
Early fault detection with
model-based testing

Jonas Boberg
bobergj@ituniv.se

IT University of Göteborg
Software Engineering and Management

Gothenburg, Sweden

May 29, 2008

Supervisor: Thomas Arts



Abstract

Current and future trends for software include increasingly com-
plex requirements on interaction between systems. As a result, the
difficulty of system testing increases. Model based testing is a test
technique where test cases are generated from a model of the system.
In this study we explore model-based testing on the system-level, start-
ing from early development. We apply model-based testing to a sub-
system of a message gateway product in order to improve early fault
detection. Based on our experiences, we present a set of challenges and
recommendations for system-level, model-based testing. Early results
indicate that model-based testing significantly increases the number of
faults detected during system testing.

1



1 Introduction

The cost of finding and fixing faults in software typically rises as the devel-
opment project progresses into a new phase. Faults that are found after the
system has been delivered to the customer are many times more expensive
to track down and correct than if found during an earlier phase [1]. The
difference in cost of faults between development phases is dependent on the
development method used. It is claimed that projects that use agile devel-
opment practices have a fault cost curve that is less steep [2]. Current and
future trends for software include increasingly complex requirements on in-
teraction between systems [3]. For systems with a high degree of interaction,
many defects cannot be detected on the unit or component level. Instead,
the importance of integration and system-level testing increases. Such sys-
tems cannot avoid having a steep fault cost curve, even if agile development
practices are used [4]. Furthermore, the increased complexity means that a
system may have potentially infinite combinations of inputs and resulting
outputs. It is difficult to get satisfactory coverage of such a system with
hand-crafted manual or automatic test cases [5].

Model based testing is a test technique where test cases are generated
from a model of the system. There are model-based testing tools that can
automate the generation of test cases from a behavioral model, including test
oracles that can determine whether the system under test behaved correctly
at the execution of the test case [6]. Test cases generated from a model have
been shown to give a high coverage of system interaction points, given that
the generation is carefully guided [7].

Intensive research on model-based testing has been conducted, and the
feasibility of the approach has been demonstrated. Still, few conducted
studies focus on early-fault detection and the application of the technique
on specific test-levels. Also, few studies focus on the implementation of
model-based testing in an industrial setting, including the empirical results
of doing so. Industrial adoption of model-based testing remains low [8].
Although this is partially due to technical limitations, process-related issues
remain a large concern. The model-based testing practice must be integrated
into current software processes [8]. Limited understanding of the benefits
model-basted testing deliver at different levels of testing, and the associated
challenges of its application in real world projects, is therefore an obstacle
to adaption of the technique.

Finding problems faced in industrial software development, and finding
solutions that developers will embrace, is an often listed basis for successful
technology transfer [9]. We have conducted a pre-study of an ongoing system
development project at Erlang Training and Consulting (ETC). The project
develops a message gateway product with two sub-systems, an E-mail gate-
way and a Instant Messaging (IM) gateway. Both sub-systems essentially
interconnect networks that use different communication protocols, by per-

2



forming the required mapping of protocol messages. The E-mail gateway
allows a client to access multiple types of e-mail servers using a single com-
munication protocol. The IM gateway provides mobile devices an interface
to multiple instant messaging protocols.

The pre-study indicates that faults which should have been found during
system testing of the IM gateway sub-system, have repeatedly been left un-
detected until customer acceptance testing. Several negative consequences
as a result of this fault-slip through have been observed:

• Reproducing and locating the source of the fault requires more effort
as the customer anomaly reports often are on a high level.

• The developing organization and customers confidence in the system
passing the acceptance test exit criteria is reduced.

• Additional effort has to be spent on building and deploying new release
candidates as faults are found and fixed.

1.1 Purpose

The purpose of this mixed methods study is to better understand how model-
based testing can be used as a system-level test technique, starting from
early development. This will be done by converging both quantitative and
qualitative data. Fault-slip-through will be used to measure the relationship
between using model-based testing as a system-level test technique from
early development, and the number of faults that should have been detected
during system testing but are left undetected until customer acceptance
testing.

As described above, the message gateway, developed at ETC (the re-
search site), has two sub-systems. In this study, model-based testing will
be used for system-level testing of the E-mail gateway sub-system. The
fault-slip-through measurements for this sub-system will be compared to
the measurements of the baseline sub-system – the IM gateway. The IM
gateway is tested with a combination of manual and automated test cases
that are hand-crafted without the support of a model. There are many
different kinds of testing. This study will focus on black box functional-
ity testing (both positive and negative). At the same time, the managers
and developers perception of the impact of the model-based testing will be
explored using observations and qualitative interviews.

1.2 Approach

Studies of software process improvement suggest that regardless of whether
a quality initiative is technical or organizational, the human factor should
be considered, because of the potential barriers to change [10]. ETC has

3



never used model-based testing as a system-level test technique. Model-
based testing is not just a matter of generating tests, and executing them
to detect defects. It involves several other activities, such as creation of
the system model, analyzing the output, reporting defects and generating
reports. Another important activity is regression testing, which is often
cited as the most important benefit of test automation [4]. The model-based
testing practice must therefore be integrated into the project’s test process
[8]. This integration can meet resistance as existing local practices may
directly conflict with the model-based testing technique [11]. In view of this,
this study will be conducted in the form of a software process improvement
initiative.

1.3 Overview

The rest of this paper is organized as follows. Section 2 gives an overview
of relevant concepts, summaries related studies and presents our research
questions and hypothesis. Section 3 describes the method used in the study,
including how we collected and analysed our data. Section 4 describes the
two sub-systems under study. Section 5 gives examples of how the system
under test was modeled, describes encountered challenges and presents a set
of recommendations for model-based testing on the system-level. Section 6
describes the actual results, in terms of changes in fault-slip-through. Sec-
tion 7 discusses the results and presents issues in the conducted comparisons.
Finally, we conclude and suggest questions for further research in section 8.

2 Related Research

This section has four parts. The first part gives an overview of model-based
testing. The second part presents an overview of studies that relate directly
to this one – model-based testing as a fault-detection practice in industry,
and its impact on the development process. The third part presents selected
measurements of early fault detection. Finally, the fourth part specifies the
research questions and hypothesis of this study.

2.1 Model-based testing

The term model-based testing is commonly used for a wide variety of test
generation techniques. In this thesis, model-based testing is a test technique,
by which test cases are generated from a behavior model of the system under
test [11]. Furthermore, we constrain ourselves to the generation of test cases
that include a test oracle [11], which can assign a pass/fail verdict to each
executed test.

Model-based testing typically involves the following steps: [6, 11, 12]

4



1. Building an abstract model of the behavior of the system under test.
The model captures a subset of the system requirements.

2. Definition of test selection criteria. The criteria defines what test cases
to generate from the model.

3. Validating the model. This is typically done by sampling abstract test
cases from the model and analyzing them. This step is performed to
detect major errors in the model that may even hinder generation of
test cases.

4. Generating abstract tests from the model, using the defined test selec-
tion criteria. At this stage, the generated test cases are expressed in
terms of the abstractions used by the model.

5. Transforming (concretize) the abstract test cases into executable test
cases.

6. Executing the test cases. At execution time, an adaptor component
transforms the output of the system to the abstraction of the model.

7. Assigning of a pass/fail verdict to executed test case.

8. Analyzing the the execution result.

The remainder of this section gives an overview of the variations within
the model-based testing practice.

2.1.1 Model types

The behavior of a system can be described using a variety of different model
types. Common model-types, such as finite state machines, extended finite
state machines, state charts, markov chains and temporal logic are widely
described in literature.

