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Abstract—Content dissemination in disrupted networks poses
a big challenge, given that the current routing architectures of
ad hoc networks require establishing routes from sources to
destinations before content can disseminated between them. In ad
hoc networks subject to disruption, lack of reliable connectivity
between producers and consumers of information makes most
routing protocols perform very poorly or not work at all.
We present DIRECT (DIsruption REsilient Content Transport),
which is a content dissemination approach for ad hoc networks
that exploits in-network storage and the hop-by-hop dissemi-
nation of named information objects. Simulation experiments
illustrate that DIRECT provides a high degree of reliability while
maintaining low levels of delivery latencies and signaling and
data overhead compared to traditional on-demand routing and
epidemic routing.
Index Terms—Disruption Tolerant, DTN, Content Centric,

Content Based, Networks

I. INTRODUCTION
Two key assumptions in the design of the routing protocols

for the IP Internet and wireless multi-hop ad hoc networks
(MANETs) have been that: (a) physical connectivity exists
on an end-to-end basis between sources and destinations for
extended periods, and (b) routes are established to reach the
locations of the intended destinations. These assumptions have
had profound implications on how communication bandwidth
is shared, how routing is accomplished, and how data are
disseminated. In particular, routing in packet-switching net-
works has been based on routing tables derived entirely from
topology (or connectivity) information that represents only
a snapshot of the state and characteristics of network links
at particular instants. Furthermore, while the assumption of
routing information to specific addresses renders adequate
delivery rates in connected networks with stable topologies, it
can lead to very poor resource utilization in disrupted networks
when physical paths to the original locations of content are lost
for long periods of time, or never exist.
The cost, energy consumption, and form factors of com-

puting devices have enabled embedded computing and net-
working devices that can be used in environments in which
1This work was partially sponsored by DARPA under grant

W15P7T06CP815 and through Air Force Research Laboratory (AFRL)
Contract FA8750-07-C-0169. The views and conclusions contained in
this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

end-to-end connectivity may be intermittent at best. These
new application environments range from interplanetary re-
search to wearable computers. Networks in which end-
to-end connectivity is not guaranteed have been called
delay-tolerant, disruption-tolerant, intermittently-connected,
episodically-connected, or highly-partitioned. In this paper, we
use the term disruption-tolerant networks, or DTNs. Clearly,
routing in a DTN cannot be accomplished in the same way
as routing in a network in which end-to-end connectivity is
assumed to exist except for extraordinary circumstances. As
the seminal work by Fall [10] and others has shown, routing
in a DTN must be accomplished differently than in traditional
networks. Routing in the Internet and well-connected ad hoc
networks has no temporal dimension, because it is based on
a distributed or local search of paths obtained from snapshots
of the network topology. In contrast, routing in a DTN must
be a function of space and time, because physical links exist
only temporarily, and paths from sources to destinations can
be considered to exist only as functions of connectivity (links)
occurring over time.
Section II summarizes the prior work on routing for DTNs,

which started with the work of the Interplanetary Internet
Research Group (IPNRG) [4] within the IRTF (Internet Re-
search Task Force). This survey indicates that prior solutions to
the DTN routing problem either have focused on establishing
spatio-temporal routes to specific destinations, rather than to
content, or have modified epidemic dissemination of content.
These solutions have relied on knowing the entire network
topology, the ability to control some nodes, or the ability to
duplicate data freely in the network.
Section III presents DIRECT (DIsruption REsilient Content

Transport), which disseminates content by name on-demand
to sites with interest in content from the nearest sites hosting
the content. DIRECT is similar to Directed Diffusion [14], in
that named content is disseminated on the basis of statements
of interest. However, DIRECT accommodates disruptions in
network connectivity of arbitrary duration. To accomplish
this, DIRECT disseminates interest in content persistently
across connected components, so that content can be replicated
opportunistically as nodes move across such components, but
only towards those nodes that have expressed interest.
Section IV presents the results of simulation experiments

used to compare DIRECT against epidemic content dissemi-
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nation and on-demand routing of content from specific sites.
The results indicate that DIRECT provides the best of both
approaches. DIRECT attains delivery latencies and percentage
of objects delivered that are as good or better than epi-
demic content dissemination, but incurs only a fraction of
the overhead. DIRECT incurs even less overhead than routing
of content from specific sites, and the latter delivers only a
fraction of what DIRECT can deliver.

