
HAL Id: hal-00470261
https://hal.science/hal-00470261

Submitted on 5 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Malan: A Mapping Language for the Data Manipulation
Arnaud Blouin, Olivier Beaudoux, S. Loiseau

To cite this version:
Arnaud Blouin, Olivier Beaudoux, S. Loiseau. Malan: A Mapping Language for the Data Ma-
nipulation. ACM symposium on Document engineering, Sep 2008, Sao Paulo, Brazil. pp.66–75,
�10.1145/1410140.1410153�. �hal-00470261�

https://hal.science/hal-00470261
https://hal.archives-ouvertes.fr

Malan: A Mapping Language for the Data Manipulation

Arnaud Blouin
GRI - ESEO

Angers, France

arnaud.blouin@eseo.fr

Olivier Beaudoux
GRI - ESEO

Angers, France

olivier.beaudoux@eseo.fr

Stéphane Loiseau
LERIA, University of Angers

Angers, France

stephane.loiseau@univ-
angers.fr

ABSTRACT

Malan is a MApping LANguage that allows the generation
of transformation programs by specifying a schema mapping
between a source and target data schema. By working at the
schema level, Malan remains independent of any transfor-
mation process; it also naturally guarantees the correctness
of the transformation target relative to its schema. More-
over, by expressing schemas as UML class diagrams, Malan
schema mappings can be written on top of UML modellers.
This paper describes the overall approach by focusing on the
Malan language itself, and its use within a transformation
process.

Keywords

mapping, Malan, UML, data manipulation, schema trans-
formation, schema translation

1. INTRODUCTION
The data manipulation domain has greatly evolved during

the last decade in order to answer new needs. On the first
hand, the diversification of communication devices (e.g. mo-
bile phone and PDA) requires efficient transformation tech-
niques to display Web pages in an appropriate way that suits
the device used. On the other hand, transformations are
useful to create presentations from a data set (database and
XML document), or to manage the interoperability between
documents and databases.

In a standardisation effort, XML [29] has grown to be
the standard for storing and organising data. Along with
this evolution, a non-negligible number of languages have
appeared to manipulate XML documents. Amongst them,
XSLT [31] is certainly the most well-known. XSLT manipu-
lates XML documents in order to extract data, to transform
documents, or to create presentations. However, the direct
manipulation of data, i.e. schema instances, is error-prone.
Firstly, there exists a dependency on the transformation pro-
cess; if we wish to use a different transformation language,
we have to rewrite the transformation program. Secondly,

Author version.

it does not guarantee the correctness of the transformation
process. Working at the schema level by specifying schema
mappings avoids such drawbacks. In our previous work [8],
we started the application of the mapping concept to docu-
ment transformation. This paper presents the continuation
of this work by presenting our final framework dedicated to
the data manipulation domain.

Schema mapping is a concept that allows the definition
of relations between two schemas, bringing interoperability
to these schemas and consequently to applications that use
them [16]. In this paper, we call mapping a correspondence
that composes a schema mapping: a schema mapping is a set
of mappings. A schema is a structure that represents a de-
sign artefact, such as a relational schema, a UML model, an
XML-schema or a DTD [7]. A schema is also called a model
in the MDA domain [18]. Since it concerns the manipu-
lation of schemas instances, a transformation program can
be considered as an instance of a schema mapping, as illus-
trated in figure 3. The schema mapping concept is already
used in the database domain to facilitate the integration and
management of databases [7, 24].

In this paper, we present a framework for manipulating
data by specifying a schema mapping using our mapping
language Malan (a MApping LANguage). The main idea
is to separate the transformation process from the mapping
process. Malan is a declarative and imperative language
that allows the definition of a schema mapping between two
schemas, and more precisely between two UML class dia-
grams [21]. Once established, a schema mapping can be
instantiated in order to get a transformation program, such
as an XSLT stylesheet or an eXAcT program [5]. Thus, the
establishment of a schema mapping allows the independence
of any transformation language. The generated transforma-
tion program can be applied on a source data set, instance
of the source schema, to create a target data set, instance
of the target schema. This technique avoids the direct ma-
nipulation of schema instances, such as XML documents or
database tables. Our prototype, written in Java, is freely
available under the terms of the GPL licence1.

This paper is structured as follows: the next section in-
troduces the application domains of the data manipulation
problem. Section 3 describes our framework. Section 4 is
devoted to the presentation of Malan. Section 5 presents
an evaluation of Malan. Section 6 outlines related work
within the domains concerned with some comments about
our framework.

1http://gri.eseo.fr/software/malan

2. APPLICATION DOMAINS
In the context of the Web 2.0, we define data as being

either an XML document or a database. Thus, data manip-
ulation concerns the communication between databases, the
interoperability between data, and the creation of presen-
tations from databases or documents. These needs can be
grouped into two domains, as depicted in figure 1: schema
translation and schema transformation.

