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Abstract

One of the main challenges in understanding a scenario-
based specification of a reactive system is rooted in the
inter-dependencies between the scenarios. These are inher-
ently implicit in the very idea of scenario-based program-
ming. We introduce a graph-based visualization of such
inter-dependencies, and implement it in a tool we call SIV
(for Scenario Inter-dependency Visualization), which sup-
plies many options for exploration of these graphs.

1 Introduction

Scenario-based modeling appears to be a promising approach
to system and software design and development, and has
resulted in intensive research efforts in the last few years.
One of the most widely used languages for capturing inter-
object scenario-based specifications is that of message se-
quence charts (MSCs) proposed by the ITU [ITU 1996], or
its UML variant, sequence diagrams [UML 2005]. This lan-
guage has been significantly extended, resulting in a highly
expressive medium for specification and programming called
live sequence charts (LSCs) [Damm and Harel 2001]. LSCs
are multi-modal charts that distinguish between behaviors
that may happen (existential, cold) and those that must
happen (universal, hot), and which can also easily express
many other notions and constraints on scenarios, such as for-
bidden behavior. A variant of LSCs has also been defined,
which adheres to the UML 2.0 standard; see [Harel and Maoz
2008]. The language has been extended to include, among
other things, a detailed notion of time as well as symbolic
instances (i.e., the ability to talk also about classes, rather
than only object instances) [Harel and Marelly 2003]. An
LSC is typically divided into two parts, a prechart and a
main chart, the former being a precondition for the latter;
i.e., in any execution (run) of the system, if the prechart
of an LSC is satisfied (meaning that the run manages to
get through it), then following that its main chart must be
satisfied too.

One of the main problems that arise when one tries to
understand an LSC specification is rooted in the complex
inter-LLSC dependencies. The meaning of a single LSC is
evident from looking at the chart, but the way it relates to
other LSCs in the system during execution is not visual in
any way. The programmer or specifier might have to look
through the entire LSC specification to try to figure out
which LSCs relate to each other and how. Obviously, this
becomes harder as the specification grows, and for very large
LSC specifications/programs it becomes practically impos-
sible.

In previous work done in our group we have made an
attempt to visualize the interactions between LSCs [Maoz
et al. 2007]. This work proposes a technique for visualiz-
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ing and exploring execution traces of scenario-based models,
particularly LSCs. The tool visualizes the activation and
progress of the scenarios in the specification as they “come
to life” during execution, by focussing on the activation and
closure of each chart. The specification is plotted using a
hierarchical Gannt chart, in which a leaf represents a single
sequence chart. Each chart is plotted as a set of bars, each
representing an active instance of the chart at specific time
intervals.

In the present paper we focus on visualizing inter-
dependencies between sequence charts, using both static and
dynamic data. We use standard graph-visualization tech-
niques for displaying a graph that represents the specifica-
tion as a whole (or an interesting subset thereof). Each
LSC is represented in the graph by a node, and edges repre-
sent various kinds of inter-dependencies between them. We
introduce the SIV tool (for Scenario Inter-dependency Visu-
alization), which implements the ideas and supplies various
views, filters, and options for visualizing the graph and gar-
nering information from it. We are thus able to display and
emphasize aspects of the specification that would otherwise
be hidden or highly unclear.

2 Preliminaries

Live Sequence Charts

LSCs [Damm and Harel 2001] constitute an extension of
message sequence charts (MSCs) [ITU 1996]. LSCs, like
MSCs, contain vertical lines, termed lifelines, which denote
objects, and time flows from top to bottom. The most basic
construct of the language are messages. A message is de-
noted by an arrow between two lifelines (or from a lifeline to
itself), representing the event of the source object sending a
message to the target object. More advanced constructs, like
conditions, if-then-else, loops, etc. can also be expressed. A
typical LSC consists of a prechart (denoted by a blue dashed
hexagon), and a main chart (denoted by a solid frame). The
intended semantics is that if the prechart is satisfied in a run
of the system, then following its completion the main chart
must also be satisfied.