II. RELATED WORK

The IRTF’s DTNRG (Delay Tolerant Networking Research
Group) [8] introduced the bundle architecture [10] which
groups messages into bundles that encompass entire sessions,
performs store-carry-and-forward of bundles, and employs
custody [11] transfer for reliability. The DTNRG also designed
addressing and naming schemes [4] for DTNs.
The routing schemes that have been proposed for DTNs

thus far have focused on establishing spatio-temporal routes to
nodes or groups of nodes, given that connectivity information
(links or contacts) is enforced, scheduled, or random.
Routing schemes based on enforced contacts typically em-

ploy specialized nodes such as robots with controlled mobility.
Such specialized nodes (called mules and message ferries in
many schemes) [23], [29], [16], [30], [18] are such that their
mobility can be controlled to provide connectivity to other
nodes in networks as needed. Much of the work has focused on
route scheduling of the specialized nodes and synchronization
between their routes. It has also been shown that such data
mules or ferries can be used as an energy saving device for
other nodes in the network; if there are no ferries nearby, nodes
can be turned off to conserve energy.
Several approaches [20] and [15] take advantage of the

periodicity inherent to some mobility patterns and assume
global knowledge of node schedules. They use variants of
space-time routing tables, and employ, among other methods,
a modified Dijkstra’s algorithm to determine shortest paths
over time in these structures. Some other approaches address
the case of predictable or scheduled mobility (e.g., buses and
trains). Some approaches [27], [6] rely on past mobility and
topology knowledge to predict future behavior. MaxProp [2],
showed better performance in a deployed network of buses
than an oracle with perfect schedule knowledge. The approach
described in [27] tries to predict the future topology of a
network by determining how long nodes that are connected
will remain connected.
Location information has been shown to be very useful for

routing in disrupted networks (e.g., MobySpace [17] and MV
routing [3]). These methods require an external localization
mechanism, such as GPS, and assume that a node who has
visited a particular location is likely to revisit it, and therefore
is a good candidate to carry messages to that location.
Some approaches have also proposed the deployment of

static nodes to increase contact opportunities in DTNs. This
is the case of Throwboxes [31] which are stationary nodes
that typically have greater wireless communication, storage,
and power capabilities. Throwboxes act as static relays that
can receive and forward messages as nodes come in range.

If node schedules are known or can be predicted, these static
relays can be placed such as to optimize contact opportunities.
When connectivity information cannot be enforced or pre-

dicted, routing is done opportunistically. The simplest scheme
is epidemic routing [28], with which a copy of a message
is forwarded to all nodes encountered by the message. The
limitation of epidemic routing is that its transmission require-
ments can be prohibitively expensive. As a result, several
schemes [12], [19], [24] have been proposed to improve on
epidemic routing by controlling the way in which message
flooding occurs. In spray and wait [25], only the source
can replicate a message; after ’spraying’ several copies of a
message, the host ’waits’ until one is delivered. In Spray and
Focus [26], after the source “sprays” a message similarly to
spray and wait, each copy is forwarded according to a utility-
based function aimed at finding better opportunities to relay
messages. The CAR [21] algorithm uses adaptive weights on
several node attributes as well as Kalman filters to maximize
the probability of a node to deliver messages to a destination.
Work on pocket switched networking [13], [5] models the
distribution of contact and inter-contact times in order to better
design forwarding strategies, and a number of mechanisms are
proposed to extend opportunistic forwarding protocols.
Several schemes have been proposed to extend routing

