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ABSTRACT
In this paper, we consider an authentication framework for
independent modalities based on binary hypothesis testing
using source coding jointly with the random projections.
The source coding ensures the multimodal signals recon-
struction at the decoder based on the authentication data.
The random projections are used to cope with the security,
privacy, robustness and complexity issues. Finally, the au-
thentication performance is investigated for both direct and
random projections domains. The asymptotic performance
approximation is derived and compared with the exact solu-
tions. The impact of modality fusion on the authentication
system performance is demonstrated.

Categories and Subject Descriptors
I.4.7 [Feature Measurement]: [feature representation, pro-
jections]

General Terms
Performance, Security, Verification.

1. INTRODUCTION
Recently, reproduction technologies have performed an im-

pressive evolution allowing to reproduce not only two-dimen-
sional (2D) graphics but also three-dimensional (3D) relief
structures, synthesize voice, images, 3D shapes and even
recreate human facial expressions. Besides the obvious ad-
vantages, these tools offer at the same time unprecedent
possibilities for the people targeting illegal actions ranging
from the gaining access to various services, facilities and in-
frastructures to the counterfeiting of legal documents, cer-
tificates, IDs or even physical items such as luxury goods,
art objects etc.
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The classical protection mechanisms are based either on
proprietary techniques (material science), which use added
features that are either rare in nature or difficult to clone,
or shared secret (password, pin, key) or accompanying ID
documents that all together do not completely satisfy the
requirements to the reliability and security. The propri-
etary technology secrets are often relatively quickly become
outdated due to the technological development, can be dis-
closed, guessed, reversely engineered or maliciously inter-
cepted in various protocols while the ID documents can
be stolen, lost or sometimes relatively easily faked. The
attempts to apply classical crypto-based techniques to the
protection of humans and physical items fail due to the in-
herently noisy nature of measurements.

That is why reliable and secure authentication of humans
and physical objects preserving the privacy is an emerging
and challenging problem for various applications. Fortu-
nately, both humans and physical items possess forensic fea-
tures that are a sort of unique fingerprints, which exist in
a single copy, can not be easily reproduced or cloned using
even the most advanced existing or envisaged future equip-
ment of the counterfeiters or the genuine manufacturers.
The forensic features are formed by either nature or during
involved manufacturing processes and have essentially ran-
dom character. These features can be used for the authen-
tication purposes. A particular selection of forensic features
depends on various factors that include their universality
(do all humans or items have them?), distinctiveness (can
all humans/items be distinguished based on them?), perma-
nence (how permanent are the features?), collectability (how
well can the features be captured and quantified?), etc.

Unfortunately, not all forensic features perfectly meet the
above requirements [1]. Most of the forensic features are
facing the fundamental trade-off problem between the per-
formance and security. A possible solution to this trade-off
is based on the multimodal authentication that recalls the
necessity to use several forensic features of the same object
for reliable and secure authentication [2].

At the same time, the presence of multiple features cre-
ates a freedom for their fusion at various structural levels:
sensor level, feature level, match score level, rank level and
decision level. Besides the existing multibiometric authen-
tication and identification system designs where fusions are
mostly performed at match score or decision levels [3, 4], it is
evident that such an approach is suboptimal in terms of the



attained performance accuracy due to the data processing
inequality [5] that suggests to combine the available biomet-
ric data at sensor level. However, due to various practical
constraints, not so many cases are known where the fusion
is performed optimally from an information-theoretic per-
spective [6]. Therefore, it is important to establish the the-
oretical limits on performance under optimal feature fusion.

Moreover, most of biometrics features belonging to the
same person are statistically independent considering them
from the signal processing perspectives. For example, the
samples of facial photo, iris, fingerprint and voice of person
pronouncing his name shown in Figure 1 can be considered
to be statistically independent.
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Figure 1: Example of biometrics belonging to the
same person: facial photo, fingerprint, iris and voice.

Similarly, the statistical features of various items are unique.
Moreover, several samples taken from the same item in dif-
ferent locations using even the same acquisition technique
might also demonstrate the statistical independence. An
example of document authentication based on microstruc-
ture images of document carrier (paper) scanned at 1200
dpi is shown in Figure 2. These samples can be considered
as different modalities representing the same physical item.
Obviously, other forensic features potentially acquired us-
ing different imaging techniques can be considered for the
fusion.