Figure 1: The different application domains of the

data manipulation

A data manipulation is referred to as schema transla-

tion when the semantics of the source schemas is the same
as the semantics of the target schema. Schema transla-
tion allows the interoperability between heterogeneous data
that express a similar concept but in the different formalism
(UML, relational schema, DTD, XML schema), or in a same
formalism but in a different way. The goal of schema trans-
lation is thus to homogenise a set of heterogeneous data.
It can be divided into two parts: data exchange and data
integration. Data exchange [10, 2, 3, 14] consists in trans-
lating semi-structured or structured data from a source to
a target schema. Figure 2(a) presents an example of data
exchange where a bridge between an ODF document (Open

Document Format) and an OOXML document (Office Open

XML) is created; ODF and OOXML define the same concept
of office document, but using two different formalisms.

Data integration [4, 15] consists in combining data from
different sources in order to allow a user to get a global
and unified view of those data. Figure 2(b) illustrates the
principle of the data integration with an example: source
databases contain original data while the target regroups
the, or a part of the, source data.

Despite that at the origin schema translation mainly con-
cerned the database domain, it was extended to the docu-
ment domain, as illustrated in figure 2(a). Schema transla-
tion is developping since the advent of XML and of the Web
2.0 where a lot of formats, expressed in XML, appeared;
such as ODF of OASIS, and Microsoft’s OOXML for office
documents, or RSS and Atom for Web feed formats.

A data manipulation is a schema transformation when
the semantics of the source schemas is different than the se-
mantics of the target schema. Schema transformation can
be divided into two parts: data integration, and the cre-
ation of views. Data integration, presented above as schema
translation, can also be considered as schema transforma-
tion in some cases. Indeed, if source and target schemas
have the same semantics, then it is a schema translation.
For example, the fusion of two schemas that define the con-
cept of person, into a global schema that has the same goal,

is a schema translation problem. However, given a schema
that defines the concept of person, and a schema that spec-
ifies the concept of Web navigation; the fusion of these two
schemas into a schema that defines a Web navigation statis-
tical model, is considered as a schema transformation prob-
lem. In some cases, the classification of a schema integration
problem can be subtle and may depend on the context and
the semantics of the concerned schemas. The other sub-
domain of schema transformation is the creation of views.
In [1], Abiteboul describes views as tools that allow a user
to see data from different points of view. A creation of views
may have to deal with data integration if different sources
have to be used. To illustrate this sub-domain, we can take
the example of Web blogs which are composed of a database,
containing the posted messages and their comments, and of
a presentation created, in most of the cases, as a Web page.

3. FRAMEWORK

Source

Schema

Target

Schema

Schema

Mapping

Source

Data

Target

Data

Instance of Instance of

Processor

Mapping to Transformation

Transformation Program

Figure 3: Mapping and Transformation Processes

The global process of our framework is divided into three
parts, as illustrated in figure 3. The first part defines the
schema mapping between a source and a target schema ex-
pressed as two UML class diagrams. The goal of the second
part is to instantiate the schema mapping previously spec-
ified in order to get a transformation program. Currently,
XSLT stylesheets can be generated but more transformation
languages are expected to be managed, such as XQuery [30]
or eXAcT [5]. The third part consists in the application
of the transformation program to a source schema instance
(an XML document for instance), using a transformation
process in order to create a target schema instance which
will conform to its schema.

Using UML as a schema representation is motivated by
the fact that UML is a widely used modelling language for
the analysis and design of Information Systems. Because
of its popularity, an important number of development and
conception tools support it, such as Netbeans or Eclipse.
Moreover, research has been carried out on how to convert
a UML model to an XML schema and vice versa [9, 6], thus
facilitating the use of other kinds of schema with Malan.
In the same way, UML is also well-suited for databases de-
sign [27]. Finally, UML can be easily extended with the use
of UML profiles: a profile can define new concepts, called
stereotypes, specific to a given domain; for example, the
mapping concept, which is not defined in the UML specifica-
tion, is defined byMalan through a UML profile as described
in figure 4.

There are two ways to define a Malan schema mapping:

(a) Data exchange (b) Data integration

Figure 2: Examples of the data exchange and data integration principles

• a written Malan schema mapping (e.g. the schema
mappings described in section 5) are given to theMalan

processor with the two UML class diagrams concerned;

• mappings can be defined by using the Eclipse plat-
form2 with the Eclipse UML plug-in Papyrus3; with
these tools, a set of mappings can be graphically de-
fined between two UML class diagrams. We have cre-
ated a UML profile, shown in figure 4, that contains a
stereotype defining the concept of mapping for UML.

Figure 4: The UML profile for the mapping concept

A mapping is a UML association that has the stereotype
<<mapping>>. This stereotype has an attribute code that
contains the Malan mapping instructions. Once established,
the UML file can be given to theMalan processor to generate
a transformation.

4. MALAN: A MAPPING LANGUAGE
Malan is a language both declarative and imperative whose

structure is divided into three parts:

1. the schema mapping definition: this part sets the source
and target UML class diagrams concerned by the sche-
ma mapping;

2. the mapping definition: this part defines mappings be-
tween source and target classes of the concerned dia-
grams, that compose a schema mapping. Each map-
ping defines mapping instructions between class ele-
ments. By class element, we mean either a class at-
tribute, or a class relation named by its role. A map-
ping is declarative;

3. the function definition: as complement to mappings,
functions allow to carry out the computation that a
mapping may need. A function contains imperative
instructions and returns a result.

