the application of our framework to the analysis of other pat-
terns, consider the data disclosure dilemma in the context of classification. The
data owner needs to decide whether to release an anonymized relation with at-
tributes: age, ethnicity and car-model. Let us say that the real domain consists
of people identified by their names (e.g. {Bob,Mary,. . . }), and the anonymized
domain identified by an integer {1’, 2’, . . . }. Suppose that the hacker has partial
information about certain individuals. Recall from Figure 14 that even a small
sample of 10% can reveal a lot of true information. In any case, regardless of how
this piece of partial information comes about, if the hacker somehow knows that
John is a Chinese owning a Toyota, then edges can be set up between (x′, John)
for all anonymized items x′ with ethnicity being Chinese and car-model being Toy-
ota. Similarly, if the hacker somehow knows that Mary’s age is between 30 and 35,
the appropriate edges can be set up in the bipartite graph to connect Mary to all
anonymized items x′ in the same age group. And if the hacker has no knowledge of
Bob, Bob is connected to every anonymized item in the graph. Once the graph is
set up, we can re-apply the framework and the recipes presented here to help the
data owner to decide whether it is safe to release the anonymized relation.

8.2 Summary and Ongoing Work

A classic dilemma that an organization faces is if the data is not released, they
cannot take advantage of the opportunities offered by data mining. On the other
hand, if they do, they run the risk of disclosing sensitive data. To mitigate the latter,
they may sanitize their data or more generally apply some data transformations.
In this paper, we address the question of how safe the anonymized data is with
respect to protecting the true identities of the data items. The novelty of our work
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is to incorporate the possible existence of partial background knowledge possessed
by the hacker, an issue mostly overlooked in the literature. We propose various
classes of belief functions, representing the capturing of various degrees of partial
information. We address the safety question both for single items and for sets
of items. We derive exact or approximate formulas for computing the expected
number of cracks and similarly for computing the probability of a given itemset
being cracked. In particular, we propose the O-estimate heuristic for single items
and the OS-estimate for itemsets which are applicable to any bipartite graph/belief
function, and are easy to compute. We evaluate the accuracy of O-estimates by
detailed experimentation with real datasets. Our results show that our framework
is effective and that while exact analysis may be very hard, disclosure risk analysis
based on heuristics is promising. Last but not the least, we also show how prior
knowledge of positive correlation between pairs of items can be incorporated into
our framework of disclosure risk analysis.

As observed from the experimental results, disclosure risk is closely connected
with the characteristics of the dataset and the quality of prior knowledge. The data
owner needs to balance the benefits of releasing data with potential disclosure risk.
We consider the recipe developed in this paper as just one out of a suite of tools
that we consider essential to assist the data owner in making his decision. In par-
ticular, the data may be released for mining different kinds of patterns. Thus tools
that enable disclosure risk analysis w.r.t. different patterns are crucial. Further-
more, data owner may perform transformations other than anonymization before
releasing the data and thus the “tool box” needs to be able to handle a rich set of
transformations in conducting the analysis. Finally, in a multi-party consortium,
an interesting topic is the development of protocols to conduct anonymization. In
some applications, local anonymization would be sufficient. However, in other ap-
plications, a more sophisticated protocol may be necessary. These are interesting
issues to explore in future.
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