Several extensions to the language were introduced in
[Harel and Marelly 2003], including symbolic lifelines, which
represent classes rather than object instances, a detailed
notion of time, and forbidden elements, which forbid some
event or system state from happening during a given scope
in the life cycle of the LSC.

LSCs are multi-modal, in the sense that almost any con-
struct in the language can be either cold (usually denoted
by the color blue) or hot (denoted by red), with a semantics
of “may happen” or “must happen”, respectively. If a cold
element is violated (say a condition that is not true when
reached), this is considered a legal part of the specification
and some appropriate action is taken. Violation of a hot el-
ement, however, is considered a violation of the specification
and must be avoided. An example of an LSC can be seen in
Figure 1.
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Figure 1: A sample LSC, stating that if an object of class
AC/VU sends itself a message “set Fate(AC)”, then it
should send itself a message “set Lin3exp(Normal)” after
1-2 clock ticks, and only if certain cold conditions hold

An operational semantics was defined for the language in
[Harel and Marelly 2003]. The result of this semantics is an
execution technique for LSCs, called play-out. A basic notion
in the operational semantics is that of wnification, which
calls for events to be unified at runtime if they represent
the same message passing between the same objects. Note
that such unification is not always known at design time, as
it depends on bindings of symbolic lifelines, assignment to
variables, the state of the relevant LSCs, etc. Nevertheless,
an over-estimation of the events that might become unifiable
during execution can be calculated statically, a fact that we
exploit in our visualization method.

The C. elegans Model

Throughout this paper, we use as an example a rather exten-
sive LSC model of a biological system. Specifically, it spec-
ifies the process of vulval precursor cell fate determination
in the development of the C. elegans nematode worm [Kam
et al. 2003]. (The model has been greatly extended since the
publication of [Kam et al. 2003].) As argued elsewhere, we
are of the opinion that understanding and analyzing biologi-
cal systems, especially their dynamics, has much in common
with understanding and specifying man-made reactive sys-
tems [Harel 2003]. We have chosen the C. elegans example
here both because it is the largest LSC specification we are
familiar with, but also because it comes from biology and
is thus probably unfamiliar to most readers of this paper.
We would like to claim that many features of the system
are evident from our visualization approach, even without
prior knowledge of the system and specification. This is also
the reason we have chosen not to supply in this paper an
in-depth description of the exact specification, nor of the
system it models.

Examples of other LSC specifications can be found on the
SIV website, at [SIV ].

3 LSC Inter-Dependency Visualization

We represent an LSC specification as a graph, termed the
inter-dependency graph (or IDG). In IDG, each LSC is rep-
resented by a node. Edges represent various kinds of inter-
dependencies between the charts, as detailed below, and
each edge-type is associated with a different color. Spe-
cial nodes represent the objects external to the system —
the user, the environment and the clock. The graph is vi-
sualized in the SIV tool using a force-directed layout algo-
rithm [Fruchterman and Reingold 1991], as implemented in
the prefuse toolkit [Heer et al. 2005]. Various views, filters,
and options are supplied, to allow the user to get as much
information as possible from the visualization. We describe
some of these below. A video demonstrating the tool and its
options can be viewed at [SIV |.

The tool, along with several example input files, is avail-
able for download at [SIV ].

3.1 IDG — The Inter-Dependency Graph

The vertices of the graph denote the various LSCs in the
specification (or in a predefined subset thereof). Three spe-
cial vertices are used for representing the three objects ex-
ternal to the system — the user, the environment and the
clock. Edges in the graph connect two LSC nodes, or an
external object node to an LSC node. LSC to LSC Edges
can be of different types, according to possible LSC inter-
dependencies:

e (Causal edge: A directed edge that represents a main
chart message in the source LSC being unifiable with a
prechart message in the target LSC. This edge type rep-
resents the possibility that during runtime the source
LSC might trigger a prechart event in the target LSC.
Causal edges are denoted by directed brown lines.

e Sync edge: An undirected edge that represents a main
chart message in one LSC being unifiable with a main
chart message in the other. This edge type represents
the possibility that two LSCs might have to synchronize
their execution. Sync edges are denoted by undirected
green lines.

e Hot forbids edge: A directed edge that represents the
source LSC having a hot forbidden message unifiable
with some message in the target LSC. This edge type
represents the possibility that the source LSC might
forbid the advance of the target LSC. Hot forbids edges
are denoted by directed red lines.

o Violates cold forbidden edge: A directed edge that rep-
resents the source LSC having some message unifiable
with a cold forbidden message in the target LSC. These
edges represent the possibility of the source LSC caus-
ing a cold violation of a forbidden element in the target
LSC. Violates cold forbidden edges are denoted by di-
rected blue lines.

e Shared object edge: An undirected edge that repre-
sents the two LSCs having lifelines of the same object.
Shared object edges are denoted by undirected purple
lines.