algorithms originally designed for mobile ad hoc networks
(MANET), in particular on-demand routing, to operate in
scenarios in which end-to-end connectivity does not exist.
Disconnected transitive communication [6] is a proposal to
enable communication across clusters in MANETs using
utility values to decide which node in the cluster is best
suited to transmit a message to the destination. The goal of
the efficient route discovery mechanism proposed by Dubois-
Ferriere et al. [9] is to decrease the amount of route discovery
overhead by forwarding route requests in the direction of the
destination. The proposal by Ott et al. [22] augments AODV
with the ability to identify DTN-capable routers. The source
then decides whether to use AODV– (if available) or DTN
routes. An underlying DTN routing mechanism is assumed
to be in place. The Space-Content-adaptive-Time Routing
(SCaTR) protocol [1] also extends AODV to accommodate
partitions; however, SCaTR does not assume the existence of
an underlying DTN routing fabric nor does it leave the routing
decisions to the sources.
In Island Hopping [7], nodes run a distributed algorithm

to find a set of concentration points (CPs), which are the set
of connected subgraphs, or “connectivity islands”; and a set
of edges representing possible node movements between CPs.
Nodes learn the entire graph by gossiping. Given that edges are
based on prior node movement, a certain degree of message
replication is employed to ensure that at least one is delivered
to the final destination.
From the above summary, we observe that prior approaches

for routing in disrupted environments do not route named
content objects directly. Our approach, which we describe in
the next section, is inspired in Directed Diffusion and consists
of routing named objects based on interest statements that
percolate across connected components of a disrupted network,
so that some nodes can choose to copy and carry the objects
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of interest back to the nodes that originated the interest in the
objects.

III. DIRECT
DIRECT is based on the dissemination of interest in and

copies of information objects in networks subject to disruption.
Content dissemination in DIRECT is based on the names
of information objects rather than the nodes storing them.
This contrasts with the current delay-Tolerant infrastructure
proposed by the DTNRG[8] and much of the prior work
on disruption tolerant networks, where reliable information
dissemination is still based on the identification of endpoints
reminiscent of TCP connections.

A. A Content Centric Interface to Applications
DIRECT defines four high level primitives: Publish, Get,

Send and Handle. These primitives give the network more
flexibility in managing data and provides more functionality
to applications.

• PUBLISH: When a node wants to make some information
available to other nodes it publishes an object. Publishing
an object involves giving the object a name and some at-
tributes. The local network daemon then takes possession
of the object. This is equivalent to the node becoming a
server for that piece of static data.

• GET: If a node wants some specific piece of data it asks
the network to get that object. The node needs to specify
the name and attributes of the object it wishes to receive.
This specification can include expressions to allow for
complex queries. The current instantiation of the protocol
allows for prefix and postfix matching in the name and
publisher of an object. This can effectively be used for
hierarchical naming.

• HANDLE: Not all objects need to be created before they
are accessible, some objects will be created as replies to
specific queries or gets. This is the case of dynamic data,
for example. A program can request to handle a subset
of the naming space. In this situation, the network will
tell the program when it has received a get for a name
and the program can generate the object on the fly and
issue a publish.

• SEND: When a node knows that a piece of data is
intended for a certain recipient it can start the data
exchange by issuing a send. This is basically a compound
function made of a get and publish. This is the function
to use for ”sender-driven” communication.

In order for nodes to communicate, one node issues a
publish when it wants to make some data public, while the
other issues a get. If the data object is dynamic, then a node
might request a handle to a name.

B. Content
We call a named piece of content an object. The content

inside the object is a blob of bits that is not interpreted
by the network in any way. Objects are characterized by
multiple attributes, including a name, a publisher, a timestamp,

a type, etc. We call this set of attributes the absolute name.
Our current design is simple and does not address arbitrary
attributes, tags or associations. Such extensions is the subject
of in future work.
The name and publisher fields are the basis for matches

and queries. If we were to map (in a very simple way) URLs
to them, the hostname would be the publisher and the path
section would be the name. On a more complete system, the
publisher would actually be a security association between
the entity doing the publishing and the mapping between the
absolute name and the data (using signatures and encryption
if necessary).