We provide an overview of the theory of the abstract state machine model
type, as it is used with QuickCheck, the tool that was selected for this study.

Abstract State Machines Abstract State Machines (ASM), formerly
called evolving algebras, is a generalization of finite state machines. The
state of an abstract state machine is a mathematical structure (first-order
structure). [13] ASMs offer a general abstraction mechanism in the modeling
of a system. As proved by Gurevich [13], every sequential algorithm can be
step-for-step simulated by an appropriate sequential abstract state machine.
In addition, well-developed model refinement and decomposition techniques
for ASMs allow the model to evolve with the developed system [14]. The
mathematical properties of an ASM enables the proof (which can also be

5



machine automated) of a property for a system. This makes it interesting
for model-based testing [14].

An ASM can (informally) be defined as a finite set of rules on the form:

Condition → Updates

Where Condition is a arbitrary condition, and Updates is a set of update
functions to apply to the state. Each update function replaces a value at a
specific location in the state by the new value. [13]

Using an appropriate tool, an ASM can be executed. In each execution
step, the ASM is applied to the current state S to produce a new state S′:

1. The condition of each rule is evaluated.

2. For each rule whose condition evaluates to true, the values of the
updates in the rule are computed.

3. If no updates contradict each other, apply all updates to the state S,
to produce the new state S′.

[13]

Environment modeling Usually, the model of the “system”, also
includes aspects of the systems environment. As the environment of a system
is typically, to a degree, non-deterministic, there is a need to express non-
determinism in the model. [13] The ASM model supports introducing non-
deterministic aspects into the model through the notion of internal and
external functions. The value of an internal function can only be changed
by the ASM. The value of an external function, on the other hand, can be
changed by the environment (informally, this means that the result of an
external functions is non-deterministic - the result of the function can vary
according to the environment). [13] The execution of a function, whether
internal or external, can trigger a set of updates in the model by fulfilling
the condition of a rule, as explained above. The environment is modeled
to act between the execution steps of the model. This abstraction of the
environment and system acting in lock-step allows for an abstraction of time
in the modeling of the system. [13]

The ASM definition does not prescribe any particular particular notation
for the states or rules. This allows for a pragmatic approach to the modeling
of the system [14].

2.1.2 Model abstraction

The model must be validated against the system requirements, which may
be specified at any level of formality. This implies that the model must be
more abstract than the system under test. If it were not, validating the

6



model would require as much effort as validating the system. At the same
time, details of the system that are not modeled, cannot be verified using the
model [15]. An overview of abstractions that can be applied in the creation
of the model is provided in [16] and [15].

2.1.3 Model notation

In principle, all notations with formal semantics can be used as a basis
for model-based testing. Examples of commonly used notations are formal
specification languages (such as Z), tool vendor specific languages, general-
purpose programming languages, the Unified Modeling Language (UML)
and domain specific languages. [6]

2.1.4 Concretizing abstract test cases

The approach to concretization of the test cases depends on the nature of
the model abstraction. When only the system input data is abstracted by
the model, an adaptor component (sometimes called driver [15]) is typically
used. The adaptor adapts the input part of the test case to the format
accepted by the system under test [12]. This adaption may also be delayed
to test execution time. If the test case is on a higher level of abstraction a
template is used to derive a concrete test case. The template adds additional
semantics making the test case executable [6].

2.1.5 Online and offline testing

The online testing technique generates the steps of a test case from the model
in lock-step with executing them. This generation technique handles the
non-determinism that arises in the testing of reactive and concurrent systems
[17]. With off-line test generation, a complete test case is generated before
execution. This has other practical advantages, for example the test case
can be executed repeatedly (regression testing). It also allows for analyzing
and simplification of the test case before it is executed.

2.1.6 Available tools

Generating test cases from high-level specifications is not a recent idea. In
1986 Hayes [18] showed how to systematically derive tests of abstract data
structures from a formal specification. At that time, however, the generation
and execution of test cases was performed manually. Today, there is a
growing number of tools available that automate many of the steps involved
in model-based testing. Utting and Legeard [6] provides a comprehensive
overview of model-based testing tools.

7



2.1.7 Quviq QuickCheck

QuickCheck, developed by Quviq AB, is a testing tool for guided random
and model-based testing. QuickCheck can simplify a failed test case to a
minimal failing test case [19], thereby reducing the problem of deducing the
cause of failure for complex test cases. A minimal test case is a test case
were every part of the system input is significant in reproducing the failure.

QuickCheck provides a framework for modelling the system under test
using an Abstract State Machine (see section 2.1.1). A model is built using
Erlang, a general-purpose programming language [20], with support of the
library provided with QuickCheck.

Applicability A case study, where Ericsson’s Media Proxy was tested
using QuickCheck, indicates that the tool can be applied to testing com-
munication protocols. The study also found that QuickCheck potentially
reduces the required investment compared to hand-crafted test cases [19].
The system that was tested with QuickCheck in the study had already been
pre-release tested by the development team. There are no studies on using
QuickCheck earlier in the development.

2.2 Model-based testing in industry

This section outlines and evaluates prior studies on model-based testing as
a fault detection practice in industrial projects. Only studies where the test
case generation and execution steps were automated are included.

AGEDIS (Automated Generation and Execution of Test Suites in Dis-
tributed Component-based Software) was a three-year research project on
the automation of software testing funded by the European Union. Five
case studies were conducted. These studies focused on applying model-
based testing methods and tools to test problems in industrial settings. The
studies were conducted at France Telecom, Intrasoft and IBM. The find-
ings were that modeling increased the understanding of the system under
test and was found to be an effective way to analyze complex requirements.
It was also found that when a requirement changed, adapting the model
and regenerating the test cases required less effort compared to updating
manually constructed test cases. [21]

Artho et al. [22] presents a case study that applied model-based testing
to the controller component of NASAs K9 planetary rover. The modeling
language and test framework used was based on a discrete temporal logic.
The technique was found promising and located a fault in the controller.
The model was developed, and the testing conducted after implementation
of the full system was finished.

Dalal et al. [11] reports on obstacles of introducing model-based testing
into test organizations. Four case-studies of four large-scale projects are

8



presented. The following were the findings:

• Model-based tests are seen as mysterious. The testing objectives of
each test case are not as clearly defined as in a typical manually crafted
test case.

• Local practices may directly conflict with model-based testing.

• The projects test process, including test strategies and planning must
be adapted, so that the model-basted testing is well integrated. Estab-
lishing the infrastructure for running and logging the massive amount
of generated test cases requires effort.

• Building the model is difficult if the requirements are in-complete.
At the same time, this forces developers to make decisions to clar-
ify system aspects where the expected behaviour is undefined. This
was found to improve the specification and the understanding of the
system, which is in line with the findings of the AGEDIS studies [21].

• Finding appropriate model abstractions to avoid reimplementation of
the system under test requires high domain knowledge and experience.

• Interaction between the model developer and project developers is
important.

• Test cases generated from a model revealed defects that were not ex-
posed by manually crafted test cases, as they related to non-trivial
combinations of system input parameters

Dalal et al. suggests that defects in the model can be minimized by
ensuring traceability from the requirements to parts of the model. This
allows fault analysis to faster determine whether the requirements or the
implementation is incorrect. The suggestion originates in that more than
half of the failed tests related to defects in the model, rather than the system
under test. Other studies indicate similar model defect ratios (see Pretschner
et al. [15], Blackburn et al. [5]). The following limitations in the case studies
can be identified: Only individual components were tested. Test oracles were
not generated from the model, but added manually.

Dalal et al. also identifies the following questions for future work:

• What are the challenges of applying model-basted testing during dif-
ferent phases of testing?