Note that all edges are over-estimated, in the sense that if
two messages can be unifiable in some run, they are con-
sidered unifiable in our visualization. Similarly, symbolic
lifelines are considered as lifelines for all objects of the class.
The visualization of actual runtime unifications is described
later, in Section 4.



Edges between an LSC and an external object (user, envi-
ronment or clock) can be either Causal or Sync edges, repre-
senting messages or conditions relevant to this object in this
LSC, located in the prechart or main chart, respectively.

3.2 The Visualization

The inter-dependency graph is visualized using force-
directed layout [Fruchterman and Reingold 1991], as imple-
mented in the prefuse toolkit [Heer et al. 2005]. An example
is shown in Figure 2.' The graph corresponds to the C.
elegans specification mentioned above. In this example, a
predefined subset of the LSCs is visualized, and only Causal
and Sync edges are displayed.

Despite the similarities in appearance, our graphs have
nothing to do with graphs for genetic pathways and other
types of biological networks. It seems that these two could
benefit from powerful visualization techniques such as ours.
Some work on visualization of such networks can be found
in [Chuang and Yang 2005; Junker et al. 2006].

This example shows some of the characteristics of the
specification that are visually emphasized using our method.
For example, note the DevelopmentalTime20c node,
which has many outgoing causal edges. This is a triggering
LSC that drives the execution of many other LSCs. Note
also the set of LSCs named 1in3* at the bottom left hand
side of the graph, all specifying the handling of the LIN-3
protein — an independent process that is specified by a set of
seven LSCs, and is triggered by a single event appearing in
the ACAdoptFate LSC (as can be seen by the fact that a
single edge enters this set of LSCs, from the ACAdoptFate
LSC). Above these LSCs, notice another quite-independent
process, the AC/VU decision, involving seven other LSCs
(in the middle of the graph). In the bottom right corner of
the graph there is a cluster of many LSCs with many edges
connecting them. While the exact nature of these edges does
not show up clearly in this view, it is obvious that this is a
set of LSCs that are strongly inter-dependent. One can now
further investigate these LSCs and the way they interact
with each other.

These kind of inter-dependencies between LSCs are not
visible to the user in other visualization methods we know
of, and we consider it to be one of the main contributions
of our work. We believe that this view gives the user an
important overview of the specification, and supplies some
understanding of the structure of the specification, the role
various LSCs play in it, and the relations between LSCs
and between different parts of the specification. Without
our visualization technique, one could gain this information
only by manually going over all LSCs, understanding which
messages in each LSC may be unified with other messages,
and how. This process is confusing, and often results in
misunderstandings of the specification in hand. We believe
our tool relieves much of the effort needed for understanding
such inter-dependencies.

In SIV, parallel edges are unified to a single edge, colored
according to the first relevant type, in the order the types
were listed above. We believe that this is the order of impor-
tance for most users. A check-box allows one to weigh edges
according to the number of parallel edges they represent,
thus visualizing the amount of inter-dependencies between
the different nodes. In order to view all inter-dependencies
between two specific nodes, the user can click on an edge
and select the “Details” view. In this view, all edges parallel
to the one selected are listed, and the view shows extra in-

1The examples in this paper can also be downloaded in color
from [SIV ].

