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ABSTRACT
In this paper, we study the multicast capacity of a large scale ran-
dom wireless network. We simply consider the extended multihop
network, where a number of wireless nodes vi(1 ≤ i ≤ n) are
randomly located in a square region with side-length a =

√
n, by

use of Poisson distribution with density 1. All nodes transmit at
constant power P , and the power decays along path, with attenua-
tion exponent α > 2. The data rate of a transmission is determined
by the SINR as B log(1 + SINR). There are ns randomly and
independently chosen multicast sessions. Each multicast has k ran-
domly chosen terminals. We show that, when k ≤ θ1

n
(log n)2α+6 ,

and ns ≥ θ2n
1/2+β , the capacity that each multicast session can

achieve, with high probability, is at least c8

√
n

ns
√

k
, where θ1, θ2,

and c8 are some special constants and β > 0 is any positive real
number. Our result generalizes the unicast capacity [3] for random
networks using percolation theory.
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1. INTRODUCTION
In many applications, e.g., wireless sensor networks, we often

need an estimation on the (asymptotic) achievable throughput when
we randomly deploy n wireless nodes in a given region. The main
purpose of this paper is to study the asymptotic capacity of large
scale random wireless networks when we choose the best protocols
for all layers. As in the literature, we will mainly consider one type
of networks, large scale random networks, where a large number of
nodes are randomly placed in the deployment region.

Due to spatial separation, several wireless nodes can transmit si-
multaneously provided that these transmissions will not cause de-
structive wireless interferences to any of the simultaneous transmis-
sions. To describe when a transmission is received successfully by
its intended recipient, a number of interference models have been
proposed and studied in the literature, which include

1) Protocol Interference Model (PrIM) [7]: In this model, a
transmission by a node vi is successfully received by an intended
target vj iff node vj is sufficiently apart from the source of any
other simultaneous transmission, i.e., ‖vk − vj‖ ≥ (1+η)‖vi − vj‖
for any transmitting node vk 6= vi. Here η is a constant.

2) Fixed-Power Protocol Interference Model (fPrIM): In this
model, each node v ∈ V has a fixed constant transmission range
r and a fixed constant interference range R > r. A node u can
successfully receive a transmission from another node v iff (1) ‖u−
v‖ ≤ r, and (2) there is no other node w such that ‖w−u‖ ≤ R and
node w is transmitting simultaneously with node v. Here ‖w − u‖
is the Euclidean distance between w and u.

3) Physical Interference Model(PhIM): At any time, given a
set of simultaneous transmitting nodes A = {u1, u2, · · · , ua},
a node v can successfully receive the signal from a sender u iff
SINR = Pu·`(u,v)

N0+
∑a

i=1 Pui
`(ui,v)

≥ σ. Here σ is a threshold for
SINR, Pui is the transmission power of node ui, `(ui, v) is the
path loss of signal propagation, and N0 is the variance of back-
ground noise.

4) Gaussian Channel Model (GIM): At any time instance, given
a set of simultaneous transmitting nodes A = {u1, u2, · · · , ua}. a
node v can successfully receive the signal from a sender uj at a

data rate B log(1 + SINR), where SINR =
Puj

·`(uj ,v)

N0+
∑a

i=1 Pui
`(ui,v)

and B is the bandwidth of the channel.
In the first three of the preceding models (PrIM, fPrIM, PhIM),

when the transmission is successful, each wireless node can trans-
mit at W bits/second over a common wireless channel. The uni-
cast capacity for large scale random wireless networks has been
extensively studied. The ground breaking work by Gupta and Ku-
mar [7] has shown that, (1) for large scale random networks of n
nodes inside a unit square, the asymptotic per-flow unicast capac-
ity with n random flows is Θ(W/

√
n log n) under fPrIM, (2) for



networks where nodes are arbitrarily located (not necessarily ran-
domly placed) in a unit square, when each node wishes to commu-
nicate to a destination located at a nonvanishingly small distance
away, the amount of information that can be exchanged by each
source-destination pair must go to zero, as n → ∞, at least at
rate Θ(W/

√
n) under PrIM or PhIM. This result was originally

proved as the consequences of the interference model used (fPrIM
or PhIM with assumption `(u, v) = 1/‖u − v‖α for a constant
α > 2) [7]. It has later been extended to hold in a more gen-
eral information theoretic setting [22]. Gupta and Kumar [7] also
showed that when nodes are randomly located in a unit square area,
each source-destination pair can achieve a bit rate only of order
1/
√

n log n, by using a specific multihop strategy, when fPrIM or
PhIM models are used. For Gaussian channel model, using multi-
hop transmission, pairwise coding and decoding at each hop, and a
TDMA scheme, Franceschetti et al. [3] shows that a rate Ω(1/

√
n)

is achievable in networks of randomly located nodes (not only some
arbitrarily placed nodes). Hence, there is no gap between the ca-
pacity of randomly located, and arbitrarily located nodes, at least
up to a constant scaling, although using different channel models.

In this paper, we will concentrate on the multicast capacity of
a random wireless network, which generalizes both the unicast ca-
pacity [7] and broadcast capacity [9, 20] for random networks. We
assume that a set of wireless nodes V = {v1, v2, · · · , vn, · · · }
are randomly distributed (with Poisson distribution of rate 1) in
a square region Bn with a side-length a =

√
n and all nodes

transmit at a constant power P . Assume that a subset S ⊆ V of
ns = |S| random nodes will serve as the source nodes of ns mul-
ticast sessions. We randomly and independently choose ns mul-
ticast sessions as follows. To generate the i-th (1 ≤ i ≤ ns)
multicast session, k points pi,j(1 ≤ j ≤ k) are randomly and
independently chosen from the deployment region Bn. Let vi,j be
the nearest wireless node from pi,j (ties are broken randomly). In
the i-th multicast session, vi,1 will multicast data to k − 1 nodes
Ui = {vi,j | 2 ≤ j ≤ k} at an arbitrary data rate λi. The aggre-
gated multicast capacity with S = {v1,1, v2,1, · · · , vns,1} as roots
for a network is defined as Λk,S(n) =

∑
vi∈S λi when there is a

schedule of transmissions such that all multicast flows will be re-
ceived by their destination nodes successfully within a finite delay.
Similarly, we define the minimum per-flow multicast throughput
(or capacity) as λk,S(n) = minvi∈S λi. Our result will show how
the multicast capacity of wireless networks scale with the number
of nodes in the networks, or scale with the size of the deployment
region, or scale with the size of multicast group.

Using fixed-power protocol interference model fPrIM, Li et al.
[14] and Shakkottai et al. [19] showed that, when there are ns mul-
ticast flows and each multicast flow will have k receivers, the per-
flow multicast capacity of ns flows for random networks is of order

W
√

n

ns
√

k log n
when k = O(n/ log n), and is of order W/ns when

k = Ω(n/ log n). Although protocol interference model can ap-
proximate the interference to some extent, experiment studies show
that they are still much different from the practice. In this paper, we
study the asymptotic network capacity using the Gaussian Channel
model. For presentation simplicity, we assume that there is only
one channel in the wireless networks. As always, we assume that
the packets are sent from node to node in a multi-hop manner until
they reach their final destinations. The packets could be buffered at
intermediate nodes while awaiting for transmission. Intermediate
nodes can only store and forward packets (no other operations such
as network coding are allowed here). We assume that the buffer
is large enough so packets will not get dropped by any intermedi-
ate node. We leave it as future work to study the scenario when
network coding is permitted, the buffers of intermediate nodes are

bounded by some values. In some results, we assume that every
intermediate node have infinite buffer size. For most of the results
presented here, the delay of the routing is not considered, i.e., the
delay in the worst case could be arbitrarily large for some results.

Our Main Contributions: This paper shows that a per-flow
multicast rate 1/

√
nk is achievable in networks of n randomly lo-

cated nodes in a square region Bn =
√

n × √n. Specifically, we
will prove the following main theorem.

THEOREM 1. When k ≤ θ1
n

(log n)2α+6 and ns ≥ θ2n
1/2+β

for some constants θ1,θ2 and and any positive real number β, with
high probability1, each multicast source node can send data to all
its intended receivers with rate at least

c8

√
n

ns

√
k

where constants c8 = 1
2

min{c4, c7}, c4 = 2αBP
c0N0

√
θ1

, and c7 =

B
100((97κ

√
θ3+24)h+1)

log
(
1 + P ·(2√2c)−α

N0+22P (2
√

2c)−α

)
. Here c0, c, κ

are constants.

In terms of capacity upper bound, we proved that

THEOREM 2. The asymptotic per-flow unicast capacity of n
flows in a large scale random network with n nodes randomly dis-
tributed in a square Bn is at most of order 1/

√
n.