2www.eclipse.org
3www.papyrusuml.org

Figure 5, which defines a schema mapping from a schema
that describes a drawing to a schema that describes a bound-
ary, will be used as example in the following sections to il-
lustrate the different features.

Figure 5: The example Boundary

4.1 Schema Mapping Definition
A Malan schema mapping is defined by a header and a

body; the header defines the URL of the UML class dia-
grams and the optional name of the schema mapping. The
body contains the definition of the mappings and functions.
A Malan schema mapping must respect the following gram-
mar, using the Backus-Naur Form:

(ID ":")? URL "->" URL "{" mappings functions "}"

where mappings is a set of mappings, functions a set of
functions, ID the name of the schema mapping and URL a
URL followed by the package name of the class diagram.
For example, a possible declaration of figure 5 could be:

drawing2boundary : "schemas/d2b.uml/drawing" ->

"schemas/d2b.uml/boundary"

{

// Here mappings and functions will be defined.

}

where drawing2boundary is the name of the schema map-
ping, "schemas/d2b.uml/drawing" and "schemas/d2b.uml/

boundary" the path of, respectively, the source and the tar-
get schema followed by the name of the class diagram pack-
age.

4.2 Mapping Definition
As for schema mapping, a mapping is defined by a header

and a body; the header defines the optional name and the
source and target classes, while the body contains a set of
mapping instructions between the classes elements. A map-
ping must respect the following grammar:

(ID ":")? ID ("," ID)* "->" ID "{" instructions "}"

where instructions is a set of instructions, the first ID is
name of the mapping, the second and the third ID the source
classes, and the last ID the target class. For example, the
D2B mapping declaration of figure 5 could be as follows:

D2B: Drawing -> Boundary

{

// Here the instructions will be defined.

}

where D2B is the name of the mapping, Drawing the name
of the source class and Boundary the name of the target
class.

A mapping contains mapping instructions, where each
mapping instruction defines a relation between two selected
elements via the operator ”->” and must respect the follow-
ing format:

selectedElements "->" selectedElements

where the token selectedElements is explained in the fol-
lowing paragraphs.

Navigation

From a class, it is possible to access the elements of the
other classes, in order to facilitate the mapping definition.
The goal of the following code is to get the boundary of a
set of figures.

1: D2B : Drawing -> Boundary {

2: min(Drawing.figures.border.x)*zoom.x -> x

3: min(figures.border.y)*zoom.y -> y

4: max(figures.border.(x+width))*zoom.x -> width

5: max(figures.border.(y+height))*zoom.y -> height

6: }

Accessing a class attribute or relation can be carried out
either with the class name as a prefix (e.g. Drawing.figures
.border.x line 2 of the above code) or directly (zoom.x line
2). The composition border defines that a figure has as a
rectangular border. Thanks to the navigation, it is possible
to access border and its attributes from the class Figure;
for instance, Figure.border.x accesses the attribute x of
the border of a figure. Figure.border.x returns only one
value since the cardinality of border is 1. For a cardinality
greater than 1, the returned value is the set of elements that
concern the relation; for example, Drawing.figures.border
returns the list of borders for all the figures concerned by
the aggregation figures. Line 6 contains the instruction
Drawing.figures.border.(x+width); it allows to get the
list of the sums x+width from the border of each figure, x and
width being border attributes. The goal of this navigation
feature is to carry out computation while selecting elements.

It is also possible to navigate into relations, since a relation
can be considered as a list. Such a navigation is described

by the following format:
ID "[" expression "]". Where ID is the name of the list
concerned and where expression must return a value be-
tween 1 and |ID| inclusive. The syntax |ID| corresponds
to the cardinality of ID. It is also possible to select sev-
eral elements by using a selection interval which must be
put at the end of an instruction, respecting the following
format: "," ID "=" expression ".." expression, where
both expression tokens define the interval of the variable
ID. For example using figure 5:

• figures[1], selects the first figure in the aggregation
figures;

• figures[|figures|], selects the last figure in figures;

• figures[i], i=1..|figures|, selects all the figures
in figures;

• figures[i], i=|figures|..1, selects all the figures
in figures but in the reverse order;

• figures[j], j=1..|figures|/2, selects the first half
of figures in figures;

• if the ordering has no importance, we can directly write
figures, which is equivalent to figures[i], i=1..

|figures|.

Mapping of relations

Some special instructions are defined to allow the definition
of a mapping that use relations. Figure 6 presents an anony-
mous example of a mapping of relations where the mapping
A2C defines the relation between the associations bs and ds

of respectively the classes A and D. The mapping B2D defines
the relation between the classes B and D.

Figure 6: An example of a mapping of relations

The mapping of a relation is divided in two parts: its car-
dinality definition and the optional ordering of the target
relation elements. The previous paragraph concerning nav-
igation explained that it is possible to select some elements
from a list, this principle is used to order target relation el-
ements as illustrated in the different following definitions of
A2C:

1: A2C : A -> C {

2: 1 -> |ds|

3: bs[1] -> ds[1]

4: }

Line 3 of the previous code creates a mapping between the
first element of both lists. The cardinality of ds is set to
1 at line 2. The next example presents another possible
definition of the mapping A2C.