[Lsc

LSC Name: LIN-3expression
LSC ID: ID6589
Use Case: LIN-3(IDSS88)

Incoming Causal
ACAdoptFate (AC/VU->ACHVU ¢ Set:Fate())

Incoming HotForbids
¥locZboxes (AC/VU->ACIVU ¢ Set:LIN3exp())

Syncs with

Clock (Hot condition: Time<=T + 2)
Clock {Hot condition: Time=>=T + 1)

Qutgoing Causal
Lin-3InBoxes {(AC/YU->ACIVU : Set:LIN3exp(Normal))

SharedObjects with

ACYUborn (Class AC/vU)
¥locZboxes (Class AC/YU)
AC_WTposition (Class AC/vU)
ACAdoptFate (Class AC/YU)
ACYUdecision {(Z1.ppp)
UpdateAC_location (Class AC/VU)
ACformed locUpdate (Class AC/YU)
Lin-3InBoxes (Class AC/VU)
AC/VUdecision (Z24.aaa)

Figure 3: The details view, showing all edges adjacent to the
LIN-3expression LSC

formation, such as the exact unifiable message or the name
of the shared object. One can also select a node, and see a
list of all edges adjacent to it. An example is given in Figure
3. Both these views can also be visualized, as we explain in
Section 3.4.

Figure 2 also demonstrates some of the filtering capabil-
ities of the tool. In this view, we chose to visualize only
Causal and Sync edges, and to hide the external object
nodes. The user may choose which edge types she wishes to
see, and which edge types she wishes to affect the layout; i.e.,
which edges should be assigned springs in the force-directed
layout. This way, the user may separately control the layout
of the graph and the visible information. Note that the set
of visible and layout-able edges need not be equal — a user
may wish to lay the graph out according to certain types
and to simply view others. Shared-object edges can be fur-
ther filtered according to the specific objects that are shared,
allowing the user to further control the visible data. For ex-
ample, in Figure 4, the clock object is added to the graph,
and its edges were selected to be visible yet not layout-able.
Therefore, the graph layout did not change from Figure 2,
even though the edges connecting the clock to the relevant
LSCs are now visible.

3.3 Aggregation

In SIV, one can aggregate the nodes according to one of
two methods: (a) by the use-cases to which they belong in
the specification, or (b) by means of Newman’s community
identification algorithm [Newman 2004]. The former allows
one to study the relationship between the inter-dependencies
evident in the graph and the specifier’s choice of use-case dis-
tribution. The latter tries to group nodes into communities
with strong correlations inside each community and weak
correlations between groups. Since most possible behavioral
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Figure 6: The one-to-many view, visualizing the LIN-
3expression LSC, alongside a list of all LSCs inter-
dependent with it

inter-dependencies are represented by the graph edges, what
we get is a suggested grouping of the LSCs into behavioral
groups.

Figure 5 demonstrates the C. elegans example, aggregated
according to the result of Newman’s algorithm. One can
see that the two processes described earlier, the lin-3 and
AC/VU decision, have been clearly recognized as separate
groups. The cloud on the bottom right was split into two
groups, giving the developer more information about the
structure and the relations therein. Note that the commu-
nity structure in this example was calculated taking multiple
parallel edges into account, even though these are not plot-
ted explicitly.

The example given here consists of 54 nodes, with over
1700 inter-dependency edges (most filtered out in the fig-
ures). The nodes were automatically selected out of the 470
LSCs in the full specification, by considering only those that
take part in the development of the wildtype worm.

3.4 Play-Engine Connection

The SIV tool may be connected to the Play-Engine tool.
This allows the user to double-click an LSC node, and have
the LSC automatically be displayed inside the Play-Engine.
To accommodate this, two views were added to the Play-
Engine. The first, the one-to-many view, allows the user
to view a complete LSC alongside a list of all LSCs inter-
dependent with it. Lines connect messages in this LSC to
the names of other LLSCs in which they appear. These lines
are colored in a way consistent with the coloring in the graph
visualization. In this view, the developer obtains a visual in-
dication of all LSCs affected by a single LSC of interest. This
view is updated on the fly during development of the LSC
— whenever the LSC is changed, the inter-dependency lines
are updated accordingly. This gives the developer a strong
indication of what parts of the specification are affected by
her current modification. See example in Figure 6.