Compared with [14, 19], studying the multicast capacity with
Gaussian channel model requires new technical insights. Our re-
sult is derived based on the highway system that can be formed
by use of percolation theory. The upper bound on asymptotic per-
flow unicast capacity proved in Theorem 2 shows that the capacity
achieved by [3] is asymptotically optimal, and thus closes the gap
when Gaussian link model is used.

The rest of the paper is organized as follows. In Section 2, we
briefly describe the network and system model used throughout the
paper. Our routing strategy that can achieve asymptotic optimal
multicast capacity is presented in Section 3. We present the theo-
retic analysis in Section 4 and present a matching upper bound for
asymptotic per-flow unicast capacity in Section 5. We review the
related work in Section 6 and conclude the paper in Section 7.

2. NETWORK AND SYSTEM MODEL
Consider a square region Bn of side-length

√
n. We randomly

place a number of nodes inside this square region by use of Pois-
son distribution with rate 1. Assume that each node can transmit at
constant power P , and node vj receives the transmitted signal from
vi with power P ·`(d(vi, vj)), where d(vi, vj) is the Euclidean dis-
tance between vi and vj , and `(d) is the transmission loss during a
path of length d. In this paper, we consider the attenuation function

`(d) = min{1, d−α},
where the constant α > 2. In a Gaussian channel model, the rate
of a transmission from node vi to node vj is

R(vi, vj) = B log

(
1 +

S(vi, vj)

N0 + I(vi, vj)

)

= B log

(
1 +

P · `(d(vi, vj))

N0 +
∑

k 6=i,vk∈A P · `(d(vk, vj))

)

1Here an event is said to happen with high probability (w.h.p.), if
for any 0 < ε < 1, there is a large integer N (typically N = 1/ε)
such that for any random network of size at least N , the probability
that the event happens is at least 1− ε.



where A is the set of nodes transmitting simultaneously with node
vi, B is the channel bandwidth, N0 is the variance of background
noise, I(vi, vj) is the total interference at the receiving node vj

when vi is communicating with vj , and S(w, v) is the strength of
signal (sent by w and received at v).

We choose ns nodes to be the sources of the multicast sessions.
For each source node, choose k − 1 nodes to be its intended re-
ceivers. The source nodes and their receivers are chosen using the
the process described in Algorithm 1.

Algorithm 1 Process for selecting ns multicast sessions
1: for i ← 1, 2, · · · , ns do
2: for j ← 1, 2, · · · , k do
3: Randomly choose a point pi,j in Bn.
4: Choose a node vi,j from V that is closest to pi,j

5: end for
6: Let vi,1 be a source node and vi,2, vi,3, · · · , vi,k be its in-

tended receivers.
7: end for

In Algorithm 1, different multicast sessions may have the same
source, and two receivers of a multicast session may be the same.
A source node may be also an intended receiver of itself. These
may confuse us when considering the multicast rate. Therefore, it
is necessary to clarify them. If two receivers of a multicast ses-
sion are the same, i.e, vi,j1 = vi,j2 , we can simply remove one of
them. To notice that, a node can transmit data to itself with arbi-
trary large rate. However, things are different when considering the
set of ns sources. If the sources of two multicast sessions are the
same, we must treat them separately. Notice that both the transmit-
ted data and the intended receivers of the two multicast sessions are
different. We can not combine the receivers of these two multicast
sessions together either.

Given a random wireless network of n nodes and the set S of
ns = |S| source nodes, let λS = (λi1 , λi2 , · · · , λins−1 , λins

) be
the rate vector of the multicast data rate of all ns multicast sessions.
Here λij is the data rate of node vij ∈ S , for 1 ≤ j ≤ ns. When
given a fixed network G = (V, E), where the node positions of all
nodes V , set S of ns source nodes, the set of receivers Ui for each
source node vi, and the multicast data rate λi for each source node
vi are all fixed, we first define what is a feasible rate vector λ for the
network G. A multicast rate vector λS bits/sec is feasible if there
is a spatial and temporal scheme for scheduling transmissions such
that by operating the network in a multi-hop fashion and buffering
at intermediate nodes when awaiting transmission, every node vi

can send λi bits/sec average to its chosen k − 1 destination nodes.
That is, there is a T < ∞ such that in every time interval (with unit
seconds) [(i− 1) · T, i · T ], every node vi ∈ S can send T · λi bits
to its corresponding k − 1 receivers Ui.

The total throughput of such feasible rate vector for multicast is
defined as Λk,S(n) =

∑
vi∈S λi. The average per-flow multicast

throughput is λa
k,S(n) =

∑
vi∈S λi

ns
. The minimum per-flow mul-

ticast throughput is λk,S(n) = minvi∈S λi, where k is the total
number of nodes in each multicast session, including the source
node. When S is clear from the context, we drop S from our no-
tations. When we mention per flow multicast capacity, hereafter
we mean the minimum per flow multicast capacity, if not explained
otherwise. An aggregated multicast throughput Λk(n) bits/sec is
feasible for ns multicast sessions (each session with k terminals)
if there is a rate vector λS = (λi1 , λi2 , · · · , λins−1 , λns) that
is feasible and Λk(n) =

∑
vi∈S λi. Similarly, we say λk(n) =

minvi∈S λi is a feasible per-flow multicast throughput.

DEFINITION 1 (CAPACITY OF RANDOM NETWORKS). We say
that the multicast capacity per flow of a class of random networks is
of order Θ(f(n)) bits/sec if there are deterministic constants c > 0
and c < c′ < +∞ such that

lim
n→∞

Pr (λk(n) = cf(n) is feasible) = 1

lim inf
n→∞

Pr
(
λk(n) = c′f(n) is feasible

)
< 1

Here the probability is computed using all possible connected ran-
dom networks formed by n nodes distributed in a square with side-
length a. We will study the per-flow multicast capacity under Gaus-
sian channel model, instead of the fPrIM used in [14, 19].

3. OUR SOLUTION
In this section, we will first present several technical lemmas that

will be used in our latter analysis; then we briefly review the high-
way system proposed in [3]; we then present our multicast method
based on the highway system; we finally analyze the performance
of our multicast method.

3.1 Technical Lemmas
To study the asymptotic multicast capacity, we first present some

technical lemmas that are essential for the analysis.

LEMMA 3. At any time instance, assume that for any receiver
vi, the following two conditions are satisfied:

• C1: vi is within Euclidean distance r from its sender vj; and
• C2: for any other sender vk(k 6= j), the Euclidean distance

between vk and vi is at least R with R > r.
Then each receiver can receive at rate at least

B log

(
1 +

P · `(r)
N0 + c1P (R− r)−α

)
,

where c1 is a constant only depending on α.
PROOF. Let VS be the set of senders (which have at least one

intended receiver), and VR be the set of receivers. So, VS

⋂
VR =

Ø. If conditions C1 and C2 are satisfied, any two senders are at
least R′ = R− r away from each other. For any receiver v∗ ∈ VR

and non-negative integer g, let

Ng(v∗) =
{
v ∈ VS | gR′ ≤ d(v∗, v) < (g + 1)R′

}
.

Let v′ be the intended sender of v∗, and ng(v∗) = |Ng(v∗)| be
the size of Ng(v∗). If we divide the ring (centered at node v∗) into
tg = 2dπ(g+1)R′

R′/2
e = 2dπ(2g + 2)e sectors (see Figure 1), the

distance of any two points in the same sector is at most R′. Here
the ring is divided as follows: We first divide the ring into π(g+1)R′

R′/2

sectors, then each sector is divided into two sectors by a circle with
radius (g + 1/2)R′. Thus, a sector contains at most 1 sender, i.e.,

ng(v∗) ≤ tg = 2dπ(2g + 2)e.
Since n0(v

∗) = 0, the total signal interference at node v∗ by all
other transmitting nodes is I(v′, v∗) ≤ ∑∞

g=1 ng(v∗)P ·`(gR′) ≤∑∞
g=1 2dπ(2g+2)eP (gR′)−α ≤ PR′−α ∑∞

g=1 2dπ(2g+2)eg−α.
Obviously, the sum in the rightmost inequality converges if α > 2.
So, I(v′, v∗) ≤ c1P (R− r)−α, where c1 is a constant. Thus,

R(v′, v∗) = B log

(
1 +

S(v′, v∗)
N0 + I(v′, v∗)

)

≥ B log

(
1 +

P · `(r)
N0 + c1P (R− r)−α

)
,

where c1 =
∑∞

g=1 2dπ(2g + 2)eg−α is a constant if α > 2.



LEMMA 4. For γ > 0, if we partition the square Bn = [0,
√

n]×
[0,
√

n] into at least τ1
n

logγ n
subsquare regions of area at most

τ2 logγ n, then w.h.p every region contains at most 2τ2 logγ n nodes.
(τ1 and τ2 are constants.)