• What benefits will model-basted testing deliver at different phases of
testing? [11]

9



Pretschner et al. [15] investigates whether the model-based testing ap-
proach pays off in terms of quality and cost. Quality of model-based test
cases are compared to traditional, hand-crafted test cases. The system un-
der test is a network controller for a automative infotainment system. The
findings of the study were that model-based testing did not detect more
faults in the implementation than hand-crafted test cases. Also, no correla-
tion between severity of errors and types of tests were found. On the other
hand, the model-based tests resulted in the detection of significantly more
requirement defects. The study indicates that tests were executed after the
system was completely implemented. Therefore, the benefit of test case re-
generation were not seen in the study. Also, the length of the test cases was
restricted, as a failing test case was inspected manually, and the execution
time was long due to hardware limitations. The study acknowledges these
deficiencies and points out that the economics of using model-based testing
based on behavioral models is not yet understood, in particular whether the
life-cycle spanning updating of the model is efficient.

Blackburn et al. [5] discusses the specific skills and practices that are
needed to incorporate model-based testing into an organizations test process.
The presented material is based on leanings from working with model-based
testing in companies and projects during multiple years. The article suggests
that an incrementally developed model detects inconsistencies and missing
details in requirements early in the development process. Also, objective
measurements are pointed out as important to make the effects of the model-
based testing visible.

Evaluation Summary Based on evaluation above, it can be concluded
that existing research on model-based testing for early-fault detection is
lacking. In conducted studies, model-based testing has typically not been
an integrated part of the development process. Also, most studies apply
model-based testing on the component level, or to a limited part of the
system. Few studies focus on the the application of the technique on the
system-test level.

2.3 Measuring early fault detection

The central concept underlying this study is that the cost of finding and fix-
ing faults in software rises as the development of the software progress into a
new phase [4]. Reducing the number of defects that are left undetected until
customer acceptance testing is a type of improvement work – improvement
of the test process. In improvement work, measurements are important in
order to know whether you are actually improving. A common test process
metric is the number of defects found on different test levels[4]. An impor-
tant criteria for selecting a performance measure is that it relates closely to
the issue under study. As shown by Damm, most measurements cannot ac-

10



knowledge that not all faults are effectively found on the test-level that they
were introduced on. Instead, the use of a method called Faults-Slip-Through
(FST) is proposed by Damm[4].

2.3.1 Fault-Slip-Through

When applying the FST method, faults are classified according to the phase
in which they should have been found. The method has the following steps
[4]:

1. Determine which defects should be found on which test-level. This is
part of the test strategy. It is not already documented by the organi-
zation, that has to be done first.

2. For each reported fault, find the test-level the defect was found on,
and which test-level it should have been found on, according to the
documented test strategy (see 1)

3. For each test-level, summarize the number of faults that should have
been found earlier, per test-level.

Phase Input Quality Phase Input Quality – the fault-slip-through ratio,
can be calculated from the absolute FST data as follows [4]:

Phase Input Quality(PIQ) =
SF

PF
· 100

where SF is the number of faults found on test-level X that slipped from
earlier test-levels and PF the total number of faults found on test-level X.

This formula calculates the percent of faults found at a test-level that
should have been found earlier. Damm et al. observed a relationship be-
tween the number of faults found and the PIQ; if the PIQ for the test-level
is high, and many faults are found on that test level, this indicates that the
test strategy compliance of the earlier test-level is low [4]. It is important to
analyze the PIQ in the context of the absolute number of found faults. For
example, the PIQ of a test-level could be high, although only a few faults
were found on that test-level. Few faults found typically indicates that none
or little improvement is needed.

Unnecessary Fault Cost Damm also proposes a way to use the fault-
slip-through to measure the improvement in development efficiency. This
involves analysing the average cost of finding faults in different phases and
using this to calculate the Unnecessary Fault Cost (UFC) [4] which is then
compared to the UFC of a baseline project. This derived measurement will
not be utilized, as the economics of model-based testing is not within the
scope of this study.

11



2.3.2 ODC trigger analysis

One way to classify faults is by software triggers. A trigger is a type of
stimulus that activates a fault into a failure. A method of such classification
is ODC trigger analysis[23]. In ODC trigger analysis, each fault is assigned
to an activator category. For example, faults that go into the Test Sequenc-
ing category are such that require execution of a sequence of functions for
the fault to surface. On the other hand, faults that go into the Interaction
category require the execution of a sequence of functions with varying pa-
rameters [23]. ODC trigger analysis can be used to evaluate the test process
by identifying what types of faults are found on a specific test level. In
combination with the fault-slip-through, it can be used to evaluate what
activities in the test process are in need of improvement, and the success of
such improvements [4].

2.4 Research Questions and Hypothesis

The central question asked in this study is:

How can model-based testing be applied at the system-level
to enable early fault-detection and increased confidence in the
system?

Based on the evaluation of related work in section 2.2, and the challenges
identified, the following sub-questions will be addressed by this study:

Q1. How can model-based testing be used to reduce the number of faults
that are left undetected until customer acceptance testing?

Q2. What are the challenges of applying model-based testing at the system-
level?

During the pre-study at ETC we observed that the customers confidence in
the system under test passing the customer acceptance criteria is dependent
on the availability of test reports. The customer (external organization)
requires these reports to see that the system has been sufficiently tested.
As identified by prior studies, it is also important to make the results of
the model-based testing visible within the internal organization, to get com-
mitment to the technique. This leads to the identification of an additional
sub-question:

Q3. How can reports on the coverage and results of the executed model-
based tests be presented to the internal and external organizations?

The introduction of automated system tests with a high level of interac-
tion coverage should decrease the number of faults that are left undetected
until customer acceptance testing. This expectation constitutes the hypoth-
esis for this study:

12



H1. Applying model-based testing on the system level will decrease the
fault-slip-through from system testing to customer acceptance testing

3 Methods

The study was conducted using the action research method [24]. This was
motivated by the practice oriented nature of the study, and the authors
involvement in both practice and research. Action research is cyclic. Each
cycle typically includes planning, acting, observing, and reflecting.[24]

The studied development project used a development process based upon
the DSDM framework (The DSDM framework is further discussed in DSDM,
Business Focused Development [25]). The length of each time-box was ap-
proximately four weeks. The customer conducted an acceptance test on each
system release.

The study covers two releases of the messaging gateway. Figure 1 shows
the timeline of the study. Due to confidentiality reasons, we cannot state
the actual release names. We denote these releases as Release X and Release
X+1, respectively. The second release of the E-mail gateway sub-system was
developed during two shorter time-boxes, with an interim release, which we
call Release X+0.5. No acceptance test was conducted on the interim release.
We present the results for this release separately.

Figure 1: Study timeline

3.1 Research cycles

Each action-research cycle corresponded to a time-box in the E-mail gateway
project. The following actions were conducted during each of the three time-
boxes:

Planning A set of functional requirements to add to the system model was
selected. The selection was based on the given priority of requirements for
the current time-box. In addition the developers were asked to prioritize the
modeling of the requirements. The latter was done to allow for early testing
of features that the developers delivered for system-testing (the features due
for system-testing in the time-box were not all delivered at the same time).

13



Acting The selected functionality was modeled. A set of abstractions was
applied in the process of modeling the system. The abstractions selected
were based upon the project’s test strategy (what aspects to test on the
system level) and trade-offs including difficulty of modeling and ease of val-
idation of the model.

As soon as features were released by the developers for system testing,
the model was used for test generation and execution. Detected anomalies
were reported into the projects issue tracking system. After analyzing an
anomaly, a fault was typically found to be present in either the model or in
the system. As faults were corrected, the tests were re-executed.