 

 

 

Hunting and Feeding

Though usually  thought of as a nocturnal hunter, 
stric tly  speaking tigers are crepuscular; this  s imply  
means they commence hunting in the tw ilight per iod 
just after  sundown. Among all 37 species of cat the 
cheetah is  the only  exception to the night hunting 

rule; it is  a diurnal , or day-hunting, cat.

The major ity  of felids are solitary  hunters; the lion is 
the exception in that the pr ide co -operates in 
catching prey. Most of the work in a lion pride is  
done by the swifter, lighter  lionesses and very little 
hunting is  done by the males .

The Lethal Bite

If a tiger correctly  calculates the angle and dis tance from the prey , then it will hit with the full 
force of its  heavy body, br inging the target to the ground . To k ill its  v ic tim the tiger normally 
adminis ters  a lethal bite to the throat or back of the neck. Which bite is  used depends upon the 
s ize of the prey, with the neck bite , which severs the spinal cord, normally  being applied to 
small or  medium-sized prey. The throat bite , or  s trangle hold, causes suffocation and is  the bite 
of preference for  larger prey. This  is  applied for up to ten minutes to ensure that no life 
remains. It was once believed that a tiger in this  pos ition was sucking blood from the prey, but 
it is  not phys ically  poss ible for any cat to do this. Neither bite causes much bleeding from the 
v ic tim and the correct hold br ings a quick release; from the first gr ip until death is  only  30-90 
seconds. There is  little sound from the prey other than a short choke. An adult tiger must make 
a medium-s ized kill about once every seven days, while a female with cubs must do better 
―she'll need to k ill about once every five days .

 

Figure 2: Example of microstructure image of paper
acquired at 1200 dpi by an optical scanner.

That is why the problem of optimal fusion of multiple
modalities is of great importance for both human and item
authentication. Moreover, quite often the multimodal fea-
tures are of high dimensionality and the dimensionality re-
duction techniques are applied to reduce the complexity and
memory storage requirements. Additionally, the dimension-
ality reduction is considered in the scope of uninvertible
transformation for the security/privacy enhancement known
as cancelable biometrics [7]. However, it is not often clearly

understood the impact of this transformation on both per-
formance and security. Finally, both fusion at different
consequent levels and dimensionality reduction unavoidably
lead to the loss of information due to the above mentioned
data processing inequality and the special care should be
taken about the optimal design of multimodal authentica-
tion system with the reduced size or compressed features.

Besides the different nature and applications, the authen-
tication of humans and physical items have a lot in com-
mon and in the following we will refer to it as a generic
authentication of objects, where under the object we will
understand the humans and physical items. From the tech-
nical point of view, the main challenge consists in providing
reliable authentication based on noisy multimodal observa-
tions that are different from those acquired at the enroll-
ment stage. Obviously, the traditional cryptography-based
authentication will produce a negative result even if a single
bit is altered that is not suitable for this protocol. Addition-
ally, the security leakages about the authentication protocol
might cause an appearance of a number of attacks target-
ing to trick the authentication (including impersonation and
physical attacks). To resolve these robustness-security re-
quirements, we will use the hypothesis testing framework
for the evaluation of object authenticity [8]. Therefore, we
will compare the performance of unimodal authentication
system with the multimodal one in terms of probability of
false acceptance PF and probability of correct acceptance
(detection) PD that form a receiver operation characteristic
(ROC), establish the impact of fusion of noisy modalities on
the ROC and evaluate the loss in performance due to the
dimensionality reduction.

The paper has the following structure. The generic uni-
modal authentication problem is considered in Section 2
based on communication framework. The multimodal au-
thentication in the direct domain is presented in Section 3
while in the random projections domain is provided in Sec-
tion 4. The results of computer simulation are given in Sec-
tion 5. Finally, Section 6 concludes the paper.