PROOF. Let An be the event that there are more than 2τ2 logγ n
nodes in some subsquare. Then by the union bound and Chernoff
bound (Lemma 24), the probability of event An is

Pr(An) ≤
⌈
τ1

n

logγ n

⌉
e−τ2 logγ n(eτ2 logγ n)2τ2 logγ n

(2τ2 logγ n)2τ2 logγ n

=

⌈
τ1

n

logγ n

⌉
e−τ2 logγ n

( e

2

)2τ2 logγ n

=

⌈
τ1

n

logγ n

⌉ ( e

4

)τ2 logγ n

→ 0

as n tends to infinity.

Observe that when γ > 1, Pr(An) < τ1
nτ2 log(4/e)−1 .

LEMMA 5. If we partition Bn into regions of area at least a log n
(for a ≥ 1), then w.h.p every region contains at least 1 node.

PROOF. Let An be the event that some region is empty of nodes.
Then Pr(An) ≤

⌈
n

a log n

⌉ (
1− a log n

n

)n ≤
⌈

n
a log n

⌉
e−a log n =⌈

n
a log n

⌉
1

na → 0 as n tends to infinity. That’s to say, w.h.p, there
are at least 1 node in every region.

3.2 Constructing highway system using per-
colation theory

Our routing strategy is built upon the highway system developed
in [3]. We first review the highway system defined in [3]. To begin
the construction of highway system, we partition the deployment
box Bn into subsquares si of a constant side length c, as depicted in
Figure 2. In Figure 2, let X(si) be the number of random nodes in-
side si. By appropriately choosing c, we can arrange that the prob-
ability that a square contains at least a Poisson node is as high as we
want. Indeed, for all i, we have p ≡ Pr(X(si) ≥ 1) = 1 − e−c2 .
We say that a square is open if it contains at least one node, and
closed otherwise. Notice that squares are open (and closed) with
a probability p (and 1 − p), independently of each other. Observe
that the event whether a square si is open is independent of the
event whether another square sj is open. Thus, percolation theory
can be applied here. This model is then mapped into a discrete
edge-percolation model on the square grid.

We associate an edge to each square, traversing it diagonally, as
depicted on the right-hand side of the Figure 2. The edge is said to
be either open or closed according to the state of the corresponding
square. We then obtain a grid Gn of horizontal and vertical edges,
each edge being open, independently of all other edges, with prob-
ability p. A path of Gn is said to be open if it contains only open
edges. Observe that an open edge implies that we have a routing
path such that the data rate achievable by this path is of a constant
value (depending on c) from Lemma 3, using a TDMA scheduling
of nodes. Note that, when constant c is large enough, the preced-
ing construction produces winding open paths that cross the en-
tire network area. Denote the number of edges composing the side
length of Bn by m =

√
n

c
√

2
, where c is rounded up such that m

is an integer. By Theorem 23, we can choose c large enough such
that, w.h.p., there are Ω(m) paths crossing Bn from left to right.
These paths can be grouped into disjoint sets of paths: each group
have dδ log me paths, crossing a rectangle of width m and height
κ log m − εm, for all κ > 0, δ small enough, and a vanishingly

small εm so that the side length of each rectangle is an integer. See
Figure 3 for illustration. The same is true if we divide the area into
vertical rectangles and look for paths crossing the area from bot-
tom to top. Using the union bound, they [3] conclude that there
exist both horizontal and vertical disjoint paths w.h.p. These paths
form a backbone, that was called the highway system [3].

We then slice each horizontal rectangle into horizontal strips of
constant height h. By choosing h appropriately we can guarantee
that there are at least the same paths as strips in every strip. Sim-
ilarly, we can divide the vertical rectangle into vertical strips. We
let H = κ log m− εm be the height of the horizontal rectangles(or
the width of the vertical rectangles), h be the height of the strips(or
the width of the vertical strip), J =

√
n/H be the number of hor-

izontal(vertical) rectangles, and L = H/h be the number of hor-
izontal(vertical) strips in a horizontal(vertical) rectangle. As there
are at least the same horizontal(vertical) highways as the strips in
a horizontal(vertical) rectangle, L node-disjoint horizontal cross-
ing highways can be chosen in each rectangle. In all, we choose
M = J × L horizontal(vertical) highways.

Let Π1, Π2, · · · , ΠM be the M horizontal highways, such that
Π(i−1)L+j(1 ≤ i ≤ J, 1 ≤ j ≤ L) is a highway in the i-th rect-
angle. We also let πi,j be the j-th node in the i-th horizontal high-
way. So, a highway Πi can be denoted by a list of nodes, i.e, Πi =
(πi,1, πi,2, · · · , πi,si). Similarly, we use Φ1, Φ2, · · · , ΦM to de-
note the M vertical highways, where Φi = (φi,1, φi,2, · · · , φi,ti).
In this paper, we propose the following definition that will be used
in our proofs later.

DEFINITION 2. We call a horizontal(vertical) highway Πi =
(πi,1, πi,2, · · · , πi,si)(or Φi = (φi,1, φi,2, · · · , φi,ti)) legal if there
does not exist j1, j2 such that 1 ≤ j1 < j2 ≤ si(or ti) and
X(πi,j1) > X(πi,j2) + 2H (or Y (φi,j1) > Y (φi,j2) + 2H).
Here X(p) and Y (p) are the x-coordinate(from left to right) and
y-coordinate(from up to down) of point p, respectively.

In the appendix, we will prove the following theorem.

THEOREM 6. If we find a set of M horizontal highways and M
vertical highways using the percolation method, we can find a set
of M legal horizontal highways and M legal vertical highways.

3.3 Schedule the multicast tasks
We now are ready to describe our multicast method. The pro-

posed solution is based on multihop routing, and exploits the for-
mation of paths percolating across the network. As in [3], we divide
the nodes into disjoint sets that cross the network area. These sets
form a “highway system” of nodes (called stations sometime) that
can carry information across the network at constant rate, using
short hops. The rest of the nodes access the highway system using
single hops of longer lengths.

Our multicast protocol (Algorithm 3) contains two kinds of hops:
the constant-length hop in the highway system, and the longer hop
connecting a receiver vi,x to some entry node qi,x in the highway.
We will then perform multicast (using multicast tree) to these entry
nodes in the highway. To transmit data through the multicast tree,
we divide our communication strategy into three separate phases:

1. In the first phase, every non-station node vi,x exchanges its
data with some station qi,x in the highway system (we call
the nodes in the highway system stations) using a single-hop
communication; see Figure 4.

2. in the second phase, data is transmitted through highways
using station nodes that are part of some special Euclidean
spanning tree constructed;

3. in the third phase, data is forwarded directly to the destina-
tion nodes from the nodes of the highway system.
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Figure 1: Divide a ring into sectors.
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Figure 2: Construction of the bond percolation
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Figure 3: There exists a large num-
ber of crossing paths in Bm.
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pi,x

Figure 4: Choose qi,x for vi,x where the path is a highway.

In the rest of our analysis, we typically will not distinguish the first
phase and the third phase. In the following, we take all the ns

multicast sessions into consideration and analyze the date rate per
multicast-session of the two phases separately.

πzy,u4 qi,y(πzy ,u5)

πzx,u1qi,x(πzx,u0) φwx,u2 Πzx Φwx

Πzx φwx,u3

Figure 5: A path connecting qi,x and qi,y contains 3 highway
segments: the horizontal one from qi,x to πzx,u1 , the verti-
cal one from φwx,u2 to φwx,u3 , and the horizontal one from
πzy,t4 to qi,y . These 3 segments are connected by shortcuts,
πzx,u1φwx,u2 and φwx,u3πzy,u4 , of length at most

√
5c.

We first describe our method (Algorithm 2) to construct an Eu-
clidean spanning tree of a set Pi of k points. We have to point out
that our method will not necessarily construct an Euclidean mini-
mum spanning of these k points. Assume that the set Pi of k points
is located in a square region [0, a] × [0, a]. Our method for con-
structing an Euclidean spanning tree will first divide the region into
cells (with side-length a/2t−1 for t = dlog4 ke). This cells are

called level t − 1 cell. Similarly, we can define level g cells with
side-length a/2g . Originally, all nodes are representant nodes in
level t − 1. If a level i cell contains some representant nodes, we
randomly pick one (as the representant node to upper level i − 1)
and build edges from all other representant nodes in this cell to the
randomly picked node. We will show that the Euclidean length of
the constructed tree is of order of the Euclidean length of Euclidean
minimum spanning tree.