Observing After completion of the time-box, the results of the testing
were observed and analyzed.

Reflecting The developers and test manager were involved in reflecting
on the results of the model-based testing and suggesting improvements for
the next time-box.

3.2 Site of study

The site of study was Erlang Training and Consulting (ETC). Part of ETC’s
core business is to develop distributed fault tolerant systems utilizing the Er-
lang/OTP platform, most of which are network-intensive. Erlang/OTP in-
cludes the general purpose programming language Erlang, which has built-in
support for concurrency, fault-tolerance, and a set of libraries for application
development [20].

3.2.1 Experience of model-based testing

Prior to this study, model-based testing was used by some developers for
testing on the unit level. The tool used was QuickCheck (see section 2.1.7).
The majority of the developers of ETC had undergone training in use of the
tool.

3.3 Researchers role

The authors role in this study, except from data collection and analysis, was
to introduce model-based testing as a technique for system testing in the
project. The author also constructed the model of the system, and executed
the tests generated from the model. The risk of bias inherent due to the
authors involvement and interventions is acknowledged.

14



3.4 Data collection and analysis

This section presents the applied data collection and analysis procedures.
Both quantitative and qualitative data was collected in this study. Found
faults were analyzed and the fault-slip-through to acceptance testing mea-
sured. The impact of the model-based testing was verified through qualita-
tive interviews with the test-manager, developers and a customer represen-
tative. In addition, the experiences of system-level modeling, test execution,
and reporting of test results were logged.

3.4.1 Fault Analysis

Faults found during system testing and acceptance testing were measured
at the end of each time-box for each of the two sub-systems. Data on found
faults was collected from the organization issue tracking system. Both the
internal organization and the customer reports detected anomalies into this
system. The reports include the details of the anomaly, the reporter and
the date of the report. This data was sufficient for the FST measurement.
Each anomaly report was analyzed according to the following criteria:

1. The anomaly has been confirmed to have been caused by a fault in
one of the two sub-systems

2. The fault related to a functional aspect of the system

Note that (1) also implies that faults in a shared component of the two
sub-systems were filtered out. Reports that fulfilled these two criteria were
used as input for the fault-slip-through measurement (see section 3.4.2) and
classified through ODC fault analysis (see section 3.4.3).

The detected faults for the E-mail gateway system were further analyzed
according to whether they were found due to execution of a manually crafted
test case, or a test case generated from the model. This distinction was
useful to evaluate the model-based testing at the end of each time-box. For
example, what faults did the manually crafted test-cases detect, that the
ones generated from the model did not? The evaluation was used as input
to the improvement of the model for the next time-box.

In case of duplicate anomaly reports for a fault in the system, both
reports were used to classify the fault, but only one fault was counted. No
faults had an anomaly report from both a manually crafted and a generated
test case.

3.4.2 Fault-slip-through

The Fault-slip-through to system testing and acceptance testing was mea-
sured at the end of each time-box, for each of the two sub-systems. The
Phase Input Quality for the two test levels was then derived from the fault-
slip-through data.

15



Definition of test-levels The FST measurement requires a definition of
what defects should be found on which test-level (see section 2.3.1). This
definition was created by means of open-ended interviews with the test man-
ager, and four developers. In the interview, the subject was first asked to
identify the test-levels of the test process. For each identified test level,
the subject was then asked to describe the type of defects that should be
found on that level. At the end of the interview, the subject was presented
ten anomaly reports, selected from the issue tracking system. The anomaly
reports were randomly selected from both development projects, with the
constraint that they were all reported during the last two time-boxes, and
that the reported anomaly had been found to be caused by a fault in the
system. For each report, the subject was asked to classify on which test-
level the fault should have been found. This second step was performed to
validate the answers in the interview.

Defined test strategy We formalized the test strategy based on analysis
of the interview results. The test strategy defined the following test levels:
unit testing, integration testing, external integration testing, system testing
and acceptance testing. The definition of the test strategy was verified with
the interview subjects.

3.4.3 ODC trigger analysis

Faults were classified using ODC trigger analysis. For about 80% of the
reported anomalies, the information present in the anomaly report was suf-
ficient for classification. In the rest of the case, the involved project members
were consulted. As recommended by Damm et al [4], we iteratively devel-
oped the classification scheme during fault analysis. The scheme used is
shown in table 1.

Table 1: ODC Trigger Classification Scheme
Category Description

Coverage Execution of a single function
Sequencing Execution of a sequence of functions
Interaction Execution of a sequence of functions and multiple parameters

interacting with each other
Variation As Interaction, but including invalid parameters (negative

testing)
Fault tolerance Recovering from faults and fail-over scenarios
Concurrency Faults that only occur due to concurrent interaction with the

system
Configuration Faults related to specific configurations

16



The E-mail gateway and IM-gateway requires the client to connect and
login before any other function can be used. Faults that were triggered by
the execution of a single function, after connection and login, were therefore
classified to the Coverage category. An exception was made for faults where
the parameters to the login function affected whether the fault was triggered
or not.

3.4.4 Qualitative interviews

We conducted qualitative interviews with the test manager and four devel-
opers. The purpose of the interviews was to explore the perceived impact
of the model-based system testing. The test manager was involved in the
testing of both sub-systems, while two of the developers worked primarily
on the IM gateway and two on the E-mail gateway.

Time and location The subjects were planned to be interviewed at two
instances. Once after the end of the second research cycle, with the intent to
get detailed in-process feedback on the improvement initiative. In addition,
once before the acceptance test of the last studied system release (Release
X+1). Due to the delay of this acceptance test, only the results of the first
set of interviews are included in this article. The interviews were conducted
at the research site.

Interview outline The interviews were conducted using the interview
guide approach and had two parts. In the first part, the subjects were asked
about their confidence in the testing of the respective sub-system and their
confidence that the acceptance test exit criteria would be fulfilled without
extending the acceptance test phase due to detected faults. Second, they
were asked to elaborate on the factors involved in their level of confidence.
In the second part, the subjects were directly asked about their perceived
impact of the model-based system testing.

3.4.5 Observations

Observations of team and customer meetings, and e-mail correspondence
between the customer and the developing organization provided additional
data on the confidence in the system and feedback on the improvement
initiative.

To assist in the data collection, a field log was used to record observa-
tions. The field log was also used to document experiences on the system
modeling, test execution, and reporting of the test results.

17



3.5 Model-based testing tool

The tool used in this study was Quviq QuickCheck (see section 2.1.7). This
choice was based on the adoption of the pragmatic approach to model-
based testing suggested by Grieskamp [8]. Grieskamp suggests that the
users of model-based testing should not be forced to adopt new notations.
Instead, developers should be able to use existing programming notations
and environments. This view is also supported by Bertolino [8].

QuickCheck uses Erlang as a specification language. This means that
there was in-house competence in the specification language used to model
the system under test. Also, the tool had been used and proven at the
site of study (see section 3.2). It was not within the scope of this study to
compare different tools for model-based testing. Therefore, the selection of
a tool that has seen successful use in the development environment allowed
the study to stay within its focus area.

3.6 Verification

Figure 2: Concurrent Trian-
gulation Strategy

The concurrent triangulation strategy[26]
was used to verify the findings of the study.
The fault-slip-through measurements were
compared to the impact of the model-based
testing, as perceived by the interview sub-
jects. Figure 2 gives an overview of the mea-
surements.