The second view added to the Play-Engine is the one-to-
one view, in which two specific LSCs are plotted alongside
each other, with lines connecting pairs of unifiable messages.
These lines are also colored according to the coloring scheme
in the graph visualization tool. This view is reachable by
double-clicking an edge in the graph, and it visualizes the
exact locations, within each LSC, of all edges parallel to the
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Figure 7: The one-to-one view, visualizing all inter-
dependencies between two specific LSCs

selected edge. This view is also reachable by clicking on one
of the LSCs listed in the one-to-many view described above.
See example in Figure 7.

4 Visualizing Dynamic Information

The visualization, as described so far, uses and displays only
static inter-dependencies between LSCs. Since LSCs form an
executable language, in which the LSC specification can be
executed directly, one may wish to also visualize dynamic
data regarding inter-dependencies between LSCs during ex-
ecution.

Prior to our work, there was only one way of visualizing
the executed LSC specification at runtime. During execu-
tion, the Play-Engine opens all active LSCs and displays
them along with their current runtime state. This works
fine for very small specifications. However, in larger specifi-
cations, this view becomes quite useless — too many charts
are displayed simultaneously and the developer cannot fol-
low the course of events. Consequently, we decided to adapt
our graph-based visualization to also visualize runtime in-
formation of the system.

Note that the unification-related edges described in the
context of the static view above are an over-approximation
of the unification scheme, in the sense that any two messages
that could be unifiable in some system run are considered
unifiable. In the runtime mode of the tool, however, we
highlight those unifications that actually take place during
execution. This way, the user gets a feeling of which LSCs
drive which other LSCs, and of which LSCs get synchronized
during runtime. Moreover, the nodes get colored according
to the status of the LSC — blue for LSCs still monitored by
the execution (i.e., those for which the prechart is not yet
complete), and red for LSCs that drive the execution (i.e.,
those that are in the main chart). The user can choose to dis-
play only the runtime information, or the runtime and static
information together. Moreover, she may choose to filter out
all edges and nodes that have not yet taken part in the run,
thus focusing only on the part of the specification relevant to
the run so far. The user may also choose whether highlighted
edges will be “sticky” or not; i.e., whether a highlighted edge
should remain highlighted. Sticky highlighting allows one to
get a full picture of all unifications that have occurred dur-
ing a specific system run, while non-sticky highlighting gives
a sense of the information flow between the LSCs, as edge

- Iset LIN-3exp(100) |
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highlighting comes and goes. A video demonstrating the
runtime mode in action can be downloaded from [SIV ].
The connections to the Play-Engine described earlier also
work during runtime. The user can double-click an active
LSC, and the LSC will open in the Play-Engine, and will
show its runtime information (the current cut, bindings, etc.)
The runtime mode of the tool gives the developer an
overview of the specification as it drives execution. It allows
one to visualize all relevant parts of the specification at once,
therefore giving the user information otherwise unavailable,
regarding which LSCs interact with each other when driving
the system. The developer can use the Play-Engine connec-
tion to “dive” into a specific LSC, or set of LSCs, in order
to better understand a specific aspect of the system run.
When used in conjunction with the Tracer tool [Maoz
et al. 2007], one is able to obtain a full overview of the sys-
tem run — both time-based, as visualized by the Tracer, and
interaction-based, as visualized by our tool.

5 Beyond LSCs

The work described here uses LSCs for scenario-based spec-
ifications. However, most of the ideas here can be used
to visualize inter-dependencies between scenarios in other
scenario-based languages; e.g. MSCs [ITU 1996] and Sce-
narioML [Alspaugh 2005]. Some of the definitions here will
clearly need to be adjusted for the particular language and
its semantics, but we believe this can be done relatively eas-
ily, so that the ideas presented here become useful for such
languages too.

In [Maoz and Harel 2006], the relation between scenario-
based programming and aspect-oriented programming is ex-
plored. Much like scenario-based programming, one of the
problems in aspect-oriented programming concerns the in-
tricate interactions between the aspects. We believe that
techniques like those presented here can also be useful for
visualizing inter-dependencies between aspects.

6 Beyond Visualization

The main usage described here for the IDG graph is for visu-
alization. However, the graph may represent deep semantic
properties of the specification, and could also be used for
other purposes, e.g. in execution.