Algorithm 2 Find a Euclidean Spanning Tree for k points
Input: Pi = {pi,1, pi,2, · · · , pi,k}
Output: An Euclidean tree spanning Pi, denoted as EST (Pi)
Algorithm:
1: t ← the minimum integer such that 4t ≥ k;
2: P ← Pi

3: E ← Ø;
4: for g ← t− 1, · · · , 1, 0 do
5: Divide Bn into 2g × 2g cells, each with size a

2g × a
2g ;

6: for each cell of size a
2g × a

2g do
7: if the cell contains s ≥ 2 points in P then
8: Randomly choose a point pi,x from these s points;
9: for any other point pi,y(y 6= x) in this cell do

10: E ← E ⋃{pi,xpi,y}
11: P ← P − {pi,y};
12: end for
13: end if
14: end for
15: end for
16: Output E as the edges of EST (Pi).

4. ANALYSIS OF CAPACITY
We now analyze the per-flow multicast capacity achievable by

our routing and scheduling protocol.

4.1 Data rate of the first phase
To notice that a receiver will have the same relay node from high-

ways in all multicast sessions, our computation of the data rate from
a node to its highway entrance station comprises two steps. In the
first step, we only need to analyze the rate between receivers and
their relay nodes. While in the second step, we calculate how many
multicast sessions a non-station node v∗ is covered by, which will
imply the data rate achievable in 1st and 3rd phase.

LEMMA 7. In the first (and 3rd) phase of the transmission, w.h.p.for
any 1 ≤ i ≤ ns and for any x(1 ≤ x ≤ k), the date rate achiev-
able by our method between a terminal vi,x and the highway en-



Algorithm 3 Build a multicast tree using highway
Input:

1. Pi = {pi,1, pi,2, · · · , pi,k} and EST (Pi) generated from
Algorithm 2,

2. Vi = {vi,1, vi,2, · · · , vi,k} generated from Algorithm 1,
3. M horizontal highways Π1, Π2, · · · , ΠM and M vertical

highways Φ1, Φ2, · · · , ΦM as described previously.
Output: A multicast tree spanning Vi, denoted as MT (Vi).
1: for x ← 1, 2, · · · , k do
2: Suppose pi,x is in the zx-th horizontal strip;
3: Let qi,x be the node from Πzx which is closest to the verti-

cal line drawn from pi,x(see Figure 4);
. qi,x will relay data for vi,x.

4: end for
5: for each edge pi,xpi,y in EST (Pi) do
6: Suppose qi,x = πzx,u0 , and qi,y = πzy ,u5 ;
7: if zx = zy then
8: E(qi,x, qi,y) ← (πzx,u0 , πzx,u0±1, · · · , πzx,u5).
9: else

10: Suppose pi,x is on the wx-th vertical strip.
11: Find a station πzx,u1 in Πzx and a station φwx,u2 in

Φwx such that d(πzx,u1 , φwx,u2) ≤
√

5c;
12: Find a station φwx,u3 in Φwx and a station πzy,u4 in

Πzy such that d(φwx,u3 , πzy ,u4) ≤
√

5c;
13: E1(qi,x, qi,y) ← (πzx,u0 , πzx,u0±1, · · · , πzx,u1);
14: E2(qi,x, qi,y) ← (φwx,u2 , φwx,u2±1, · · · , φwx,u3);
15: E3(qi,x, qi,y) ← (πzy ,u4 , πzy,u4±1, · · · , πzy,u5);
16: E(qi,x, qi,y) ← E1(qi,x, qi,y) ∝ E2(qi,x, qi,y) ∝

E3(qi,x, qi,y); . See Figure 5 for illustration, ∝ means
concatenation of paths. . Here E(qi,x, qi,y) is a path in the
highway system connecting qi,x and qi,y (See Figure 5).

17: end if
18: end for
19: Let MT ′(Vi) be the set of edges that covered by any path

E(qi,x, qi,y), union the set {qi,xvi,x | 1 ≤ x ≤ k}.
20: MT ′(Vi) is a connected graph that covers Vi. We can break

the cycles of the graph by removing some edges and the re-
sulted graph would be a tree. Let MT (Vi) be the resulted tree.

trance station qi,x is c2(log n)−α−2 in both directions. Here c2 is
a constant.

PROOF. Notice that the node pi,x and qi,x are within the same
rectangle with height H , and the horizontal distance between them
is at most

√
2c. Then the distance between pi,x and qi,x is at most

H +
√

2c.
From Lemma 5, we can see w.h.p there is at least 1 node in ev-

ery region with area log n. Thus, we could divide square Bn into
squares with side-length (1 + ξn)

√
log n, where ξn is the smallest

positive number that
√

n

(1+ξn)
√

log n
is an integer. It is easily seen

that ξn tends to 0 when n tends to ∞. Since w.h.p each square
contains a node and vi,x is the closest node from the point pi,x, the
distance d(pi,x, vi,x) is at most

√
2(1 + ξn)

√
log n, w.h.p..

By adding the above two upper bounds, we can see that the
distance between vi,x and qi,x is at most H +

√
2c +

√
2(1 +

ξn)
√

log n = κ log m− εm +
√

2c +
√

2(1 + ξn)
√

log n. This is
smaller than 2κ log m for a sufficient large n. Note m =

√
n/(c

√
2).

Then we let r = 2κ log m and R = 2r. Then by Lemma 3,
the data rate R(vi,x, qi,x) that can be achieved between vi,x and

qi,x is at least B log
(
1 + P ·`(r)

N0+c1P (R−r)−α

)
when the condition

C2 of Lemma 3 is satisfied. This condition can be guaranteed by

dividing the phase 1 into time slots. We partition the square Bn

into a number of subsquares with length r, and divide the phase 1
into 16 time slots such that within a time slot, any two subsquares
that contain transmitting nodes is at least 4 subsquares away (See
Figure 6 (a) for illustration). Thus, any two transmitting nodes are
at least 3r away from each other. To make sure that at the same
time there is at most 1 transmitting node at each subsquare, each of
the 16 time slots should be divided into smaller mini-time-slots. By
Lemma 4, we can see, 2r2 mini time slots is enough w.h.p., since,
w.h.p., each subsquare contains at most 2r2 nodes. Considering the
number of mini time slots, we could see that w.h.p, the data rate
between each pair of vi,x and qi,x that we can achieve is at least

B log

(
1 +

P · `(r)
N0 + c1P (R− r)−α

)
/(16× 2r2)

≥ (1− ε1)BP · r−α/(32N0r
2) = (1− ε1)

BP

32N0
r−α−2

≥ (1− ε1)
BP

32N0

(
(1 + ε2)

log n

2

)−α−2

=
2αBP

16N0
(log n)−α−2 (1− ε1)(1 + ε2)

−α−2

≥ 2αBP

17N0
(log n)−α−2

The above inequality requires that n is sufficient large. In the above
inequality, ε1 and ε2 are positive numbers whose value we can set.

In the above reasoning, we assigned each node a time slot and
thus vix and qi,x will have separate time slots. Thus, the rates in
both direction can achieve the lower bound. Setting c2 = 2αBP

17N0
will finish our proof.

2κ log m

p∗
√

n

(1 + ξn)
√

log n

(a) (b)

Figure 6: (a) The subsquares that contain transmitting nodes
are at least 4 subsquares away from each other, and each sub-
square contains at most 1 transmitting node. In the figure, the
nodes with arrows represent transmitting nodes. (b) The sub-
squares where v∗ may be located. p∗ is located in the square in
the center, and the green squares and the center square (totally
21 squares) are the squares where v∗ may be located w.h.p.. The
statement is also correct when we exchange the position of v∗

and p∗.

Now we move to the second step. We need to show how many
multicast sessions a node v∗ may be part of. First, we consider the
processQ for choosing one node v∗ : randomly selecting a point q∗

in Bn and let v∗ be its nearest wireless node. We then are asking,
what is the probability that a node v∗ is chosen in this process Q?
The following lemma gives the answer.

LEMMA 8. W.h.p, for any node v∗, the probability that a node
v∗ is chosen by process Q is at most c3

log n
n

for a constant c3.



PROOF. This is exactly to compute the area of the regions in the
Voronoi graph of the n nodes. In Lemma 5, we partition the square
Bn into subsquares of side-length (1 + ξn)

√
log n and w.h.p each

subsquare contains at least 1 node. Considering a point p∗ in a
subsquare s, w.h.p., its nearest node v∗ must fall in s or the 20
subsquares around s (see Figure 6 (b)). To speak in another way,
if v∗ is in a subsquare s′, p∗ must fall in s′ or the 20 subsquares
around s′. So, the probability that a node v∗ is chosen by process
Q is at most 21 (1+ξn)2 log n

n
. Since ξn tends to 0 as n tends to

+∞, it is smaller than 22 log n
n

when n is sufficiently large. So, if
we let c3 = 22, w.h.p, for any station v∗, the probability is at most
c3

log n
n

.