4 System under study

The E-mail gateway (EMGW) provides e-
mail clients a uniform interface to message
store servers that use a variety of access pro-
tocols. Supported servers include those that
use the Post Office Protocol version 3 (POP3), the Internet Message Ac-
cess Protocol version 4rev1 (IMAP4rev1) and the Mobile Services Protocol
(MSP). The client access a message store, through the gateway, using a sub-
set of the IMAP4rev1 protocol. The gateway also supports the IMAP IDLE
extension. The extension enables the client to be notified as messages arrive
to a mailbox, without having to poll the server.

The Instant Messaging Gateway (IMGW) uses the Wireless Village Client-
Server protocol to provide mobile clients access to multiple instant messaging
protocols.

Both of these sub-systems were developed using the Erlang/OTP plat-
form. They share large parts of the architecture, and a set of core com-
ponents, originally developed for the IMGW. Most of the implementation

18



was conducted in Erlang, while some parts were done in C. All development
was conducted in a GNU Linux/OpenSuse environment. The project team
consisted of 9 persons on full time. Some of the developers worked solely on
one of the sub-system, while some were involved in both systems.

4.1 The IMAP4 protocol

The IMAP4rev1 is specified by a Request For Comments (RFC) and is
ratified as an internet standard by the Internet Engineering Task Force
(IETF) [27]. The 108 page long specification defines a set of commands that
the client can send to the server, how each command is to be interpreted by
the server and the responses that may be returned. The IMAP4rev1 protocol
builds on the Multipurpose Internet Mail Extensions (MIME), defined by
a range of RFCs [28] which specifies the format of e-mails. An additional
RFC specifies the IMAP IDLE extension, an IETF proposed standard [29].

An important part of the protocol is that the connection can be in dif-
ferent states (see figure 3).

Figure 3: IMAP connection
states

Only a subset of the commands are valid
in each state. The connection starts in the
Non Authenticated State. A successful lo-
gin command results in a transition to the
Authenticated state. The client can now
select a mailbox to work with. In this state,
commands that affect the messages in the
mailbox can be executed. In addition, the
client can issue an idle command, causing
a transition to the Idle state, in which the
client is notified about changes to the mail-
box. The connection can be terminated
from any state, either by the client sending
a logout command, or by the connection be-
ing closed (due to a client or server error).

Although only a subset of the IMAP4
protocol is implemented by the EMGW, there is still a wide range of vari-
ations that the system must be able to handle. The subset of the protocol
that the system must handle is defined by the internal ETC system require-
ment specification document. This document and the relevant RFCs were
the main sources of information when developing the model of the system.

4.2 The Wireless Village protocol

The Wireless Village Client-Server protocol is part of a set of specifications
for mobile instant messaging. The protocol uses the HTTP1.1 protocol as a
bearer and operates over TCP/IP. The Extensible Markup Language (XML)

19



is used to exchange data between the client and server. [30] The core of the
protocol is specified by a set of five documents, in total 220 pages, not
including the HTTP1.1 and XML specifications.

5 Modeling and Testing Challenges

We constructed a QuickCheck Abstract State Machine (ASM) model of the
EMGW system, which was subsequently used to generate and execute test
cases. This section gives examples of how the system was modeled, and
describes encountered challenges in the modeling, test execution and results
presentation.

5.1 Quickcheck Abstract State Machines

A QuickCheck ASM is specified by a state, a callback module and a set of
command generators which are used by the callback module. The ASM is
normally used in an QuickCheck property which is then tested. QuickCheck
properties are further discussed in Testing Telecoms Software with Quviq
QuickCheck [19].

A generated test case is a list of symbolic commands, on the form:

{set,{var,1},{call,Module,Function,Arguments}}

each of which represents the execution of an external function. As described
in section 2.1.1, an ASM allows the modeling of non-determinism in the
system environment. During test case generation, QuickCheck represents
the results of a symbolic command by a symbolic variable ({var 1} in the
example above), that can be used as part of subsequent commands. During
test case execution the symbolic variables are replaced by the actual value
provided by the environment.

QuickCheck implements a subset of the ASM execution theory (described
by Gurevich [31]). A limitation is that there is no built in support for
separating parts of the model. That is, separating different concerns of the
system, in order to avoid a monolithic model that is difficult to validate and
maintain. At the same time, it is relatively easy for the modeler to create
nested state machines, as the model is specified using a general purpose
programming language. This is a technique that was used extensively for
the EMGW model.

5.2 The EMGW state

Only a subset of the IMAP commands are valid in each protocol state. The
state of each client connection must be modeled to be able to constrain the
test case generation to mostly positive test cases. In addition, the state of

20



each mailbox must be modeled, to be able to generate valid commands that
affect the messages.

The EMGW state was modeled by an Erlang record:

-record(state, {clients=[], accounts}.

where clients is a list of client connections, and accounts a list of e-mail
accounts. The following Erlang record models each client connection:

-record(client, {connection, user_id, imap_state,
selected=undefined, idle=false}).

connection is a reference to the client connection in the adaptor component,
user_id an abstraction of the login credentials, that is also used to identify
the account. imap_state is the current state of the IMAP connection,
selected is the name of the selected mailbox and idle specifies whether
the connection is in the idle state.

5.3 Adaptor

One of the first tasks was to develop the adaptor (see section 2.1.4). The
adaptor is an abstract concept. In practice, the adaptor may be split into
multiple components. For the EMGW, we used two adaptor components:

• Adaptor for the IMAP protocol

• Adaptor for sending e-mail messages to an account, to be able to test
the message related IMAP commands.

We recognized that the models IMAP protocol abstractions would vary
as additional system features were incrementally added to the model. With
the design principle “encapsulate what varies”, the IMAP protocol adaptor
was constructed in two parts:

• An IMAP client that enables communication with the EMGW using a
functional Erlang interface. The client formats the IMAP commands
and parses the server response into an Erlang term representation.

• An interface to the aforementioned client that maps from and to the
abstraction of the model

In this way, changes to the model abstractions led to isolated changes in
the second part of the adaptor. Also, the IMAP client was not specific to
the model abstractions, and could later be re-used by the project team for
system load testing.

21



5.4 Generating IMAP commands

IMAP commands were generated in the form of calls to the adaptor. As
a running example, this and the following section will use the IMAP select
command.

select_cmd(Client, State) ->
{call, imap_adaptor, select, [Client#client.connection,

mailbox_name(Client,State)]}.

Here, a select command is generated, given a client and the current state.
A random mailbox name is generated by the mailbox_name generator, which
is specified as follows:

mailbox_name(Client, State) ->
?LET(Mailbox,

oneof(account(Client#client.user_id, State))#account.mailboxes),
Mailbox#mailbox.name).

The clients account is looked up from the state, and a random mailbox is
picked, whose name is returned by the generator.

5.5 ASM callback functions

A QuickCheck ASM callback module specifies a precondition, next_state
and postcondition function. The callback functions for the select com-
mand were specified as follows.

The precondition determines whether to include a symbolic command
in a test case, given the current state.

precondition(State, {call, _, select, [CPid,_]}) ->
min_state(client(CPid,State), ?AUTH)

Here, min_state ensures that the client is at least in the Authenticated
state for the command to be included in the test sequence.

The next_state function updates the state, given the executed com-
mand, its result, and the state the command was executed in.

next_state(State, _Result, {call, _, select, [CPid, MailboxName]}) ->
Client = client(CPid, State),
update(Client#client{imap_state=?SELECTED,

selected=MailboxName}, State);

The next_state function specifies that the client connection transitions to
the Selected state, and the selected mailbox name is updated when the
select command is executed.

The postcondition evaluates the result of a command, given the state
the command was executed in. A test case is assigned a failed verdict if a
postcondition fails.