Notations We use capital letters to denote scalar random
variables X and X to denote vector random variables, cor-
responding small letters x and x to denote the realizations
of scalar and vector random variables, respectively. All vec-
tors without sign tilde are assumed to be of the length N

and with the sign tilde of length L with the corresponding
subindexes. Calligraphic fonts X denote sets X ∈ X and
|X | denotes the cardinality of set X . We use X ∼ pX(x) or
simply X ∼ p(x) to indicate that a random variable X is dis-
tributed according to pX(x). The statistical hypothesis are
denoted as Hi, i = {0, 1} and the distributions under these
hypothesis as p(y|Hi). N (µ, σ2

X) stands for Gaussian distri-
bution with mean µ and variance σ2

X . ||.|| denotes Euclidean
vector norm and Ds(., .) is Chernoff distance between distri-
butions. The mathematical expectation of a random vari-
able X ∼ pX(x) is denoted by EpX

[X] or simply by E[X].

2. MAIN DESIGNS OF UNIMODAL
AUTHENTICATION SYSTEMS

2.1 Generic authentication problem
A generic authentication problem can be considered as

a hypothesis testing [8] that requires the selection of au-
thentication criteria and assumptions behind the statistics



of genuine and faked objects. In the most general case, the
authentication problem can be considered as a decision mak-
ing that the observed length-N codeword v representing the
object under authentication is in some proximity to the gen-
uine codeword x(m), 1 ≤ m ≤ |M|, for example specified in
the Euclidean space as ‖x(m) − v‖2 ≤ em, where em defines
the acceptable distortions as well as the acceptance region
R1(m), while R0(m) is considered to be the rejection region
for the mth codeword. This can be schematically shown as
in Figure 3 for all realizations or codewords.

In the most general case, the above authentication prob-
lem can be considered as a composite hypothesis testing:

{

H0 : v ∼ p(v|H0),
H1 : v ∼ p(v|H1),

(1)

where H1 is a simple hypothesis with p(v|H1) = p(v|x(m))
and H0 is a complex one for which:

p(v|H0) =







p(v|x(1)) with probability p1,

... ...

p(v|x(|M|)) with probability p|M|,
(2)

where
∑|M|

n=1,m6=m pn = 1 that includes all x(n) such that

n 6= m, where x(m) is considered to be an authentic code-
word corresponding to the above hypothesis H1.

To design the decision rule for the binary hypothesis test-
ing, we will use the worst case condition for the selection
of the alternative hypothesis. We will assume that given
the enrolled database of all object forensics and specified in-
dex m or equivalently x(m), one needs to ensure the desired
ROC for the closest possible to x(m) codeword denoted as
x(n), in Figure 3 among all |M| codewords. It should be no-
ticed that one can also ensure the specified ROC taking into
account all codewords and their corresponding probabilities
of appearance according to the model (2) that will corre-
spond to the Bayessian framework. 1 However, to avoid
cumbersome integrations that reduces tractability, we will
follow the worst case approach. Alternatively, one can also
consider generalized maximum likelihood approach that is
tractable but not always optimal [9].
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Figure 3: Authentication setup for the codeword
space.

Therefore, we will reformulate the authentication problem
(1)-(2) as the hypothesis testing with two simple hypothesis,
i.e., H1 corresponds to the case that the item is authentic
and H0 to the faked one, for the genuine codeword x(m)
and its worst case counterpart x(n):

{

H0 : v ∼ p(v|H0) = p(v|x(n)),
H1 : v ∼ p(v|H1) = p(v|x(m)).

(3)

1We assume that the attacker has access to the codebook
and can choose the worst case counterpart to the codeword
x(m) from the codebook of the enrolled codewords. We also
assume that the designer of authentication system is aware
of such an attacking strategy.

One can use the Neyman-Pearson decision rule that max-
imizes the probability of correct acceptance PD subject to
the constraint PF ≤ α that can be formulated as the likeli-
hood ratio test:

Λ(v) =
p(v|H1)

p(v|H0)
≶ η, (4)

with the threshold η chosen to satisfy PF =
∫

Λ(v)>η
p(v|H0)dv

= α.
Besides we will seek for a secure solution that does not leak

any information to the counterfeiter. Therefore, the main
challenge is to provide reliable and secure authentication
based on the noisy observation v.