1: A2C : A -> C {

2: bs -> ds

3: }

Line 2 of the above code is equivalent to bs[i] -> ds[i],

i=1..|bs|. It establishes a mapping from each element of bs
at the position i to each element of ds at the same position,
with i ∈ [1, |bs|]. The following example describes a last
possible definition of the mapping A2C.

1: A2C : A -> C {

2: |bs|/2 -> |ds|

3: bs[i*2-1] -> ds[i], i=1..|ds|

4: }

This code puts in relation each element of bs being at an
odd position (i∗2−1) with the element of ds at the position
i, with i ∈ [1, |ds|]. Line 2 defines that the cardinality of ds
is the half of the cardinality of bs.

4.3 Functions
As complement to mappings, functions allow to carry out

the computation that a mapping may need. Firstly, Malan
provides basic and useful predefined functions to users, such
as max, min, or abs for arithmetic calculation; sort, invert,
sub for set manipulation; or concat, toLowerCase, length
for string manipulation. The definition of the semantics of
these predefined functions is out of the scope of this paper.

Secondly, a user can define her own functions which can
be called by another functions, or by mappings. Functions
are totally imperative, and their syntax is very close to Java
or C#. The grammar of a function’s header is defined as
follows:

1: "function" TYPE ID

2: "(" TYPE ID ("," TYPE ID)* ")"

3: "{" FCT_INS "}"

where at line 1, TYPE defines the type of the returned value,
and ID the name of the function; line 2 defines the param-
eters where TYPE ID defines respectively the type and the
name of a parameter. FCT_INS corresponds to the body of
the function; its grammar is too complex to be defined in
this paper.

For example, the predefined function sub, that creates a
list with elements of a given list from a start to an end
position, is defined as follows:

1: function list sub(list l, int start, int end){

2: if(start>end || start<1 || end>|l|)

3: error(‘‘Invalid parameter(s)’’);

4:

5: list sub = nil;

6:

7: for(int i=start; i<=end; i++)

8: sub = sub + l[i];

9:

10: return sub;

11: }

Line 1 of the above code defines the header of the function
sub, that returns a non-typed list. It takes a non-typed list,
the start and the end position of the elements to take, as
parameters. Line 2 checks the parameters, and if the test
fails, line 3 raises on error and stops the process. Line 5,
the token nil means that the list sub is empty. This list is

filled with the wanted elements of the source list in the for

loop, lines 7 and 8. The operator + used in line 8 means
that element l[i] is added at the end of the list sub. Line
10 returns the final sub-list.

During the instantiation of a schema mapping as a trans-
formation program, the functions used by the schema map-
ping are also instantiated, when possible, in the target trans-
formation language. For a predefined function, if there exists
a semantically equivalent function in the target language,
then this equivalent function is used; otherwise the function
is instantiated.

4.4 Types
Malan provides six types:

• integer, float, string, and boolean types are seman-
tically equivalent to those offered by the Java language.
Variables of these types can be declared in functions
using the keywords int, float, string, and bool;

• a class name defined in a UML class diagram can be
used as a type; for example in figure 5, we can define
in a function a variable f of class Figure as Figure f;

• the list type is notably used to represent elements of
relations with a 0..n, or a 1..n cardinality. A list con-
tent can be typed; for example the type of the ag-
gregation figures of figure 5 is list<Figure>, where
<Figure> defines the type of the elements of the list.
The grammar of the declaration of a list is:

"list" ("<" TYPE ">")? ID

where TYPE is the type of the list elements, and ID the
name of the list. Operations on lists are semantically
defined by the following inference rules:

(lists-concat)
⊢ e1 : list < τ > ⊢ e2 : list < τ >

⊢ e1 + e2 : list < τ >

(begin-concat)
⊢ e1 : τ ⊢ e2 : list < τ >

⊢ e1 + e2 : list < τ >

(end-concat)
⊢ e1 : list < τ > ⊢ e2 : τ

⊢ e1 + e2 : list < τ >

(list-sub)
⊢ e1 : list < τ > ⊢ e2 : list < τ >

⊢ e1 − e2 : list < τ >

Class name κ

Type τ ::= int | float | bool | string

| list

| list < τ >

| list < κ >

| κ

where, lists-concat corresponds to the concatena-
tion of two lists of the same type; list-sub to the
deletion of the elements of e2 in e1; begin-concat

and end-concat to the addition of an element of type

τ , respectively, at the beginning and at the end of a
list of the same type τ . Concerning non-typed lists,
their inference rules are equivalent to the above, but
list < τ > is replaced by list.

5. EVALUATION
In this section, we evaluate Malan by comparing it to,

as far as we know, the main mapping framework found in
literature: Clio.

Clio [17, 24, 11] is an IBM Research system for express-
ing declarative schema mappings using a graphical interface.
Figure 7 presents the interface of Clio, in which the map-
ping component is divided in two elements; the left and the
right parts contain respectively, the source and the target
schemas. Clio manages relational schema, XML schema, and
DTD which are shown in a nested relational representation.
As opposed to Malan, where mappings are defined between
classes and then between their attributes, Clio specifies map-
pings only between attributes. Once established, mappings
are compiled into a query graph representation, which can be
instantiated as a transformation program (XQuery, XSLT,
SQL, or SQL/XML).