In [Merom 2006], a distributed execution algorithm for
LSC specifications is presented. The starting point of that
work is a partitioning of the specification into small sets
of LSCs that are to be distributed between different ma-
chines. These sets are required to have as few as possible
inter-dependencies. We propose to use the inter-dependency
graph introduced here, along with Newman’s community
identification algorithm [Newman 2004], in order to find a
reasonable such partitioning. The number of partitions can
be given as an input to the algorithm, which will then go
ahead and suggest a good partitioning of the specification ac-
cording to the defined LSC inter-dependencies. This would
be a good initial partitioning for the distributed play-out al-
gorithm of [Merom 2006], as the inter-dependencies defined
here are exactly those that should be minimized for the al-
gorithm.

Testing this partitioning, comparing it to other methods
or hand-made partitioning, is out of scope for this paper,
and is left for future work.

7 Related Work

Much research has been done towards better visualization of
scenarios. Some focus on visualization of a scenario depict-
ing an actual system run; for example [Jerding et al. 1997],

which visualizes interactions between objects in a given sys-
tem run, and [Reiss 2006], which visualizes program exe-
cution by following the states of a user-defined automaton
on the traces. Others consider the scenarios to be the sys-
tem specification, and try to better visualize each scenario
independently. For example, [Alspaugh et al. 2006] uses so-
cial agents for visualization of specification scenarios. How-
ever, to our knowledge, none of these focus on the inter-
dependencies between the specification scenarios, but rather
on better understanding of each scenario independently.

Another set of related work concerns visualization of
graphs. For example, SocialAction [Perer and Shneiderman
2006] is a social network analysis tool, aimed at a better un-
derstanding of social networks. It supplies many features for
exploration of such networks, and other kinds of graphs in
general. We believe that many of the ideas introduced there
can be also used for exploration of the graph introduced in
this paper.

Software visualization in general is a popular field of
study. Graph visualization techniques have been used for
many different purposes in work on comprehending software
systems. For example, [Wiirthinger et al. 2008] visualizes
the program dependence graph generated by a Java com-
piler, [Balmas 2004] visualizes dynamic data flow graphs
computed at runtime, and [Evstiougov-Babaev 2001] visu-
alizes call graphs and control-flow graphs of embedded sys-
tems.

8 Future Work

The tool described here, much like the Play-Engine
tool [Harel and Marelly 2003], is an academic prototype,
aimed at exploring novel ideas and techniques. Therefore,
better evaluation of the ideas depicted here is rather difficult
to gather at this point. The example used in this paper was
chosen partly due to the fact that it is one of very few large
specifications written using the Play-Engine tool. Once LSC
tools become more widely spread, it would be important to
perform a broader evaluation of the contribution of the ideas
described here.

In the future, we would like to implement stronger graph
exploration methods, such as those introduced in the So-
cialAction tool [Perer and Shneiderman 2006], to allow even
better understanding of our inter-dependency graph. Us-
ing such techniques, the user could easily find LSCs with
specific qualities; e.g., ones that have many outgoing edges,
or ones that act as “gatekeepers” between two parts of the
specification.

We would also like to explore the possibility of applying
the ideas introduced here for other languages, such as Sce-
narioML [Alspaugh 2005] and AspectJ.

Three tools were discussed in this paper: the Play-Engine,
the Tracer and the SIV tool. We believe that with better
integration between these, one could enable even smarter
exploration of the specification. For example, the user could
mark a specific time in the Tracer, and explore the state
of the specification at that time in the SIV and the Play-
Engine. Similarly, SIV could be used to select several LSCs
and perform different actions on this selection; e.g. viewing
only them in the Tracer.

We also mentioned the possibility of using the graph ag-
gregation for distribution of a specification into components.
There is much work to be done in exploring this idea; e.g.
comparison with other methods and comparison with hand-
tailored distribution.

In this work, our graphs are visualized using a simple
force-directed layout mechanism [Fruchterman and Reingold



1991]. Clearly, the graphs can benefit from using more ad-
vanced layout techniques. Finding the most appropriate lay-
out techniques for the graphs, both statically and dynami-
cally, is left as future work.
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