2.2 Authentication architectures
The considered authentication setup is generic and presents

the theoretical problem formulation for various biometric
and physical item authentication systems. However, the
need to store the entire codebook or database of all enrolled
objects raises numerous complexity, memory storage, pri-
vacy and security concerns as discussed above. Therefore,
modern authentication systems attempt to resolve these is-
sues using recent achievements in coding theory. Before
proceeding with the multimodal formulation and moving
on to the core of this paper, it is important to provide a
brief overview of state-of-the-art unimodal authentication
systems and briefly describe how our contribution can be
compared with the existing techniques. The existing uni-
modal authentication systems can be classified on two large
groups, i.e., those based on channel coding and those based
on source coding including distributed one.

The authentication system based on channel coding is
schematically shown in Figure 4. Such an architecture also
resembles the robust perceptual hashing and corresponding
identification architecture [10, 11]. The genuine data X is
supposed to be communicated via the channel, which con-
sists of an active counterfeiter and a passive discrete memo-
ryless channel (DMC) with the transition probability pV |X .
The counterfeiter is targeting to trick the authentication
protocol by replacing X by X′ keeping the same index m

used for the genuine object to get the confirmative deci-
sion at the authentication stage according to the attacking
strategies described in Section 2.1. The codeword X′ can
be considered in this sense as the worst case codeword to
X given index m maximizing PF . The index m is deduced
at the encoder from X enrolled with the rate RM such that
any X can be represented by 2NRM sequences X̂. Obviously,
to have lossless source representation, one needs to ensure
the condition RM ≥ H(X), where H(X) is the entropy of
X. However, at the same time the maximum number of
uniquely distinguishable sequences that can be communi-
cated via DMC pV |X is limited and determined by the iden-
tification capacity of this channel that is Cid = I(X; V ),
where I(X; V ) is a mutual information between X and V 2

[12]. Therefore, to have the unique match of the decoded
index m̂ and the communicated index m, one should pro-
vide the conditions of reliable communications determined
by RM ≤ Cid. This scheme is essentially based on the ex-
tension of classic cryptographic authentication techniques,

2Note, the difference with the communication capacity C =
maxpX (x) I(X; V ), i.e., the maximization is performed with
respect to the input distribution pX(x).



which use hashing. The only difference consists in the re-
placement of crypto-hash by a robust perceptual hash that
is insensitive to the certain variations in the data. A fun-
damental shortcoming of this protocol is the unavoidable
presence of collisions typical for hashing disregarding the
chosen rate RM due to the fact that in the most practically
important cases H(X) > Cid. In any case, the decoder is
uncapable to uniquely deduce the index m̂ due to the over-
lapping of the decoding regions. Additional essential draw-
backs of this architecture are relatively high rate RM to be
communicated, complexity of the decoder in the case of com-
pletely random codewords and the need for the database of
enrolled signals and decision regions that might be either
prohibitively large or represent the security leakage.
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Figure 4: Authentication architecture based on
channel coding (robust perceptual hashing).

The above drawbacks in part of collisions can be over-
came by a scheme based on the source coding. In the scope
of the source coding based authentication, the object index
is deduced at the enrollment stage based on the observed
data x. We assume here that the lossless coding is used,
where all sequences x of length N are generated from some
distribution pX(x). The encoder assigns the index m to
each sequence and sends it to the decoder with the rate
RX ≥ H(X), where H(X) is the entropy of X. At the au-
thentication stage, one should make a decision about the
item authenticity based on the observed vector v and the
index m. For this purpose, the decoder retrieves the se-
quence x̂(m) based on m, and the binary test produces the
final decision by generating the hypothesis H0, i.e., fake, or
H1, i.e., genuine. To reduce the rate for m, one can further
apply lossy source coding. In this case, m can be consid-
ered as a hash obtained with the corresponding randomized
codebook generation. However, this will cause well-known
collisions. To avoid this undesirable effect and exploit the
fact of v presence at the decoder that is correlated with the
genuine x(m), one can use distributed source coding based
on Slepian-Wolf framework [14]. This coding is based on
binning, where m is considered as a bin index. In this case
the rate can be reduced to RSW