LEMMA 9. W.h.p, for any non-station node v∗, the probability
that a multicast session has v∗ as a receiver is at most c3k

log n
n

.

PROOF. Since the probability that a node v∗ is chosen by pro-
cess Q is at most c3

log n
n

, and v∗ is chosen by a multicast session
as receiver if v∗ is chosen by at least one of k processes, the prob-
ability is at most c3k

log n
n

.

LEMMA 10. In Algorithm 1, w.h.p, for any node v∗, the number
of times that v∗ is chosen by processQ as a multicast receiver is at
most 3c3nsk

log n
n

when nsk ≥ n.

PROOF. Let An be the event that a node v∗ is chosen byQmore
than 3c3nsk

log n
n

times. Let p = c3k
log n

n
, the probability that v∗

is chosen as terminal of a multicast session. Then

Pr(An) ≤ ns

(
ns

3nsp

)
p3nsp ≤ ns

(
nse

3nsp

)3nsp

p3nsp

≤ ns

(
nse

3ns

)3nsp

≤ ns

( e

3

)3nsp

≤ ns

(
n−3c3(log 3−1)

) nsk
n

→ 0 (notice that 3c3(log 3− 1) > 1 and nsk ≥ n)

This finishes the proof.

LEMMA 11. W.h.p, there exist a constant c4 > 0, the data rate
that any multicast session can achieve in the first phase is at least
c4

√
n

ns
√

k
, if k ≤ θ1

n
log2α+6 n

and ns ≥ θ2n
1/2+β , where θ1, θ2 are

special constants, and β > 0 is any positive real number.

PROOF. When nsk ≥ n and k ≤ θ1
n

log2α+6 n
, based on Lemma

7 and Lemma 10, w.h.p., the data rate achievable per-multicast ses-
sion in the first phase is

R1
1 ≥ c2(log n)−α−2

3c3nsk
log n

n

=
c2

3c3

n(log n)−α−3

nsk

≥ c2

3c3

(
n(log n)−α−3

ns

√
k

)
/

(√
θ1

n

log2α+6 n

)

=
c2

3c3

√
θ1

√
n

ns

√
k

When nsk < n, the number of multicast session that will choose
a node as receiver is w.h.p. at most 3c3n

log n
n

= 3c3 log n. Then,
w.h.p, the data rate that per-multicast session of the first phase can
achieve is, when nsk < n and ns ≥ θ2n

1/2+β ,

R2
1 ≥ c2(log n)−α−2

3c3n
log n

n

≥ c2

3c3
(log n)−α−3

≥ c2

3c3

√
θ1

n−β

√
k
≥ c2

3c3

√
θ1

√
n

ns

√
k

In all, w.h.p., the data rate of any multicast session in the first
phase is at least, when k ≤ θ1

n
log2α+6 n

and ns ≥ θ2n
1/2+β ,

R1 ≥ c2

3c3

√
θ1

√
n

ns

√
k

The lemma then follows by setting c4 = c2
3c3

√
θ1

.

Note we assumed that k ≤ θ1
n

log2α+6 n
and ns ≥ θ2n

1/2+β . It
is interesting to see if our results still hold for general k.

4.2 Capacity of the highway system
We then study the capacity of the highway system for multicast.

We begin our analysis on the spanning tree used for multicast con-
structed by Algorithm 2. For a region R, and g(0 ≤ g ≤ t − 1),
we first run Algorithm 2 line by line. When we run to line 5 for the
(t−g)-th time, for any region R, let E(R, g) be the event that there
is a node from P that falls in region R. Recall that here P is the set
of nodes representing all connected components (each node for one
connected component). We use D(p) to denote a small enough re-
gion that contains point p, and D(p) = |D(p)| is the area of D(p).
Then we have the following lemma.

LEMMA 12. For any point p in Bn and 0 ≤ g ≤ t , we have

Pr{E(D(p), g)} ≤ 4g+1

a2
D(p).

PROOF. For g ≤ t − 2, at line (5) of Algorithm 2, there is at
most one representant wireless node in each a

2g+1 × a
2g+1 cells.

Furthermore, we can see if there is a node in a cell s, this node is
randomly located in s. i.e, each point in s has the same probability
density 1

a2/4g+1 = 4g+1

a2 to be the node. So, when g ≤ t − 2, for

each point p, Pr{E(D(p), g)} ≤ 4g+1

a2 D(p).
When g = t− 1, since there are k nodes in P , we have

Pr{E(D(p), g)} ≤ k

a2
D(p) ≤ 4t

a2
D(p) =

4g+1

a2
D(p).

So, for 0 ≤ g ≤ t − 1, we have Pr{E(D(p), g)} ≤ 4g+1

a2 D(p).
This finishes the proof.

LEMMA 13. For any region R in Bn and 0 ≤ g ≤ t− 1,

Pr (E(R, g)) ≤ 4g+1

a2
|R|

PROOF. The probability is computed by integration: Pr{E(R, g)} =‚
p∈R Pr{E(D(p), g)} ≤ ‚

p∈R
4g+1

a2 D(p) = 4g+1

a2 |R|.

LEMMA 14. In the second phase, the probability that a sta-
tion is covered by a multicast session is at most c5

√
k√
n

when k ≤
θ3

n
log2 n

, where c5 and θ3 are constants.

PROOF. Considering Algorithm 3, we can see a highway node
v∗ can be covered by a multicast session in the following two cases.

1. v∗ is covered by a horizontal path E(qi,x, qi,y) got by line 8
of Algorithm 3.

2. v∗ is covered by a horizontal path E(qi,x, qi,y) got by Line
16 of Algorithm 3.

We now study these two cases separately.
Case 1: v∗ is covered by a horizontal path E(qi,x, qi,y) got by

line 8 of Algorithm 3.
In this case, qi,x must be in the same horizontal highway with

v∗, say, Πzx . It means that pi,x must be in the zx-th horizontal
strip. Thus, the vertical span of pi,x is h. Consider the value of g
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Figure 7: The cases in which the station v∗ is covered. In all cases, either pi,x or pi,y is bounded in a rectangle with size at most
h× (

a
2g + 3H +

√
2c

)
.

at the line 10 of Algorithm 2 when pi,xpi,y is inserted into EST .
We can see both the horizontal and the vertical span of pi,xpi,y ,
dH(pi,x, pi,y), are at most a

2g . So, we will show the upper bound
of the vertical span of pi,x on g. Since v∗ is between qi,x and qi,y

in the highway, considering the position of v∗ in relation to qi,x

and qi,y , there will be 3 subcases: (we suppose the x-coordinate
X(qi,x) of qi,x is less than X(qi,y))

1. X(v∗) ≤ X(qi,x). Since the highway Πwx is legal, we have
dH(v∗, qi,x) < 2H . Thus dH(v∗, pi,x) ≤ dH(v∗, qi,x) +
dH(qi,x, pi,x) ≤ 2H + dH(qi,x, pi,x).

2. X(qi,x) < X(v∗) ≤ X(qi,y). In this case, dH(v∗, pi,x) ≤
max{dH(qi,x, pi,x), dH(qi,y, pi,x)}.

3. X(qi,y) < X(v∗). Similar with the preceding subcase 1),
we have dH(v∗, pi,x) ≤ 2H + dH(qi,y, pi,x).

In summary, we have

dH(v∗, pi,x) ≤ max{2H + dH(qi,x, pi,x),

dH(qi,x, pi,x), dH(qi,y, pi,x),

2H + dH(qi,y, pi,x)}
= 2H + max{dH(qi,x, pi,x), dH(qi,y, pi,x)}.

Note dH(pi,x, qi,x) ≤ √
2c, and dH(pi,x, qi,y) ≤ dH(pi,x, pi,y)+

dH(pi,y, qi,y) ≤ a
2g +

√
2c. Thus, for a sufficiently large n,

dH(v∗, pi,x) ≤ 2H +
a

2g
+
√

2c ≤ (2 + ε)H +
a

2g
.

Combining the horizontal span and vertical span of pi,x, we know
pi,x is in a h× (

(2 + ε)H + a
2g

)
rectangle (see Figure 7, case 1).

Case 2: v∗ is covered by a horizontal path E(qi,x, qi,y) got by
Line 16 of Algorithm 3. In this case, the path E(qi,x, qi,y) will
contain qi,x, πzx,u1 , φwx,u2 , φwx,u3 , φzy ,u4 , qi,y in that order.