Field Definition
Name Object name
Publisher Object publisher
Type Type of object
Size Object size
Time Stamp Object creation time
State Local object state
Last Hop Who sent the object/announcement

TABLE I
OBJECT TABLE ENTRY

Information about objects is kept in a table at every node.
Table I shows the structure of the table entries. Information
about an object is entered into the table when the object or an
object announcement is received . The fields are obtained from
the absolute name and expanded with local information about
the state of the object and who sent us the information. Our
initial implementation supports only PUBLISHED, LOCAL
CACHE and NEIGHBOR CACHE as object states.
Naming in content-based routing is an ongoing research

topic and . there is no consensus on the best way to structure
object names. Some proposals argue for a flat naming space,
some argue for a hierarchical naming space. Some want to
embed information on the name, others want to associate
arbitrary attributes to names. In this work, we take an agnostic
stance and treat names as a simple string. This can work
for organizing names by convention or standards. The same
applies to Publishers.

C. Queries
When a program wants to retrieve an object, it issues a Get

command. This translates directly to a network query. Match-
ing a query to an object is basically a comparison between the
query fields and the absolute names. A query contains very
similar fields to an absolute name (name, publisher, timestamp,
etc). The name and publisher can be encoded to do prefix,
postfix or exact match. This simple addition adds a great deal
of flexibility to queries and name structures.
Queries come in 3 basic types: Pub-match, All-match and

Stop-match. In Pub-match the query will only be answered
by the publisher. That is, even if an object with a matching
absolute name exists in an intermediate node, the query travels
to the publisher. All-match is basically a flooded query. Every
object that matches will be sent back and the query will be
always forwarded. Finally, a query of type Stop-match will
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return the first object that matches and stop. There is, however,
no guarantee that only one answer is received, because a query
can travel in multiple directions.

Field Definition
Name Object name being queried
Publisher Object publisher being queried
Type Object Type being queried
Time Stamp Object creation time
QType Type of query
QFlags Query flags
QTime Stamp Query time stamp
Source Query originator
State Local query state
Last Hop Who forwarded the query to us

TABLE II
QUERY TABLE ENTRY

Queries are kept in a query table. Table II describes the
field format. Each entry contains information about the object
for which a query is issued. Name and Publisher can contain
wildcards for prefix and postfix matching. Type and Time
Stamp can be specific values or any value. Query Type defines
to which of the three types of query the query applies (there
are also subtypes). The Flags carry miscellaneous settings for
handling this query. The Query Time Stamp defines when this
query was originated and is used for comparisons. The Source
is used to know who originated the query. State defines the
local state of this query (active, inactive, etc). Finally, Last
Hop is used to calculate who the previous hop in the tree is.
If we match this query we will try to contact this node with
the object.

D. Information Dissemination
The DIRECT baseline implementation supports a very

simple approach to information dissemination. Nodes in a
DIRECT network are configured with identifiers. These iden-
tifiers act as hostnames, aliases and group identifiers, and they
are used for the publisher field of an object.
Each node maintains three main tables, the neighbor table,

the object table and the query table. The neighbor table keeps
track of all the neighbors that the node encounters and their
status. The object table holds all the information the node has
about objects and their (possible) location. The query table
contains all the queries the node has received or created.
When a program wants to publish an object it gives the

object to the network layer with its absolute name. We assume
that, in the majority of cases, the publisher of the object
is one of the node identifiers. The publisher is tied to a
cryptographic signature, which basically assumes that the node
has permission to publish under that name (by having the right
key). It is possible for a node to “publish” an object created
by another entity (for example, a pre-signed object), but in
this case, the node is merely adding the object to the cache,
not performing a publish operation.
Once an object is published, it is the responsibility of the

network layer and it is added to the object table. A locally
published object is never discarded, unless explicitly told to
do so by an application.