X ≥ H(X|V ). Similar in
spirit approaches were firstly introduced by Maurer [15] and
Ahlswede and Csiszar [16], where the index m was consid-
ered as a helper data for common randomness extraction
considered to be x. Nevertheless, the above result applies
to the discrete-value vectors. In the case of continuous-value
vectors, one should apply first the quantization that will lead
to the distortions at the reconstruction of x̂ and the corre-
sponding collisions depending on the quantizer rate. More
generally, the lossy distributed source coding can be consid-
ered based on Wyner-Ziv framework [17] using the binning
similar to those used in the Slepian-Wolf coding with an
auxiliary random vectors U constructed from X according
to the mapping pU|X. In this case, the rate-distortion func-
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Figure 5: Authentication setup based on lossless
coding.

tion RWZ
X (D) is defined as:

R
WZ
X (D) = min

pU|X :E[dN (X,X̂)]≤D

I(X; U) − I(V ; U), (5)

where dN (., .) is the distortion measure between two vectors
and D is the distortion. For the Gaussian setup considered
in this paper, X ∼ (0, σ2

XIN ) and V ∼ (0, σ2
V IN ) the rate

(5) turns out to be:

R
WZ
X (D) =

{

1
2

log2

(

σ2

X (1−ρ2

XV )

D

)

, for D < σ2
X(1 − ρ2

XV ),

0, otherwise,

(6)

where ρ2
XV = E[XV ]

σXσV
is the correlation coefficient. The im-

pact of distortions introduced by the lossy source coding can
be considered as the equivalent noise in the reconstructed
sequence x̂ = x + z according to the model of test channel
from the rate-distortion theory [5] that can be taken into
account in the corresponding hypothesis H1. However, to
avoid the collisions and to simplify the consideration, one
can suppose that the rate RWZ

X (D) is chosen to be suffi-
ciently high to guarantee the low distortion D that allows
to assume that the distortions under both hypothesis H0

and H1 are the same.
The above framework was theoretically considered by Tyuls

et. al. [12] and Ignatenko and Willems [18] and practically
implemented by Martinian et. al. [19] and Lin et. al. [20]
using low-density parity check codes (LDPC) for the dis-
tributed coding.

The main idea is to avoid soft hypothesis testing by re-
placing it by the direct matching of hashes extracted from
the reconstructed data based on noisy measurements using
common randomness extraction framework. Two possible
schemes were considered in [12, 19, 20]. The first scheme

uses the index s, s = {1, 2, · · · , 2NI(X;V )}, where I(X; V )
denotes the mutual information between X and V , of the
sequence x in the bin m for the hashing (Figure 2.2,a) and
the second one is based on the hash computed from the orig-
inal x sequence (Figure 2.2,b). The necessity to introduce
extra side information is dictated by the need to distinguish
the sequences within the same bin m in the case when the
informed attacker might produce a fake that will be jointly
typical with v. This will lead to the false acceptance. Thus,
the hashed values of s or x aim protecting against such kind
of attack. Obviously, the rate of the hash in the second case
is higher. A common drawback of these schemes is unavoid-
able presence of collisions due to the hashing. Therefore, to
avoid it as well as to enable the usage of biometrics of the
same person in various applications, Ignatenko and Willems
[18] suggested the scheme based on XORring of index s with
the secret key k and its validation at the authentication stage
based on the decoded version ŝ (Figure 7).
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Figure 6: Authentication setup based on distributed
coding and hashing of: (a) sequence index s within
the bin m and (b) original sequence x.

At the same time, the practical implementation of the
above schemes was envisioned by the conversion of the con-
tinuous vectors to the discrete representations, e.g., extrac-
tion of minutia features [19], quantization of randomly pro-
jected data from non-overlapping blocks of size 16× 16 [20],
binarization of speckle images based on Gabor transform
subbands thresholding [18] and similar transformations pre-
dicted for optical and coated physical unclonable functions
[12]. All these transformations are not invertible and ob-
viously lead to the information loss due to data processing
inequality [5]. The quantitative estimation of such a loss
was not reported besides the results of computer modeling.
Moreover, the definition of security has also different notion
for the considered biometrics authentication systems [12, 18,
19] and physical item protection. In the biometric context,
it is assumed that both x and v can be only obtained from
the physical person and thus are unknown for the attacker.
Therefore, the security leakage sources were considered with
respect to the indexes m and s and the corresponding efforts
have been dedicated to protect the scheme from the direct
disclose of biometric data x that can be exploited by the at-
tacker for impersonation. In the item authentication appli-
cation, the data x is inherently present for the counterfeiter
and the security relies on the physical impossibility to repro-
duce the duplicate or clone that altogether with the index
m and any assisting data might be accepted as the authen-
tic item. Nevertheless, there are a number of crypto-based
attacks that can benefit from the disclosure of the coding
part of the authentication scheme to present a fake x′ with
the index m that can be falsely accepted.
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Figure 7: Authentication setup based on distributed
coding and sequence index s XORing, which identi-
fies the sequence x within the bin m.