Considering the position of v∗ in this path, there are 3 sub-cases.
Case 2(1) : v∗ is covered by a horizontal path E1(qi,x, qi,y) got

by line 13 of Algorithm 3. Similar with case 1, pi,x is bounded in
the zx-th horizontal strip. Furthermore.

dH(v∗, pi,x) ≤ 2H + max{dH(qi,x, pi,x), dH(πzx,u1 , pi,x)}
≤ 2H + max{

√
2c,

dH(pi,x, φwx,u2) + dH(πzx,u1 , φwx,u2)}
≤ 2H + H +

√
2c ≤ (3 + ε)H

So, pi,x is in a rectangle region with height h and width (3 + ε)H
(see Figure 7, case 2(1)).

Case 2(2) : v∗ is covered by a vertical path E2(qi,x, qi,y) got by
line 14 of Algorithm 3. In this case, v∗ is on highway Φwx , be-
tween φwx,u2 and φwx,u3 . Since pi,x is on the wx-th vertical strip,
its vertical span is at most h. In addition, dV (pi,x, φwx,u3) ≤
dV (pi,x, pi,y) + dV (pi,y, πzy ,u4) + dV (πzy ,u4 , φwx,u3) ≤ a

2g +

H+
√

2c, and furthermore, dV (pi,x, φwx,u2) ≤ dV (pi,x, πzx,u1)+

dV (πzx,u1 , φwx,u2) ≤ H +
√

2c. Similar with case 1, we have

dV (pi,x, v∗)

≤ 2H + max{dV (pi,x, φwx,u2), dV (pi,x, φwx,u3)}
≤ 2H +

a

2g
+ H +

√
2c

≤ (3 + ε)H +
a

2g
(when n is large enough)

So, pi,x is in a rectangle region of height h and width
(
(3 + ε)H + a

2g

)
(see Figure 7, case 2(2)).

Case 2(3) : v∗ is covered by a horizontal path E3(qi,x, qi,y)
got by line 15 of Algorithm 3. In this case, v∗ is located in the
highway Πzy . So, pi,y is bounded in the zy-th horizontal strip.
Additionally, we have dH(pi,y, πzy,u4) ≤ dH(πzy ,u4 , φwx,u3) +

dH(φwx,u3 , pi,x)+dH(pi,x, pi,y) ≤ √
2c+H + a

2g . Also similar
with case 1, we have

dH(pi,y, v∗)

≤ 2H + max{dH(pi,y, πzy ,u4), dH(pi,y, qi,y)}
≤ 2H +

√
2c + H +

a

2g

≤ (3 + ε)H +
a

2g
(when n is large enough)

Thus, pi,y is bounded in a rectangle of width
(
(3 + ε)H + a

2g

)
and of height h (see Figure 7, case 2(3)).

In all cases, either pi,x or pi,y is bounded in a rectangle. For
some g, the probability that v∗ is covered by an edge from d is
at most Pg ≤ h

(
(2 + ε)H + a

2g

)
4g+1

a2 + h(3 + ε)H 4g+1

a2 +

h
(
(3 + ε)H + a

2g

)
4g+1

a2 +h
(
(3 + ε)H + a

2g

)
4g+1

a2 , which is≤
h

(
12H + 3 a

2g

)
4g+1

a2 . Then, consider all g = 0, 1, 2, · · · , t − 1,
the probability that v∗ is covered is at most

p ≤
t−1∑
g=0

Pg ≤
t−1∑
g=0

h
(
12H + 3

a

2g

) 4g+1

a2

= 48Hh

t−1∑
g=0

4g

a2
+ 12h

t−1∑
g=0

2g

a
≤ 48Hh

4t

a2
+ 12h

2t

a

≤ 48Hh
4k

a2
+ 12h

2
√

k

a
= 192Hh

k

a2
+ 24h

√
k

a

Replacing H with κ log
√

n

c
√

2
− εm and a with

√
n, we will get

p ≤ 192

(
κ log

√
n

c
√

2
− εm

)
h

k

n
+ 24h

√
k√
n



Use the condition k ≤ θ3
n

log2 n
, we have, for a sufficient large n,

p ≤ 192
(
κ log

√
n

c
√

2
− εm

)
h
√

k
n

√
θ3

n
log2 n

+ 24h
√

k√
n
≤ (96 +

ε1)κh
√

θ3

√
k√
n

+ 24h
√

k√
n
≤ (97κ

√
θ3 + 24)h

√
k√
n

, where ε1 is a

constant that satisfies 0 < ε1 ≤ 1. Setting c5 = (97κ
√

θ3 + 24)h
finishes the proof.

With Lemma 14, the following lemma is straightforward.

LEMMA 15. For any station v∗, the expected number of multi-
cast sessions that pass v∗ is at most c5

ns
√

k√
n

, when k ≤ θ3
n

log2 n
.

PROOF. Since the ns multicast sessions are generated indepen-
dently, multiplying the upper bound of the probability that v∗ is
covered by a multicast sessions by ns will result in the upper bound
of the expected number of covering multicast sessions. That is
c5

√
k√
n
× ns = c5

ns
√

k√
n

.

The preceding result only shows the probability upper bound that
a given node v∗ is used by multicast sessions, when v∗ is given a
prior. Next, we use VC theorem (Theorem 25) to give the upper
bound of the multicast sessions that pass v∗ for every possible node
in the highway system. Recall that, we used ns sets of k points
to generate ns multicast trees. So, the input space should be the
family of sets of k points, i.e, [0,

√
n]2k. To notice that the output

MT of Algorithm 3 is fixed for a fixed set of k points, we could
set the universal input space U be the set of all possible output
multicast trees of Algorithm 3. For each wireless station v∗, v∗ is
either covered or not covered by a tree T in U . For a subset S of U ,
we use TS(v∗) to denote the set of trees from S that cover v∗. Let

CS = {TU (v∗) | v∗ is a node in the highway system},
our objective is to compute the VC-dimension of CU . Here, we
simply use log2 n as the upper bound of VC-d(CU ). This upper
bound is obvious due to the fact that there is at most n elements in
CU . Notice that a careful analysis can show that the VC-dimension
VC-d(CU ) is actually of order Θ(log k).

THEOREM 16. With high probability, for every station v∗, the
number of multicast sessions that cover v∗ is at most c6

ns
√

k√
n

, when

k ≤ θ3
n

log2 n
and ns ≥ θ2n

1/2+β , where c6 is a constant to be
specified and β > 0 is any positive real number.

PROOF. Recall that in Lemma 14, the probability that a station
v∗ is covered by a random multicast session is at most c5

√
k√
n

. Using
VC-theorem, we have

Pr

(
sup
v∗

∣∣∣∣∣
# of sessions covering v∗

ns
− c5

√
k√
n

∣∣∣∣∣ < ε(n)

)
> 1− σ(n)

if ns ≥ max

{
8d

ε(n)
· log

13

ε(n)
,

4

ε(n)
log

2

σ(n)

}

If we set ε(n) =
√

k√
n

and σ(n) = 2
n

, we have

Pr

(
sup
v∗

(# of sessions covering v∗) < (c5 + 1)
ns

√
k√

n

)
> 1− 2

n

if ns ≥ max

{
8
√

n log n√
k

· log
13
√

n√
k

,
4
√

n√
k

log n

}

=
8
√

n log n√
k

· log
13
√

n√
k

To guarantee the above lower bound for ns for a large enough
n, it is sufficient that ns ≥ θ2n

1/2+β for a constant β > 0. Let
c6 = c5 + 1 and we finish the proof.

LEMMA 17. W.h.p, the data rate of the second phase in any
multicast session is at least c7

√
n

ns
√

k
, when ns ≥ θ2n

1/2+β and
k ≤ θ3

n
log2 n

.

PROOF. As the distance between two adjacent highway stations
is at most 2

√
2c, we can set r = 2

√
2c and R = 4

√
2c and apply

Lemma 3. We do it in the similar way with the proof of Lemma 7.
As there is at most 1 station in a square of size c×c, we only need to
divide the 2nd phase into

(dR+r
c
e+ 1

)2
= 100 time slots. Then,

w.h.p, each station can send data to its adjacent stations (on the
same highway) at rate at least B log

(
1 + P ·`(2√2c)

N0+c3P (2
√

2c)−α

)
/100,

which is at least a constant.
In addition, w.h.p, each station in highway system is covered by

at most c6
ns
√

k√
n

multicast sessions when k ≤ θ3
n

log2 n
. So, the

stations of each multicast session can get transmitting rate at least

R2 ≥ B log

(
1 +

P · `(2√2c)

N0 + c3P (2
√

2c)−α

)
/

(
100c6

ns

√
k√

n

)

=
B

100c6
log

(
1 +

P · `(2√2c)

N0 + c3P (2
√

2c)−α

) √
n

ns

√
k

So, if letting c7 = B
100c6

log
(
1 + P ·`(2√2c)

N0+c3P (2
√

2c)−α

)
, we get

the result we need.