22



postcondition(State, {call, _, select, [CPid,_]}, Result) ->
is_status(Result, ?OK_RESP);

Here, is_status checks that the server responds to the select command
with the OK response.

5.6 Challenges and lessons learned

This section presents a set of encountered challenges and recommendations
for system-level modeling and test execution.

Develop the model iteratively Iteratively developing the model is seen
as crucial. There is a high investment in creating the model. Using it
from early development is seen to give higher returns as the partial model
can be used to test the system in early development. Early modeling also
allowed the modeler to gradually build up the high level of domain knowledge
required. In addition, we found that the modeling practice contributed to
the understanding of the system requirements, as validation of the model and
the analysis of detected faults led to the discovery of unspecified behavior.

Finding abstractions Finding abstractions that allow the model to be
more abstract than the system under test can be difficult. We found that this
can be remedied by using multiple layers of abstraction, and a combination
of multiple model types. We used a Backus-Naur form (BNF) grammar
to generate a parser for the IMAP protocol, which was used in the IMAP
client part of the adaptor. The parser threw an exception for any malformed
system output. In practice this means that part of the verification was
performed by the adaptor, but allowed for a simpler ASM model.

Test techniques are complementary Manually crafted test cases can
test samples of complex behavior, without having to create a complete model
of the behavior. We found that the techniques of model-based testing and
manually crafting test cases are complementary. For example, the system
fail-over scenarios, that make sure that service is maintained in the event of a
failure were seen as overly complex to model and were instead tested using a
set of hand-crafted test cases. A useful technique, that can be applied when
a system feature is overly complex to model completely, is to only model the
feature partially, and limit the command generators to test cases that the
model is valid under.

Put effort into the adaptor Developing an adaptor for a system-level
model requires considerable effort. On unit and component level, the inter-
face under test is typically less complex. Testing the IMAP protocol required

23



the development of an IMAP client, and applying of multiple layers of ab-
stractions. The total effort involved in developing the adaptor exceeded 40
working hours. On the other hand, we found that a well designed adaptor
can simplify the modeling, as described above. Parts of a layered adaptor
can also potentially be re-used in other parts of the project.

Model validation by testing The complexity of a system-level model
means that the modeling has to start as soon as the requirements for the
current time-box have been established. On the other hand, the validation
of the model, aside from code review and sampling, cannot start until the
system is ready for system-testing. We experienced that validation of the
model had to continue throughout the full system-test phase. We also found
that faults in the system sometimes not only hid other faults in the system,
but also faults in the model. As faults in the system were repaired, the next
test runs often found faults in the model that were previously undetected.
We recommend that a project uses short time-boxes, with small increments
in both the implementation and model. This allows for shorter feedback-
cycles which eases the model validation.

Reliance on external components System level tests rely on a large
number of external components, many of which cannot be be replaced by a
dummy (stubbed). For the EMGW system, the test environment included a
POP3 and IMAP server which was used through the gateway. During system
testing, we found two faults in this server that hindered further testing, and
could not be worked around. Tracking down the problem and patching the
server took two working days. There is a high risk of failures in external
components as the model generated test-cases tests intricate scenarios. We
recommend that the suppliers of external components are carefully selected,
and that good contacts are maintained with the suppliers, in case of failures.

Execution of partial tests When a failure in the system is detected by
the model-based testing, testing cannot be continued since the same failure
is likely to occur again. It should be possible to continue testing, in the
presence of minor faults in the system. QuickCheck does not provide any
support for constraining test case generation or disable parts of the model, in
order to allow for this. Instead we had to perform temporary changes to the
model. In the absence of tool support, we recommend that such changes are
tracked. We used a commenting convention to mark temporarily changed
model parts.

5.7 Presentation of test results

Already during the first research cycle we encountered obstacles in com-
municating the results of the model-based testing. The customer expressed

24



concerns that it was unclear what test cases had been executed, which re-
quirements were covered by the testing and what the current status of the
system testing was. This was partly caused by the customer not being
familiar with the model-based test technique. We had to clarify how the
system was modeled, how tests were generated, and how a verdict was as-
signed to each test case. Another major contribution to this problem was
that the model-based test technique was incompatible with the existing test
management system.

The existing test management system presented the status of a set of
static test cases in a web interface. It was widely used to track and commu-
nicate test execution and results. As we generated a new set of test cases
from the model for each test run, the total number of test cases executed
on a single build of the system could be counted in thousands. The test
management system could not provide an overview of such an extensive set
of test cases.

In response to this, we started to evaluate different approaches to pre-
senting the executed test cases. At the time of this writing, we have only
conducted an initial evaluation of one presentation approach; a web-based
test dashboard.

As a test run is executed, we store each test case together with the
result and metadata (including, but not limited to, the version number of
the system build and the start and end time of the test case) in a database.
We also capture the sequence of system input and output during test case
execution, and store this sequence with the test case. While the output of
QuickCheck includes this sequence, it is in the form of the abstraction of
the model. To enable those without knowledge of the model to review a test
case we capture the actual system input created by the adaptor, and the
system output as it is before the adaptor has performed an abstraction.

We developed a web-based test dashboard that presents the executed
test runs, per system build, and allows reviewing of the details of each test
case. The dashboard also presents basic statistics for each tested system
build, including the number of test cases executed and how many of these
that passed or failed.

5.7.1 Evaluation

We performed an initial evaluation of our test dashboard by presenting it to
a customer representative, followed by an open discussion. This evaluation
was conducted in the third research cycle, after a few days of system testing
had been conducted. The evaluation led to the identification of a number
of necessary improvements in terms of the data presented for each test run.
For example, details of the external system environment, such as the e-mail
server used through the gateway, the operating system and hardware the
system was running on, and the system configuration were seen as important

25



to add. Aside from data details the dashboard was well received and a
decision was taken to deploy it for wider usage.

6 Results

6.1 Detected faults

The following sections presents the faults found in the studied releases. We
present faults detected during system testing and acceptance testing of two
releases of the messaging gateway, Release X and Release X+1. We also
present the faults detected in the interim release, Release X+0.5 that only
included changes in the E-mail gateway.

6.1.1 Release X

Table 2 and 3 shows the fault-slip-through to system testing and acceptance
testing for the two subsystems.

Table 2: FST Release X – Email Gateway

1

Found/Belonging System Test Acceptance test

Unit Test 1 (0) 1
Integration Test 1 (1) 0
External Integration Test 0 (0) 0
System Test 9 (6) 4
Acceptance Test 0 (0) 2
Total found/test-level 11 (7) 7

As can be seen in table 2, 11 faults were found in the E-mail gateway
during system testing. The numbers in parenthesis show how many of the
faults were detected by the model-based tests. 7 of the 11 faults were de-
tected by the model-based tests. Of the 4 faults found with the hand-crafted
test cases, 3 could have been found with the model-based tests (but were
found by a hand-crafted test case before that), one had a trigger classified to
the category Fault tolerance. 7 faults were found during acceptance testing.
Of the 7 faults found during acceptance testing, only two should have been
found on that test-level.

Although more faults were found in the IM Gateway during system test-
ing (see figure 3), significantly more faults were also found during acceptance
testing. Compared to the E-mail gateway, a larger percentage of the faults
should have been detected already during unit testing.

ODC Trigger Analysis Figure 4 shows the ODC trigger distribution for
faults found during system and acceptance testing of the E-mail gateway.