To retrieve an object from the network, a program creates
a query to issue a get. When the network receives the get
from the application, it distributes the query. Our current
implementation uses flooding to distribute a query. This allows
a query to reach all the nodes within a given connected
component of the network. Even though flooding incurs a large
overhead, it allows us to find objects cached near by that meet
certain criteria.
When a new query is received, it is added to query table

along with the previous hop information. The query is then
compared to the objects in the object table. If a match is
made, the object is returned to the previous hop in the query
tree. If the query is Pub-Match and the node handling the
query is the publisher of the object or it is a Stop-Match
query, the query is not forwarded after a match. The query
is forwarded otherwise. If a match is made and the query is
fulfilled, the query is marked as inactive. If after a certain
delay the query has not been answered, the requesting node
increase the sequence number assigned to the query and issues
the query again. The default value for reissuing a query is set
at 20 seconds.
Upon receiving an object, a node adds it to its object table.

It then checks whether the object matches any of the active
queries. If it does, the object is forwarded to the respective
previous hops. If a previous hop is no longer available, the
node makes a 1-hop object advertisement. This informs its
current neighbors of the existence of a copy of the object.
When receiving and object advertisement, a node checks for
matches on its query table. If it finds a match it issue a request
for that object.
Periodically, a node broadcast hello messages. These mes-

sages are used to maintain the neighbor table. When a node
hears from a new node, it adds the node as an active neighbor.
If a node does not hear from a neighbor for a period of time,
the node is marked as remote. If such a node returns to the
neighborhood, it is again marked as active. When a node is
marked as active, it triggers a new-neighbor event. When a
new-neighbor event occurs, a node exchanges active query
information with the new neighbor. This effectively spreads
queries that have not been answered yet.
Pseudo-code for some of the event handling functions is

presented in figure 1. These functions get called when a
transmission of a specific type is received.

IV. PERFORMANCE COMPARISON
A. Simulation Setup
We have implemented DIRECT in Qualnet 3.9, which we

extended by adding the DIRECT routing framework as well
as events such as object publish (with attributes) and object
get (attribute based). Our current attributes include name,
publisher and type, and is easily extensible.
Our base scenario is an area of 2Km x 2Km. This area

is divided into an 8 by 8 grid as shown in Figure 2, and a
node is placed in each grid square for a total of 64 nodes.
Each node is then given random direction mobility inside the
square. A node selects a random direction and a random (valid)
point in that direction. It then travels towards that location at a
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function handle-query(query)
if(we have this query)
if(incoming query is not newer)

return
endif

endif
update local query table
for every object that matches
send object to previous hop
mark query inactive

endfor
forward query

function handle-object(object)
have-to-advertise = false
for every query that matches object
if query is local

deliver local
else

if previous hop for query is an active neighbor
send object to previous hop

else
have-to-advertise = true

endif
endif
mark query inactive

endfor
if have-to-advertise
send 1-hop object advertisement

endif

function handle-advertisement(object-adv)
if any query matches object-adv
send object request

function handle-object-request(object, neighbor)
if we have object
send object to neighbor

function handle-new-neighbor(neighbor)
for every active query
send query to new neighbor

Fig. 1. Simplified pseudo code

random speed in a range of 1-5m/s. The node then pauses for
a short period (random 0-10s) and chooses a new direction.
This scenario was chosen to focus our evaluation on one of the
core functions of protocols for DTN environments, namely,
how they perform when the network is not connected. As
nodes move in a random direction model inside their grid
squares, this creates periods of disconnection among any two
nodes placed in neighboring squares. By varying the area
covered by our grid the nodes become more or less likely
to be disconnected. At the low end a size of 200m (that
is 200m x 200m) keeps the network connected most of the
time. At the opposite end, 400m, the network is almost always
disconnected.
100 objects are created and published randomly in the

”server nodes”. Each object is placed in only one node. We
then generate 100 get requests. These requests are issued
randomly by one of the ”client nodes”. Our configuration has
all nodes acting as possible clients and hosts for objects. A
node is never allowed to issue a get for an object it published.
The default simulation time is 21 minutes. There are no gets

in the first or last 30 seconds. Gets are spread randomly in the
middle 20 minutes. This allows the network to settle in the
beginning and the transmissions to finish at the end. Objects
are by default 2000 bytes long and each result is an average
of 4 runs.