4.3 Per-flow multicast capacity of the system
By combining the data rate in the two phases, we have

THEOREM 18. If k ≤ θ1
n

log2α+6 n
and ns ≥ θ2n

1/2+β , w.h.p.,

the per-flow multicast rate is at least c8

√
n

ns
√

k
, where c8 = 1

2
min{c4, c7}.

PROOF. When k ≤ θ1
n

log2α+6 n
, it is sufficient that k ≤ θ3

n
log2 n

for large n. Then both Lemma 11 and Lemma 17 are applicable.
We assign the two phases the same amount of time and thus the
achievable per-flow date rate is 1

2
min{c4, c7}

√
n

ns
√

k
= c8

√
n

ns
√

k
.

5. UPPERBOUND ON UNICAST CAPACITY
It has been shown in [3] that the asymptotic per-flow unicast ca-

pacity under Gaussian channel model is Ω(1/
√

n) when a square
Bn contains a number of nodes following Poisson distribution with
rate 1. We here show that the per-flow unicast capacity is at most
O(1/

√
n) in this setting.

The basic idea of the proof is as follows. We partition the region
into grids of cells of side-length c (value of c depending on p and
c0) such that, the probability that a cell contains at most c0 nodes is
at least p. Here p > 5/6 and c0 > 1 are constants. We say a cell is
quasi-closed if it contains at most c0 nodes. We call a path of cells
quasi-closed cut if it contains only quasi-closed cells and crosses
from left to right side of square Bn. Furthermore, we define the
length of a quasi-closed cut as the total number of cells it contains.

As shown in [3], for all k > 0 and 5
6

< p < 1 with 2 +
k log(6(1− p)) < 0, there exists a number of disjoint groups con-
taining at least dδ log me disjoint paths in every group, and each
group is constraint in a stripe of size m × (k log m − εm), for δ

small enough and δ log p
1−p

+1+k log(6(1−p)) < 1, m =
√

n

c
√

2
,

and a non-zero small εm such that the side length of each stripe
is integer. When k is some appropriate constant, the number of
groups is m

k log m−εm
> n1/3 when n is large enough. Then by

pigeonhole principle, it is easy to show the following

LEMMA 19. Assume that dδ log me disjoint paths (formed by
quasi-closed cells) inside a stripe of length m-cells and width (k log m−



εm)-cells. There exists a quasi-closed cut whose length is at most
c9
√

n for some constant c9 = k

δc
√

2
.

We call such cut in the middle group as C. It is easy to show that
the expected number of unicast flows that will cross this cutC (with
end nodes on different sides of C) is at least ns/9, and thus, with
high probability, the number of unicast flows that will cross C is at
least ns/18. This implies that, by pigeonhole principle, there exists
a cell in C that will be crossed by at least ns

18c9
√

n
unicast flows.

Since the cell has only a constant number of nodes, the longest link
needed to cross such special cell is at least a constant value %. Thus,
the data rate that can be supported by this special link is at most a
constant. Thus, we have (whose detailed proofs are omitted due to
space limit)

THEOREM 20. The asymptotic per-flow unicast capacity of ns

flows in a large scale random network with n nodes randomly dis-
tributed in a square Bn, with high probability, is at most O(

√
n/ns)

when ns is large enough.

6. LITERATURE REVIEWS
The ground-breaking work by Gupta and Kumar [7] studied the

asymptotic unicast capacity of a multi-hop wireless networks for
two different models. When each wireless node is capable of trans-
mitting at W bits per second using a constant transmission range,
the throughput obtainable by each node for a randomly chosen des-
tination is Θ( W√

n log n
) bits per second under PrIM. If nodes are

optimally placed and transmission range is optimally chosen, even
under optimal circumstances, the throughput is only Θ( W√

n
) bits

per second for each node. Similar results also hold for PhIM Kulka-
rni and Viswanath [12] obtained a stronger (almost sure) version of
the

√
n log n throughput for random node locations in a fixed area

obtained in [7].
Grossglauser and Tse [6] showed that mobility actually can help

to improve the unicast capacity if we allow arbitrary large delay.
Their main result shows that the average long-term throughput per
source-destination pair can be kept constant even as the number of
nodes per unit area increases. Notice that this is in sharp contrast
to the fixed network scenario (when nodes are static after random
deployment). In summary, for random networks, under the proto-
col model, the achievable per-flow throughput capacity λ(n) and
the average travel distance L satisfies λ(n) · L ≤ Θ( W

∆2n·r(n)
).

Similar phenomenon has also been observed in [13]. Gastpar and
Vetterli [5] study the capacity of random networks using relay.
Chuah et al. [2] studied the capacity scaling in MIMO wireless
systems under correlated fading. Vu et al. [21] studied the scal-
ing laws of cognitive networks. Liu et al. [15] studied the capacity
of a wireless ad hoc network with infrastructure. Another stream
of work (e.g. [17]) has proposed progressively refined multi-user
cooperative schemes, which have been shown to significantly out-
perform multi-hop communication in many environments. Bounds
for the capacity of wireless multihop networks imposed by topol-
ogy and demand were studied in [11]. Their techniques can be used
to study unicast, broadcast and multicast capacity. Bhandari and
Vaidya [1] studied the unicast capacity of multi-channel wireless
networks with random (c, f) assignment. Garetto et al. [4] studied
the capacity scaling in delay tolerant networks with heterogeneous
mobile devices. Their methodology allows to identify the scaling
laws for a general class of mobile wireless networks, and to pre-
cisely determine under which conditions the mobility of nodes can
indeed be exploited to increase the per-node throughput.

Broadcast capacity of an arbitrary network has been studied in
[9, 20]. They essentially show that, under fPrIM, the broadcast

capacity is Θ(W ) for single source broadcast and the achievable
broadcast capacity per flow in any network is only Θ(W/n) if each
of the n nodes will serve as source node. This capacity bounds also
apply to random networks. Keshavarz-Haddad et al. [10] studied
the broadcast capacity with dynamic power adjustment for physi-
cal interference model. Zheng [23] studied the data dissemination
capacity in power-constrained networks: w.h.p., the total broadcast
capacity is P ·Θ((log n)−α/2) when each node transmits at a power
P in the Gaussian channel model.

Multicast capacity was also recently studied in the literature.
Jacquet and Rodolakis [8] studied the scaling properties of mul-
ticast for random wireless networks. They briefly claimed that
the maximum rate at which a node can transmit multicast data is
O( W√

kn log n
). Recently, rigorous proofs of the multicast capacity

were given in [14, 19]. Li et al. [14] studied the multicast capac-
ity of the following random networks: n wireless nodes are ran-
domly deployed in a square region with side-length a and each
wireless node can transmit/receive at W bits/second over a com-
mon wireless channel. They proved that, in fPrIM, the per-flow
multicast capacity (of n multicast flows, each flow with k receivers)
is Θ(

√
1

n log n
· W√

k
) when k = O( n

log n
); the per-flow multicast

capacity is Θ(W/n) when k = Ω( n
log n

). Shakkottai et al. [19]
studied the multicast capacity of random networks when the num-
ber of multicast sources is nε for some ε > 0, and the number
of receivers per multicast flow is n1−ε. Recently, Mao et al. [16]
studied the multicast capacity for hybrid networks. They derived
several capacity regimes based on the relations of the number k of
receivers per multicast session, the total number n of nodes, and
the number m of base stations.

These results [6–10, 14, 19, 20] for the network capacity of ran-
dom networks all assumed that the data rate supported by each
communication link is a constant W -bps (using PrIM, fPrIM, or
PhIM interference models). Using percolation theorem, multihop
transmission, pairwise coding and decoding at each hop, and a
TDMA scheme, Franceschetti et al. [3] shows that a rate 1/

√
n is

achievable in networks of randomly located nodes (not only some
arbitrarily placed nodes) when Gaussian channel is used.

7. CONCLUSION
In this paper, we studied the multicast capacity of randomly placed

wireless nodes in Bn under Gaussian model, in which nodes can
transmit data over large distance and the rates of the transmission
are determined by SINR. Nodes transmit at constant power P , and
the power attenuates according to the power decay law with ex-
ponent α > 2. We assume that these nodes are randomly lo-
cated in Poisson distribution of rate 1 in a square Bn with side-
length

√
n; there are ns multicast flows, each flow has k receivers,

and the sources and targets of the ns sessions are chosen by re-
peating ns times the process (Algorithm 1). We show that, when
k ≤ θ1

n
(log n)2α+6 and ns ≥ θ2n

1/2+β for some constants θ1, θ2

and any positive real number β, with high probability, each mul-
ticast source node can send data to all its intended receivers with
rate at least c8

√
n

ns
√

k
where c8 is a constant depending on attenua-

tion α, bandwidth B, and background noise N0. We also present a
matching upperbound O(1/

√
n) for per-flow unicast capacity un-

der Gaussian channel.
A number of interesting questions remain open. The first ques-

tion is to derive an upper bound on the per-flow multicast capacity
using the Gaussian channel model for arbitrary k and n. We con-
jecture that it is also O(

√
n

ns
√

k
). The second question is to derive

tight upper bound and lower bound on the network capacity when



k could be any arbitrary value from 2 to n. The results presented
here only hold when k = O( n

(log n)2α+6 ). We conjecture that

CONJECTURE 21. When k is Ω( n
(log n)d ), under Gaussian chan-

nel model, the per-flow multicast capacity is Θ( 1

ns(log n)α/2 ), for
some positive constant d ≤ 2α + 6.