26



Table 3: FST Release X – IM Gateway

2

Found/Belonging System Test Acceptance test

Unit Test 6 4
Integration Test 0 0
External Integration Test 0 0
System Test 8 11
Acceptance Test 0 4
Total found/test-level 14 19

Figure 4: EMGW Release X, ODC trigger distribution by test level

The bar labeled ST-M shows the distribution of the faults found by the
model-based tests, while the bar labeled ST shows the distribution of the
faults found by the manually-crafted tests. AT shows the distribution of
the faults found during acceptance testing. A majority of the system test
triggers are in the sequence category.

As can be seen in figure 5, a large proportion of the IM Gateway fault
triggers are in the interaction category, for both test levels. The number of
faults with a sequence trigger are about the same as for the E-mail gateway.
It is also notable that four of the faults found during acceptance testing
have triggers in the coverage category, as each of these faults could have
been found earlier by a test case invoking only a single function (with a
specific set of parameters).

6.1.2 Release X+0.5

The E-mail gateway had an interim delivery halfway to release X+1. No
acceptance testing was conducted on this delivery. Table 4 shows the number
of faults found during system testing. The numbers in parenthesis show how

27



Figure 5: IMGW Release X, ODC trigger distribution by test level

many of the faults were detected by the model-based tests. In total, 17 faults
were found, of which 11 were found with the model-based tests. The 6 faults
found with the hand-crafted test cases and not by the model-based tests were
further analyzed, with the following findings:

• Four of the faults related to the server sending the wrong error code
in response to an invalid request. Although the error conditions were
part of the system model, the specific error code for invalid requests
were not. They were subsequently added to the model.

• Two of the faults were classified to the trigger category Fault Tolerance.
Such faults were not be found with the model-based tests, according
to the test strategy.

Table 4: FST Release X+0.5 – EMGW Gateway
Found/Belonging System Test

Unit Test 4 (4)
Integration Test 0 (0)
External Integration Test 0 (0)
System Test 13 (7)
Acceptance Test 0 (0)
Total found/test-level 17 (11)

6.1.3 Release X+1

At the time of writing, the system testing of this release has not yet been
completed and acceptance testing has not started. Table 5 and 6 shows the
fault-slip-through for the two subsystems.

28



Table 5: FST Release X+1 – E-mail Gateway
Found/Belonging System Test Acceptance test

Unit Test 4 (4) ?
Integration Test 3 (3) ?
External Integration Test 0 (0) ?
System Test 19 (17) ?
Acceptance Test 0 (0) ?
Total found/test-level 26 (24) ?

As can be seen in table 5, 26 faults have been detected during system
testing of the E-mail Gateway, so far. In contrast to this, only 8 faults have
been detected in the IM Gateway (see table 6) in the same amount of time
in system testing.

Table 6: FST Release X+1 – IM Gateway
Found/Belonging System Test Acceptance test

Unit Test 1 ?
Integration Test 1 ?
External Integration Test 0 ?
System Test 6 ?
Acceptance Test 0 ?
Total found/test-level 8 ?

6.1.4 Summary – Phase Input Quality

By calculating the Phase Input Quality (PIQ) from the FST measurements
(as described in section 2.3.1), we can compare the fault-slip-through data
of the two subsystems. As relatively few faults were detected for some test-
levels, the statistical power of the PIQ is low. The comparisons should
therefore only be reviewed in context of the absolute number of faults.

As can be seen in table 7, the E-mail gateway system test PIQ was 18%
for the first studied release, and increased for subsequent releases. For the
IM gateway the system test PIQ has instead decreased from 79% to 25%,
although this latter value has a very low statistical power due to the few
number of faults found during system testing.

6.2 Perceived impact and feedback

This section summarizes the results of the first set of interviews, conducted
at the end of the second research cycle.

29



Table 7: PIQ - Comparison between sub-systems
Release X Release X+0.5 Release X+1

EMGW FST to ST 22% 24% 27 %
EMGW FST to AT 71% - ?%
IMGW FST to ST 43% - 25%
IMGW FST to AT 79% - ?%

IM gateway The three subjects involved in the development and testing
of the IM gateway generally expressed a low confidence in release X of this
sub-system. The fact that system testing was not completely finished as
the acceptance testing started was stated as a factor in this low confidence
level. Two subjects also stated that they perceived the system testing as
not sufficiently covering all feature interaction points, with the risk that new
features might cause yet undetected side effects in other parts of the system.

E-mail gateway The three subjects involved in development and test-
ing of the E-mail gateway expressed a high level of confidence in release
X and release X+0.5 of this sub-system. All of the subjects stated that
improved testing on all levels contributed to this level of confidence. The
three subjects (who had also experience with the development and testing
of the IM gateway) pointed out improved unit testing and the model-based
system-testing as contributing activities. One of the subjects thought that
the results of the model-based testing was clear to internal organization.
The two other subjects thought that only the capability of detecting defects
was clear, but that visibility in terms of executed tests and system cover-
age needed improvement. All three subjects stated that they perceived the
results as unclear to the external organization.

7 Discussion

A high number of faults were found in both sub-systems during the accep-
tance test of release X. Over half of these defects should have been found
during system testing. We can thus not measure any significant difference
in fault-slip-through between the two sub-systems for this release. A high
number of faults were detected by the model-based tests during system test-
ing of Release X+0.5 and Release X+1. We see this is an indication that
the fault-slip-through to acceptance testing will be lower for Release X+1.
As the data for this release is not yet fully available, we cannot come to a
conclusion on this matter.

30



7.1 Complexity of protocol

The difference in complexity of the two sub-systems external protocols are
likely to have influenced the ODC trigger analysis results. In release X,
the number of detected faults with a interaction trigger were significantly
higher for the IM gateway, while very few faults with the interaction trigger
have been found in the E-mail gateway overall. The IM Gateway uses the
Wireless village protocol (see section 4.2), which we perceive as being more
complex than the IMAP protocol (see section 4.1), in terms of the number
of interacting request and response parameters.

7.2 Stability of IM gateway

Significantly less faults have been found during the system test of the IM
gateway in release X+1. Differences in the types of features added to the
two sub-systems is likely to have influenced these figures. Multiple new
components were developed for the E-mail gateway for this release. The
new IM gateway features on the other hand, were mostly implemented by
the extension of existing components that have been thoroughly tested in
previous releases. At this time, insufficient data is available to be able to
determine the impact of the actual fault detection capability, on the lower
count of detected faults.

7.3 Fault-slip-through to system testing

We can see that the fault-slip-thorough to system-testing was significantly
lower in the E-mail gateway, compared to the IM-gateway, in release X.
We attribute this to improvements in unit-testing, attributed to another
improvement initiative (see section 7.5, Internal validity). In subsequent
releases of the E-mail gateway, more faults have slipped through to system
testing. One plausible reason for this is that as the system-testing improves,
the developers perform less unit-testing. This has been indicated by two
of the developers, who during development of release X+1 stated that they
would like to start system-testing early, due to the model-based tests poten-
tial of finding defects.

7.4 Presentation of test results

We have only explored presentation of test results partially in this study; we
conducted only an initial evaluation of one presentation approach. Model-
based testing is a departure from conventional testing practices. This causes
obstacles in the communication of the results. In addition, integration with
existing software that is used to track the test process can be problematic.
Our findings are in line with those of Dalal et al. and Blackburn et al [11, 5].

31



7.5 Validity Threats

When conducting an empirical study in industry, the subject cannot be
controlled as in a laboratory research experiment. The following validity
threats may therefore be of concern in this study.

Internal validity A possible threat to the internal validity of this study
is another process improvement initiative that was executed at the research
site during the duration of this study. The objective of the other initiative
is to increase the quality of the releases delivered to the customer. It might
therefore be of concern as to whether any observed changes in fault-slip-
through can be attributed to this model-based testing initiative. This threat
is mitigated by two facts. First, this other initiative is project wide (it affects
both subsystems), secondly the fact that the model-based test cases have
found a majority of the faults in the E-mail gateway.