The three following sections present specific data manip-
ulation examples that compare Malan and Clio. Section 5.4
sums up the ability of these two frameworks to answer to
the data manipulation problem.

5.1 Example 1: a schema transformation
The first example consists of a schema transformation;

given a source schema that defines a poem, we want to create
a presentation of it in the SVG format. Figure 8 illustrates
a possible SVG presentation of a poem. Lines 1 and 2, the
svg tag defines the beginning of the drawing. The g tag,
at line 3, corresponds to a group of SVG shapes where its
attributes are applied on every nested shapes. Lines 4 and
5, defines the rectangle that boxes the poem, followed by
the definition of the title of the poem at lines 6 and 7. Lines
8 and 9 define another group of shapes that contains the
verses of the poem (from line 10 to line 13).

1 <s:svg xmlns:s="http://www.w3.org/2000/svg" width="100%"

2 height="100%">
3 <s:g transform="scale(2) translate(100,50)">
4 <s:rect x="-50" y="0" width="300" height="180" rx="10"

5 fill="rgb(120,0,0)" stroke="rgb(40,0,0)" stroke-width="2"/>
6 <s:text x="-40" y="40" fill="white"

7 font-weight="bold">La flamme</svg:text>
8 <s:g transform="translate(100,20)" font-style="italic"

9 text-anchor="middle" fill="white">
10 <s:text y="70">Vêtue de jaune, vêtue de bleu,</svg:text>
11 <s:text y="90">Se croyant plus forte qu’un feu,</svg:text>

12 <s:text y="110">La belle flamme s’enhardit,</svg:text>
13 <s:text y="130">Sur son destrier la bougie.</svg:text>

14 </s:g>
15 </s:g>
16 </s:svg>

Figure 8: An SVG presentation

The poem schema, shown in the left part of figure 7, is
composed of a poem that has a name, and a list of verses,
where a verse is a string. The SVG schema is available on
the W3C Website4.

The main difficulty of this example is the computation
of the layout needed to place shapes into the drawing: to
4
http://www.w3.org/Graphics/SVG/1.2/rng/Tiny-1.2/Tiny-1.2.rng

define the height of the drawing, we need to know the num-
ber of verses. Moreover, to place each verse, we must know
its position within the poem. To do such operations, func-
tions that operate on lists and their items are necessary.
Clio does not provide such functions, thus illustrating its
limits concerning schema transformation. However, to by-
pass this drawback, we can directly call the necessary XSLT
functions using the Clio expression editor. For example, the
Y-coordinate of a verse can be defined using an XSLT ex-
pression, i.e. "{position()*20+40}", as depicted in figure
7. The drawback of this process is that the schema map-
ping is dependant of the target transformation language,
which is in contradiction with one of the goal of the map-
ping paradigm.

1 schemas/poem.uml -> schemas/svg.uml {
2 poem2svg : Poem -> svg {
3 "100%" -> width
4 "100%" -> height
5 "scale(2) translate(100,50)" -> g.transform
6 -50 -> g.rect.x
7 0 -> g.rect.y
8 300 -> g.rect.width
9 100+|verses|*20 -> g.rect.height

10 "rgb(120,0,0)" -> g.rect.fill
11 10 -> g.rect.rx
12 "rgb(40,0,0)" -> g.rect.stroke
13 2 -> g.rect.stroke-width
14 -40 -> g.text.x
15 40 -> g.text.y
16 "white" -> g.text.fill
17 "bold" -> g.text.font-weight
18 name -> g.text.#textContent
19 "translate(100,20)" -> g.g.transform
20 "italic" -> g.g.font-style
21 "middle" -> g.g.text-anchor
22 "white" -> g.g.fill
23 verses -> g.g.text
24 }
25 verse2text : verse -> text {
26 position(verse)*20+50 -> y
27 #textContent -> #textContent
28 }
29 }

Figure 9: The poem2SVG Malan schema mapping

Figure 9 corresponds to the Malan schema mapping for
the poem to SVG example. Line 1 defines the UML class
diagrams used for the schema mapping. It is composed of
two mappings: poem2svg line 2, and verse2text line 25.
poem2svg defines a mapping from a poem to an SVG ele-
ment. From line 6 to line 13, the rectangle that frames the
poem is specified using an SVG rect element. The instruc-
tions from line 14 to lines 18, that have as target an SVG
text element, corresponds to the definition of the title of the
poem. From line 19 to line 22, the g element that contains
the verses is defined. Line 23 specifies that every verse of
the list verses corresponds to an SVG text element in g.g.
This line is equivalent to

verses[i] -> g.g.text[i], i=1..|verses|

as explained in section 4.2; it means that for the verse at
position i, there must exist a text element at the same
position. This process is necessary since the position of
a verse in a poem is essential. Concerning complex in-
structions, line 9 states that the height of the rectangle

Figure 7: The Clio interface

surrounding the poem, depends of the number of verses
(100+|verses|*20 -> g.rect .height). Moreover, line 26,
the function position(verses) returns the position of the
current Verse in the list verses. Thus we can compute the
position of each verse into the drawing.