Notice that, the above conjecture was proved to be true for broad-
cast (i.e. k = n) [24] under Gaussian channel model. Their proof
is to essentially study the longest edge length of the Euclidean min-
imum spanning tree, which is asymptotically

√
log n when n nodes

are randomly placed in a square Bn from [18]. A sufficient condi-
tion for the correctness of our conjecture is the correctness of the
following conjecture:

CONJECTURE 22. The longest edge of a Steiner spanning tree,
which spans k nodes randomly chosen from n nodes randomly
placed in Bn, is of order

√
log n, when k is large enough, say

Ω( n
log n

).

The third question is to study the capacity when the receiving ter-
minals in a multicast group are within certain region (e.g., a disk
with a radius b, or a square with a side-length b). Finally, we point
out that the problem of optimizing the multicast throughput of a
given arbitrary network by choosing best routing protocol, and op-
timizing the hidden constant in our formulas remains open.
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9. APPENDIX

9.1 Percolation Theory Result( [3])
Consider a square lattice Bm with side length m. We declare

each edge of the square grid open with probability p and closed
otherwise, independently of all other edges.

For any given κ > 0, let us partition Bm into rectangles Ri
m of

sides m×(κ log m−εm). We choose εm > 0 as the smallest value
such that the number of rectangles m

κ log m−εm
in the partition is an

integer. It is easy to see that εm = o(1) as m → ∞. We let Ci
m

be the maximal number of edge-disjoint left to right crossings of
rectangle Ri

m and let Nm = mini Ci
m. The result is the following.

THEOREM 23. ( [3]) For all κ > 0 and 5
6

< p < 1 satisfying
2 + κ log(6(1− p)) < 0, there exists a δ(κ, p) > 0 such that

lim
m→∞

Pp(Nm ≤ δ log m) = 0

9.2 Legalize the highways
Theorem 6: If we find a set of M horizontal highways and M

vertical highways using the above method, we can find a set of M
legal horizontal highways and M legal vertical highways.

PROOF. We prove it by legalizing these 2M paths.
In the first step, we adjust the horizontal highways, so that any

two horizontal highways do not cross each other. As we can see,
only the horizontal highways from the same rectangle may cross. If
in a rectangle, two highways Pi and Pj across in segments πi,kπi,k+1

and πj,lπi,l+1, we can break the two highway segments and then
build two new highway segments πi,kπj,l+1 and πj,lπi,k+1. We
could see, there are still L highways in the rectangle, but the to-
tal length of these L highways is reduced. We repeatedly check
whether there are crossing highway segments and break the seg-
ments if there are. Since we can not endlessly reduce the total
length, at the end of the procedure there are no crossing segments.

Likewise, we can do the same thing with the vertical highways.
At the end of the first step, we get a set of M node-disjoint and mu-
tual non-crossing horizontal highways as well as M node-disjoint
and mutual non-crossing vertical highways.



In the second step, we try to legalize all the highways. An intu-
ition about a legal highway is that it will never go backward too far,
say 2H along the coordinate direction.

It seems impossible to legalize a horizontal highway if only a
set of M horizontal highways is considered. However, if we take
the M vertical highways into account, the goal is achievable. Be
aware of that, the M vertical highways are well distributed : each
rectangle with width H has L vertical highways.

We try to explain why we can legalize a horizontal highway. For
a illegal horizontal highway, it must traverse a vertical rectangle R′i
backwardly. As there are L vertical highways in R′i, we could find a
”shortcut” to reduce the backward interval (notice that a horizontal
highway and a vertical highway can share stations). We can do so if
we do not result in two horizontal highways sharing a same station.
Luckily, we have L vertical highways and we can always legalize
the highway while keep all horizontal highways node-disjoint.

To present our method, we consider a illegal horizontal highway
Πi. As what we have shown, it must go backward at least 2H and
thus horizontally traverse at least 1 vertical rectangle R. Let b be
the intersecting point of the backward interval of Πi and Ll, where
Ll is the left side of R. Let a be the last intersecting point be-
fore b of Πi and Ll(see Figure 8). We consider all the cross points
of horizontal highways and Ll between a and b, inclusive. We
mark these points from up to bottom(we suppose b is under a) with
p0, p1, · · · , pt−1. It is easy to check that p0 = a, pt−1 = b and t
is even. These t points are comprised of t/2 pairs of points, with
t/2 highway intervals connect each pair. Since no two horizontal
highways cross each other, there are two kinds of relationship be-
tween two highway intervals. Either a highway interval is ”inside”
another highway interval, or two highway intervals totally exclude
each other. A highway interval is 1-level if no highway intervals
are inside it. A highway interval is 2-level if it is not 1-level and
no highway intervals other than 1-level highway intervals are in-
side it. Similarly, we call a highway interval is k-level, if it is not
1-level, 2-level, · · · , k − 1-level, and no highway intervals other
than 1-level, 2-level, · · · , k − 1-level highway intervals are inside
it.

Figure 8 is a example where t = 8.

p5

p7(b)

p0(a)

p4

p3

p2

p1

p6

Figure 8: A example of highway intervals when t = 8. There
are 4 highway intervals, among which there are 2 1-level inter-
vals, 1 2-level interval and 1 3-level interval.

To notice that L vertical highways inside R do not cross each
other, we can sort them from left to right. Suppose the L high-
ways are ΦjL+1, ΦjL+2, ΦjL+3, · · · , ΦjL + L from left to right.
We could rebuild these t/2 highway intervals without changing the
endpoint of them such that for any 0 < k ≤ t/2, and for any
k < l ≤ L, no k-level highway intervals cross with ΦjL+l.

We can do this simply by rebuilding the intervals from low level
to high level. Suppose we are now rebuilding the k-level highway

intervals, and all the highway intervals with low levels are rebuilt
correctly. The highway ΦjL+k intersects with the k-level highway
intervals and divide them into two parts : the part on the left side of
the ΦjL+k and the part on the right side of ΦjLk . Here, ”left” and
”right” are from the topological view. We keep the left side of these
highway intervals, while replace the right side with the highway
intervals on ΦjL+k. Then the resulted horizontal highway intervals
does not cross with any vertical highway ΦjL+l for l > k.(See
Figure 9).

(a) a highway system (b)legalized highway system

Figure 9: (a) the red line and the blue line are horizontal high-
way intervals, while the green line and the cyan line are inter-
vals of two vertical highways. (b) the resulted horizontal high-
way intervals after we legalize the red highway interval.

At the end, we could see that the resulted intervals are all on the
left side of ΦjL+t/2, which is or is at left side of ΦjL+L. Therefore,
the resulted intervals will not cross with the right side of R.

By repeatedly checking the legality of horizontal highways(vertical
highways similarly), finally, we could build a highway network sys-
tem where all highways are legal.

9.3 Chernoff bound and VC-theorem

LEMMA 24. Let X be a Poisson random variable of rate λ.

Pr(X ≥ x) ≤ e−λ(eλ)x

xx
, for x > λ (1)

Let U be the input space. Let C be a family of subsets of U .
A finite set S (called sample in machine learning) is shattered by
C, if for every subset B of S, there exists a set A ∈ C such that
A

⋂
S = B.

The VC-dimension of C, denoted by VC-d(C), is defined as the
maximum value d such that there exists a set S with cardinality d
that can be shattered by C. For sets of finite VC-dimension, one has
uniform convergence ini the weak law of large numbers:

THEOREM 25 (THE VAPNIK-CHERVONENKIS THEOREM). If
C is a set of finite VC-dimension VC-d(C), and {Xi | i = 1, 2 · · · , N}
is a sequence of i.i.d. random variables with common probability
distribution P , then for every ε, δ > 0,

Pr

(
sup
A∈C

∣∣∣∣∣
∑N

i=1 I(Xi ∈ A)

N
− Pr(A)

∣∣∣∣∣ ≤ ε

)
> 1− δ (2)

whenever N > max

{
8 ·VC-d(C)

ε
· log

13

ε
,
4

ε
log

2

δ

}
. (3)

Here I(Xi ∈ A) takes value 1 if Xi ∈ A and 0 otherwise.