Another validity threat is whether other factors than the model-based
testing have had an impact on an eventual reduction of fault-slip-through
to acceptance testing. The interviews conducted with the test manager and
developers increase the validity, as they show that the internal organization
is in agreement about the impact of the model-based testing.

External validity In this study, the results are overall not fully generaliz-
able since they are dependent on the studied project using certain processes
and tools. Nevertheless, the results should be generalizable within similar
contexts.

A threat to the generalizability of the results of this study is the fact
that the tested system is developed in Erlang, which is also the specification
language used with the model-based testing tool. Concerns that the results
are not generalizable to projects where the implementation and specification
languages differ may therefore be raised. However, the interfaces of the sys-
tem, that the system tests interacted with, are internet standard protocols,
layered over TCP/IP. While Erlang mechanisms were taken advantage of to
issue test specific commands (for example to restart components to ensure
a consistent state at the start of each test case), the effort to implement
these test specific interfaces in another environment is seen as negligible,
compared to the total effort required for the model-based testing.

8 Conclusions and future work

This study set out to contribute to the understanding of system-level model-
based testing as a test technique for early fault detection. Our experiences
of modeling and test execution are generally in line with those reported by
prior studies. We contribute further to the understanding of system-level

32



model-based testing by presenting a set of challenges and recommendations
specific to this test level.

A substantial initial investment is required to integrate the model-based
testing into the test process. As the management and customers are highly
dependent on measurable results and progress reports from system testing,
introducing model-based tests on this level requires considerable planning
and effort.

The fault data for the acceptance test of Release X+1 is not yet available.
We can thus not prove or disprove our hypothesis H1, that model-based
tests would decrease our fault-slip-through from system testing to customer
acceptance testing. On the other hand, we see the high number of faults
detected by the model-based tests as an indication that less faults will be
found during acceptance testing. As the fault data becomes available, we
will publish an updated version of this article.

We have not fully explored our research question Q4, that asks how the
results and coverage of model-based tests can be presented. We leave that
as a question for further research.

9 Acknowledgements

This work was sponsored by Erlang Training and Consulting Ltd and Quviq
AB.

References

[1] Barry Boehm and Victor R. Basili. Sofware defect reduction top 10
list. Computer, 34(1):135–147, January 2001.

[2] Kent Beck. Test Driven Development - By Example. Addison Wesley
Proffesional, 2003.

[3] Barry Boehm. Some future trends and implications for systems and
software engineering processes. Systems Engineering, 9(1):1–19, 2006.

[4] Lars-Ola Damm. Early and Cost-Effective Software Fault Detection.
Blekinge Institute of Technology, 2007.

[5] Mark Blackburn, Robert Busser, and Aaron Nauman. Why model-
based test automation is different and what you should know to get
started. In International Conference on Practical Software Quality.
Software Productivity Consortium, NFP, 2004.

[6] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2006.

33



[7] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Gener-
ating test data from state-based specifications. The Journal of Software
Testing, Verification and Reliability, 13(1):25–53, March 1997.

[8] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In FOSE ’07: 2007 Future of Software Engineering, pages 85–
103, Washington, DC, USA, 2007. IEEE Computer Society.

[9] Adrian M. Colyer. From research to reward: Challenges in technology
transfer. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 569–576, New York, NY, USA, 2000.
ACM.

[10] Mahmood Niazi, David Wilson, and Didar Zowghi. A maturity model
for the implementation of software process improvement: an empirical
study. Journal of Systems and Software, 74(2):155–172, 2005.

[11] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In ICSE
’99: Proceedings of the 21st international conference on Software engi-
neering, pages 285–294, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

[12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing. Working Papers 2006. Department of Computer
Science, The University of Waikato (New Zealand), April 2006.

[13] Yuri Gurevich. Sequential abstract-state machines capture sequen-
tial algorithms. ACM Transactions on Computational Logic (TOCL),
1(1):77–111, 2000.

[14] Egon Börger. High level system design and analysis using abstract state
machines. In FM-Trends 98: Proceedings of the International Workshop
on Current Trends in Applied Formal Method, pages 1–43, London, UK,
1999. Springer-Verlag.

[15] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based
testing and its automation. pages 392–401, 2005.

[16] Wolfgang Prenninger and Alexander Pretschner. Abstractions for
model-based testing. In Electronic Notes in Theoretical Computer Sci-
ence. Proceedings of the International Workshop on Test and Analysis
of Component Based Systems (TACoS 2004), volume 116, pages 59–71,
Los Alamitos, CA, USA, January 2005. Elsevier Science Publishers Ltd.

34



[17] Colin Campbell, Margus Veanes, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-based test-
ing of object-oriented reactive systems with spec explorer. May 2005.

[18] I J Hayes. Specification directed module testing. IEEE Transactions
on Software Engineering, 12(1):124–133, 1986.

[19] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
telecoms software with quviq quickcheck. In ERLANG ’06: Proceedings
of the 2006 ACM SIGPLAN workshop on Erlang, pages 2–10, New
York, NY, USA, 2006. ACM.

[20] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, July 2007.

[21] Ian Craggs, Manolis Sardis, and Thierry Heuillard. Agedis case studies:
Model-based testing in industry. In 1st European Conference on Model
Driven Software Engineering. AGEDIS, December 2003.

[22] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sar-
fraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Rosu, Koushik
Sen, Willem Visser, and Rich Washington. Combining test case gen-
eration and runtime verification. Theoretical Computer Science, 336(2-
3):209–234, 2005.

[23] Ram Chillarege and Kathryn A. Bassin. Software triggers as a function
of time - odc on field faults. DCCA-5: Fifth IFIP Working Conference
on Dependable Computing for Critical Applications, September 1995.

[24] Wesley Vernon. An introductory guide to putting action research into
practice. PodiatryNow, February 2007.

[25] Jeniffer Stapleton. DSDM, Business Focused Development, Second Edi-
tion. Pearson Education, 2003.

[26] John W. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. Sage Publications Inc., 2003.

[27] Network Working Group. Request for comments 3501 - internet message
access protocol - version 4rev1. The Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc3501.txt, March 2003.

[28] Network Working Group. Request for comments 2045 - mul-
tipurpose internet mail extensions (mime) part one: Format of
internet message bodies. The Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc2045.txt, November 1996.

35



[29] Network Working Group. Request for comments 2177 -
imap idle command. The Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc2177.txt, June 1997.

[30] Wireless Village. Wv client-server protocol v1.1. Open Mobile Alliance
Ltd, 2002.

[31] Yuri Gurevich. Evolving algebras 1993: Lipari guide. pages 9–36, 1995.

36


	Introduction
	Purpose
	Approach
	Overview

	Related Research
	Model-based testing
	Model-based testing in industry
	Measuring early fault detection
	Research Questions and Hypothesis

	Methods
	Research cycles
	Site of study
	Researchers role
	Data collection and analysis
	Model-based testing tool
	Verification

	System under study
	The IMAP4 protocol
	The Wireless Village protocol

	Modeling and Testing Challenges
	Quickcheck Abstract State Machines
	The EMGW state
	Adaptor
	Generating IMAP commands
	ASM callback functions
	Challenges and lessons learned
	Presentation of test results

	Results
	Detected faults
	Perceived impact and feedback

	Discussion
	Complexity of protocol
	Stability of IM gateway
	Fault-slip-through to system testing
	Presentation of test results
	Validity Threats

	Conclusions and future work
	Acknowledgements