Fig. 2. Grid mobility 8x8

We evaluated DIRECT by comparing to epidemic routing
and a TCP transaction Various parameters were examined,
delay, delivery, and packets per object delivered. Our version
of epidemic routing works similar to DIRECT except that
when an object is received we check with all neighbors to
see if they have this object or not. If not, the object is sent.
Same check happens when a new neighbor is encountered.
Gets flood the network and establish reverse interests. When

an interest and an object match the object is sent pack along the
interest path. Gets are queries of type Stop-match, stopping at
the first object match. The delay of object delivery is measured
from the time a get is generated at the querying node to the
time it is received at that node. This means that delay includes
both the propagation of the query as well as the delivery of the
object. In the case that an object is not received in a certain
time interval a new request will be issued. The first request is
still used to calculate the start time.
We compare object delivery in DIRECT with simple object

delivery using TCP. For this we did not design a complete
object retrieval algorithm. We mapped each of the gets into a
TCP transmission. So if at time t node A is requesting object
X and this object is located at node B, we create a TCP
transfer from node B to node A at time t for the size of
object X . Using this mechanism we can only measure the
delay of the TCP transaction. Comparing this to the DIRECT
measurement is a bit unfair since it does not include the “query
propagation”, only the “object delivery”. Naturally this gives a
tremendous advantage to TCP in terms of delay. Considering
the small size of the default objects this could be as much as
half the real delay TCP would incur in.
Delivery is measured as the percentage of gets that were

actually completed before the simulation ended. Packets sent
per object delivered is a very rough measure of overhead. It
includes all the packets sent on the network. In the case of
DIRECT and epidemic routing this includes the neighbor to
neighbor packets as well as gets and objects. In the case of
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TCP it includes AODV and object TCP connections.

B. Results
Figure 3 shows the results for different grid square sizes.

As the grid square size (and disconnection) grows the delay
increases. This is the case for all protocols. TCP has a higher
delay than DIRECT and epidemic routing for the connected
values. At high disconnection the delay is lower. This is
because delay is calculated only on the delivered objects and
TCP is only able to deliver objects on “easy” connected paths.
This can be clearly seen in the objects delivered graph, where
TCP can only deliver a third of the objects delivered by
DIRECT. At a grid size of 400 it is rare that nodes come
close to each other and delivery is abysmal for all protocols;
DIRECT still outdelivers TCP by 50%.
In terms of packets per object epidemic routing is en-

cumbered by many unnecessary transmissions while DIRECT
achieves a balance. TCP has a very low overhead on a
connected environment since it can find a path and send only
the required objects. Because the TCP scenario uses AODV
(and doesn’t simulate the query part) it has very little overhead.
Both DIRECT and epidemic routing require the use of periodic
neighbor messages which add up over time.
When the network is disconnected we see that the overhead

of DIRECT and epidemic routing converge with TCP. Since
TCP cannot deliver many objects, it becomes inefficient.
We wanted to take a closer look at how traffic affected

performance. In this scenario we reduced the simulation time
to 360 seconds. Once again, there were no gets in the first
or last 30 seconds, making all gets happen in 300 seconds.
We kept the grid square size stable at 250 meters and varied
the number of gets generated from 10 to 1000. The number
of objects to choose from was kept constant at a level of
1000. Like in other scenarios, some duplication will occur
since the likelihood of an object being requested more than
once increases as the number of gets increases. The results are
shown in figure 4.
Epidemic routing has a hard time keeping up with deliv-