This schema transformation example, which only has a
low complexity, shows the limitations of a pure declarative
mapping language that does not provide complex program-
ming features, such as function definition or set manipula-
tion.

5.2 Example 2: the Turing machine example
The goal of this second example is to show the expressive-

ness of Malan by implementing a universal Turing machine.
A universal Turing machine is a Turing machine that can
model any Turing machine. A Turing machine is composed
of:

• a tape, that contains cells; each cell contains a symbol
of a given alphabet. The white symbol is a special
symbol used to set the default value of a cell. A tape
is indefinitely extendable to the right and to the left;

• a finite set of states; the initial state q0 is a start state,
and the process stops when it reaches an end state (see
figure 10);

• a head, that reads and writes cells symbols, and moves
to the right or to the left cell of the current cell;

• a set of actions; an action is executed when the cur-
rent state and symbol, read by the head, match respec-
tively with the entry state and symbol of the action.
The execution of an action replaces the current state
and symbol by an output state and symbol. Then, de-
pending on the action, the head moves to the right or
to the left of the current cell.

Figure 10: Our Turing machine UML class diagram

Figure 11 is a Malan function that defines a Turing ma-
chine. The function takes as input (lines 1 and 2), an initial
tape T , that may contain some cells, a start state q0, and
a set of actions A. The function returns the resulting tape
which consists of a list of symbols. Lines 3 and 6 declare
the variables used in the function, where tape is the tape
that will contain the results of the execution of the Turing
machine, currState the current state, position the current
position of the head on the tape, and end a boolean that
states if the process must stop. The machine consists of a
while loop (from line 8 to line 33), that ends when the cur-
rent state is an end state (line 8), or if no action exists for
the current state and symbol (see line 25). The first step of
the loop is to extend the tape to the right or to the left, with
a white symbol, if the current position points to a cell that
does not exist yet (from line 12 to line 17). Then, we search
an action that matches the criteria (from line 19 to line 23);
if no matching action exists, the process stops; otherwise,
the current symbol and state are replaced by the output

symbol and state of the action; then, the head is moved to
the right or to the left of the current cell.

1 function List<Symbol> turingMachine(List<Symbol> T,
2 StartState q0, Set<Action> A) {

3 int position = 1;
4 State currState = q0;
5 bool end = false;

6 List<Symbol> tape = T;
7

8 while(!end && !(currState is EndState)) {
9 Action a = null;

10 int i = 1;

11

12 if(position<1) {

13 position = 1;
14 tape = WhiteSymbol + tape;

15 }
16 else if(position>|tape|)
17 tape = tape + WhiteSymbol;

18

19 while(i<=|A| && a==null)

20 if(A[i].inState.name==currState.name &&
21 tape[position].value==A[i].inSymb.value)

22 a = A[i];
23 else i++;
24

25 if(a==null) end = true;
26 else {

27 tape[position].value = a.outSymb.value;
28 currState = a.outState;
29

30 if(a.move is Right) position++;
31 else position--;

32 }
33 }

34 return tape;
35 }

Figure 11: A Turing machine in Malan

This example cannot be defined in Clio since it is a pure
declarative mapping language. It shows that the expres-
siveness of Malan allows to define complex algorithms that
mappings may use. We think that such a feature is needed
to specify complex schema transformations.

5.3 Example 3: a data exchange problem
This last example presents a data exchange problem used

to describe the Clio process in [24]. The two schemas are
described in figure 12, where according to Popa and al.:

The left-hand schema represents a source rela-
tional schema with three tables: project(name,
year), company(cid, cname, city), and grant

(gid, cid, amount, project). It describes in-
formation about companies, their projects and
the grants given for those projects. Each grant is
given to a company for a specific project. There-
fore, each grant tuple has foreign keys (cid and
project) referencing the associated company and
project tuples. The right-hand schema repre-
sents a target XML schema. While the infor-
mation that the target contains is similar to that
of the source, the data is structured in a different
way. Organisations and projects are grouped by
city. For each different city, there is an element
cityStat containing the organisations and the
grants in that city. Project funding data are then
nested within organization and related with the
financial information through a foreign key based
on the aid element.

Figure 12: The Clio schema mapping of example 3

Figure 12 presents the schema mapping for this example.
It is composed of 9 mappings that were easily established
thanks to the similarity between their name. The internal
process of Clio directly deduces that organisations must be
grouped by city without any help of the user.

1 schemas/expenseDB.uml -> schemas/statDB.uml {
2 E2S: expenseDB -> statDB{

3 unique(companies, ‘‘city’’).city-> cityStats.city
4 companies[cityStats[i].city==city] ->

5 cityStats[i].orgs, i=1..|cityStats|
6 grants[project==cityStats.orgs[i].cname] ->
7 cityStats.orgs[i].fundings,

8 i=1..|cityStats.orgs|
9 }

10 G2F: grant -> funding {
11 gid -> gid
12 amount -> faid.amount

13 gid -> faid.aid
14 project -> proj

15 }
16 P2P: project -> project {

17 name -> name
18 year -> year
19 }

20 }

Figure 13: The Malan schema mapping of example

3

Figure 13 presents the Malan schema mapping for the
current example. It is composed of 3 mappings: the P2P

mapping defines the relation between the element project

of each schema. The mapping G2F states that a grant cor-
responds to a funding composed of a single financial (the
attribute faid refers to the id of the related financial).
The most important mapping is E2S that puts in relation
the two root elements of the schemas. Line 3 defines that
the organisations must be grouped by city: function unique

is a Malan predefined function that, in this case, returns a
list containing the cities with no redundancy; each value of
the resulting list is put in relation with a CityStat. Lines
4 and 5 defines the companies that corresponds to the or-
ganisations orgs of each CityStat: for each CityStat, we
select the companies that have the same city. Lines 6, 7 and
8 defines the fundings of each organization.

This example shows that concerning data exchange prob-
lems, Clio can be more appropriate than Malan: with Malan
we have to define the relation of the concerned classes in

order to define the relation between their attributes; this
process can be complex as illustrated in figure 13. On the
contrary with Clio, mappings, defined between attributes,
are compiled into an internal representation that catches
the semantics of the mappings; thus, it allows, for instance,
to deduce that companies must be grouped by city.

5.4 Results
We conclude on this section by the pros and cons of Malan

and Clio for the three application domains presented in sec-
tion 2: data transformation, data exchange, and data inte-
gration.

Concerning data transformation, the two first examples
show that the expressiveness of Malan allows complex data
transformations, on contrary to Clio. We think that to be
able to define data transformations, a mapping language has
to allow imperative instructions in order to improve its ex-
pressiveness; which is limited if only declarative instructions,
used to specify mappings, are permitted.

Concerning data exchange; the last example demonstrates
that Clio can be more appropriate for this kind of problem.
Moreover, one of the main challenge of the data exchange
domain is to automatically specify a set of mappings be-
tween heterogenous schemas; this problem is called schema

matching [25]. Currently, the Clio prototype supports semi-
automatic schema matching, which simplifies the mapping
definition process. Research must be carried out to apply
matching techniques on UML class diagrams, in order to
implement a schema matching engine in the Malan proto-
type.

Data integration can only be carry out if the mapping
language can manage several source schemas. For the mo-
ment, both Malan an Clio prototypes do not support this
feature, but it can be easily integrated if we consider the
source schemas S1 . . . Sn as a single schema Sg, as describes
in the following formula:

∪n
i=1Si = Sg (1)

6. RELATED WORK AND DISCUSSION
To avoid the direct coding of transformation, VXT [23]

is a visual programming language specifically designed for
programming XML transformations. This point of view is
very attractive since it aims at reducing user’s cognitive load.
However, it has the drawback of being still dependant on
the target language since the VXT environment provides a
specification mode for each managed target language, i.e.

XSLT and Circus.
Concerning transformation, ATL [13] (Atlas Transforma-

tion Language) and QVT [20] (Query View Transforma-
tion) are two transformation languages dedicated to perform
transformations within the MDA framework (Model Driven
Architecture). Both of them address the model transforma-
tion problem by adding a higher abstraction level, the MOF
(Meta-Object Facility) meta-meta-model. In their architec-
ture, the source and target models are conformed to their
meta-models, and the source and target meta-models are
conformed to the MOF meta-meta model. ATL and QVT
are dedicated to developers that operates on the MDA do-
main. Contrary to these two languages, Malan is dedicated
to the data manipulation, i.e. to the database and XML
document manipulation; ATL and QVT do not fit to this
problem since they address a more general problem than

Malan which does not suffer of the complexity resulting of
MDA.

Representing schema mapping in UML has already been
the concern of research from Hausmann et al. [12]. They de-
scribed a UML extension that allows the visualisation of a
schema mapping between two diagrams where each map-
ping is completed by OCL constraints. OCL [19] is not
well-suited for the schema mapping definition since it is a
language originally dedicated for the constraint definition
on UML elements. Its main goal is to enrich a UML class
diagram semantically. Even if most of the mapping concept
elements can be specified using OCL, it is not as simple as
with Malan in most cases.

Even if our framework works with UML class diagrams,
it is important to keep in mind that in the data domain
(XML document and database domains included), schemas
are often represented in the XML schema format. Thus,
the transition of an XML-schema to a UML class diagram
is a non negligible step which provides consequent difficul-
ties and limitations; for instance, UML is aimed at soft-
ware design rather than data modelling. So to facilitate the
transition, a proposed solution could be the definition of a
UML profile describing XML-schema properties (attribute,
element, complex type) [26].

Moreover, it is important to insist on the fact that Malan

does not aim to replace the use of any transformation pro-
cess. In some cases, the use of a mapping process is not
appropriate because of its schema-awareness which can be
time-consuming. For example, to perform a simple and
quick data transformation of which schemas are not avail-
able, a user may prefer the direct definition of the transfor-
mation program, using XSLT for instance, instead of looking
for or defining the schemas to define a schema mapping, even
if it is error-prone.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented Malan, a mapping lan-

guage that allows the definition of a schema mapping, that
are two UML class diagrams. This schema mapping can
be instantiated in order to create a transformation program
that allows the transformation of a source schema instance
into a target schema instance. This approach aims to facili-
tate the development process of a transformation by clearly
separating the mapping and transformation processes and
consequently to be free to use whichever transformation lan-
guage we want. We have illustrated our approach with two
examples showing the expressiveness of Malan.