eries. Its broadcast nature starts to affect performance. Delay
increases drastically in both configurations and delivery drops
accordingly. TCP and DIRECT show the expected behavior,
with DIRECT maintaining an almost perfect delivery record
while keeping delay very low. In terms of packet overhead
TCP remains the leader with the lowest values but DIRECT
doesn’t come in far behind. The high traffic allows TCP
(AODV) to keep an up to date routing table and hence maintain
a low overhead.
Request duplication is something that gives a great advan-

tage to named content. To evaluate how much impact it would
have we varied the number of objects created from 1 to 100
(the default value). When only one object is created all the
requests are for that object. The results for these configurations
are presented in figures 5.
Because of the rules for object retrieval the first values in

the graphs exhibit “strange” behavior. Since a node can only
issue a request for an object once you can’t have more requests
than objects. So the first value is for 63 requests and 1 object.

In terms of delay the cases with high request duplication (1-
2 objects) work amazingly well under DIRECT and epidemic
routing with an average delay of under 700ms each compared
to over 50000ms for TCP. Even in the worst delay case
DIRECT is still almost 6 times quicker than TCP. Delivery
is maintained at 100% for both configs for DIRECT and
epidemic routing while TCP stays in the low 90s.
The amount of data sent shows an interesting phenomenon

which is the overhead suffered by epidemic routing at trying
to distribute that single object, it is partially an artifact of our
implementation of epidemic routing. In DIRECT nodes keep
track of what the state of a request is and where the object
has been sent, but in epidemic routing nodes have to negotiate
all the time to make sure they have all objects.
Our final experiment addresses how the different protocols

perform according to the size of the objects. Figure 6 shows
the outcome. As the size of the objects grow, it is more likely
that retransmissions will be needed. In the case of DIRECT
and epidemic routing, where this happens on a hop-by-hop
basis, the recovery is straight forward. As we add hops to
the transmission, as is the case for TCP, it becomes hard
to recover from losses. Our TCP simulations use New Reno
and have a hard time with multi-hop long flows. Also, the
larger the objects the more traffic the network has to transmit.
These configurations use our default values of 100 gets over
20 minutes so the load is not too high, but you can see the
impact the object size has on epidemic routing.
Transmission delay is much lower by using the hop by hop

mechanism of DIRECT and epidemic routing with respect to
TCP. In a traditional wired network this would have been the
opposite since a hop by hop transmission by nature adds delay
at each hop. You need to wait until the object is received before
you can start sending it. This happens slightly on our scenario
too. We plan to investigate what is a good middle point for
object size that balances overhead.
In terms of objects delivered, DIRECT is able to maintain

near perfect delivery. DIRECT needs less than half the over-
head that epidemic routing incurs in packets per object, albeit
still more than TCP.

V. CONCLUSIONS AND FUTURE WORK

We have implemented the initial version of DIRECT under
Qualnet and performed preliminary evaluations. Without any
optimizations, DIRECT already shows tremendous promise
in terms of delay and delivery compared to epidemic or on-
demand routing schemes. We used a “mobile grid” topology in
which every node participates in generating traffic to compare
the performance of DIRECT with the other schemes. Under all
scenarios, DIRECT showed very low delay (even with TCP
having a round-trip advantage) and was at least as efficient
as epidemic routing. Delivery was kept near 100% within the
time limit, beating TCP every single time. Integration with
the other components of a DTN architecture will be crucial
for efficient performance.
The work we have presented does not address specific

naming issues and how naming affects content dissemination;
however, the name ontology adopted in such an architecture
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Fig. 5. Results by objects

will play a key role in the development of any future routing
infrastructure, including DIRECT. In addition, caching strate-
gies have been widely studied in the past and are currently
being studied for DTN environments, and we intend to eval-
uate how different caching strategies affect the performance
of DIRECT. Lastly, our architecture calls for multiple query
types, including publisher-based, bounded and continuous, and
this requires further analysis for optimization purposes.
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