Our future work are twofold and concerns the Web data
and the interaction domains. Firstly, we aim to fully ap-
ply Malan to the data manipulation, i.e. to the database
and XML document manipulation. The work described in
this paper mainly concerns the XML document manipula-
tion. Consequently, we have to extend our framework to
the database manipulation. This extension will help us to
test Malan on more use cases and thus, we will be able to
enrich and refine its expressiveness. Secondly, we aim to ap-
ply Malan to the GUI domain and in particular to the RIA
(Rich Internet Application) domain of the Web 2.0. The
first step of that work will be the use of Malan for the au-
tomatic generation of transformations fitted to interactive
system, i.e. incremental [28, 22] or active [5] transforma-
tions. Then, we will be able to define a model that will

allow to specify, at the UML level, the interaction, as Malan

does for the mapping specification.

8. ACKNOWLEDGEMENTS
We thank Lucian Popa for his help on Clio, RichardWood-

ward and Olivier Camp for their comments on this paper.
The work described in this paper has been funded by a grant
from Angers Loire Metropole.

9. REFERENCES
[1] S. Abiteboul. On views and xml. In Proc. of PODS

’99, pages 1–9, 1999.

[2] S. Abiteboul, S. Cluet, and T. Milo. Correspondence
and translation for heterogeneous data. Theor.
Comput. Sci, 275(1-2):179–213, 2002.

[3] P. Atzeni. Schema and data translation. In Proc. of

ICDE ’06, page 103. IEEE Computer Society, 2006.

[4] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

[5] O. Beaudoux. XML active transformation (eXAcT):
transforming documents within interactive systems. In
Proc. of DocEng ’05, pages 146–148, 2005.

[6] M. Bernauer, G. Kappel, and G. Kramler.
Representing XML schema in UML - a comparison of
approaches. In Proc. of ICWE’04, pages 440–444.
Springer-Verlag, 2004.

[7] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A
vision for management of complex models. SIGMOD

Rec., 29(4):55–63, 2000.

[8] A. Blouin and O. Beaudoux. Mapping paradigm for
document transformation. In Proc. of DocEng ’07,
pages 219–221. ACM Press, 2007.

[9] E. Domı́nguez, J. Lloret, B. Pérez, A. Rodŕıguez,
A. L. Rubio, and M. A. Zapata. A survey of UML
models to XML schemas transformations. In Proc. of

WISE’07, pages 184–195. Springer, 2007.

[10] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
getting to the core. ACM Trans. Database Syst.,
30(1):174–210, 2003.

[11] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In Proc. of SIGMOD ’05, pages
805–810, 2005.

[12] J. H. Hausmann and S. Kent. Visualizing model
mapping in UML. In Proc. of SoftVis ’03, pages
169–178. ACM Press, 2003.

[13] F. Jouault and I. Kurtev. Transforming models with
ATL. In Satellite Events at the MoDELS 2005

Conference, pages 128–138. Springer, 2006.

[14] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. of PODS ’05, pages
61–75. ACM Press, 2005.

[15] M. Lenzerini. Data integration: a theoretical
perspective. In Proc. of PODS ’02, pages 233–246.
ACM Press, 2002.

[16] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y.
Halevy. Representing and reasoning about mappings
between domain models. In Eighteenth national

conference on Artificial intelligence, pages 80–86, 2002.

[17] R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan,
C. T. H. Ho, R. Fagin, and L. Popa. The clio project:
Managing heterogeneity. SIGMOD Rec., 30(1):78–83,
2001.

[18] OMG. MDA specification. Technical report, OMG,
2001.

[19] OMG. UML 2.0 OCL Specification. Technical report,
OMG, 2003.

[20] OMG. MOF QVT Specification. Technical report,
OMG, 2005.

[21] OMG. UML 2.1.1 specification. Technical report,
OMG, 2007.

[22] M. Onizuka, F. Y. Chan, R. Michigami, and
T. Honishi. Incremental maintenance for materialized
XPath/XSLT views. In Proc. of WWW ’05, pages
671–681. ACM Press, 2005.

[23] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: a
visual approach to XML transformations. In Proc. of

DocEng ’01, pages 1–10, 2001.

[24] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,
and R. Fagin. Translating web data. In Proc. of

VLDB’02, pages 598–609, 2002.

[25] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[26] N. Routledge, L. Bird, and A. Goodchild. UML and
XML Schema. In Proc. of the Thirteenth Australasian

Database Conference, volume Vol. 5, pages 157–166,
January 2002.

[27] C. Soutou. UML 2 pour les bases de données. Eyrolles,
2007.

[28] L. Villard and N. Layäıda. An incremental XSLT
transformation processor for XML document
manipulation. In Proc. of WWW ’02, pages 474–485,
2002.

[29] W3C. Extensible markup language 1.1 specification.
Technical report, W3C, 2006.

[30] W3C. XQuery 1.0: An XML query language.
Technical report, W3C, 2006.

[31] W3C. XSL transformations (XSLT) version 2.0
recommendation. Technical report, W3C, 2007.