Therefore, as the first step on the way toward the the-
oretical quantification of the loss due to the above feature
extraction and countermeasures related to the protection of
the codebook against impersonation attack, we will consider
the performance of a simple lossless source coding based au-
thentication presented in Figure 5 accompanied by a generic
random projection operator Φ shown in Figure 8. Such kind
of projection into a secure key-defined domain besides the
security insures the dimensionality reduction, complexity as
well as memory storage. The transform Φ produces vectors
x̃(m) and ṽ of dimensionality L, where L ≤ N . Addition-
ally, the transform can be chosen in such a way to guaran-
tee a certain robustness to the legitimate distortions. In the
rest, this protocol is similar to one from Figure 5.
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Figure 8: Authentication setup with random pro-
jections: Φ is the key-based random projection op-
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3. MULTIMODAL AUTHENTICATION AS
BINARY HYPOTHESIS TESTING

We will formulate the multimodal authentication prob-
lem shown in Figure 9 as the hypothesis testing with two
hypothesis H1 and H0 considered in Section 2.1, where H1

corresponds to the case that the object is authentic and
represented by a pair of multimodal vectors (x(m),y(m)) of
dimensions NX and NY , respectively, and H0 corresponds
to the case of non-authentic object represented by the worst
case counterpart pair (x(n),y(n)):

{

H0 : v = x(n) + zX , w = y(n) + zY ,

H1 : v = x(m) + zX , w = y(m) + zY ,
(7)

where zX and zY are the noise components in each modality
that can be more generally represented as:

{

H0 : p(v,w|H0) = p(v|H0)p(w|H0),
H1 : p(v,w|H1) = p(v|H1)p(w|H1),

(8)



with the assumption of independence between modalities X
and Y reflected by the product of the corresponding pdfs.
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Figure 9: Multimodal authentication architecture
based on source coding.

We will use the Neyman-Pearson decision rule that maxi-
mizes PD subject to the constraint PF ≤ α according to the
unimodal analog (4):

Λ(v,w) =
p(v,w|H1)

p(v,w|H0)
=

p(v|H1)p(w|H1)

p(v|H0)p(w|H0)
≶ η, (9)

with η such that PF =
∫

Λ(v,w)>η
p(v,w|H0)dvdw = α.

Under the Gaussian assumption about noise ZX ∼ N (0,

σ2
ZX

INX
) and ZY ∼ N (0, σ2

ZY
INY

) 3 and known signal pairs
(x(m),y(m)) and (x(n),y(n)), we have:

{

H0 : p(v,w|H0) = N (x(n), σ2
ZX

INX
)N (y(n), σ2

ZY
INY

),
H1 : p(v,w|H1) = N (x(m), σ2

ZX
INX

)N (y(m), σ2
ZY

INY
).

(10)
The test (9) can be reformulated by taking the logarithm

as:
[log p(v|H1) − log p(v|H0)]
+ [log p(w|H1) − log p(w|H0)] ≶ log η,

(11)

that can be reduced to the sufficient statistic t:

t(v,w) := 1
σ2

ZX

[

vT (x(m) − x(n)) − 1
2
(ǫX(m) − ǫX(n))

]

+ 1
σ2

ZY

[

wT (y(m) − y(n)) − 1
2
(ǫY (m) − ǫY (n))

]

≶ γ,

(12)
where γ = log η and ǫX(m) = xT (m)x(m) = ‖x(m)‖2,
ǫX(n) = ‖x(n)‖2, ǫY (m) = ‖y(m)‖2, ǫY (n) = ‖y(n)‖2 are
the energies of signals x(m), x(n), y(m) and y(n), respec-
tively, and the test t is characterized by:















H0 : T ∼ N

(

− 1
2

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

,
d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

,

H1 : T ∼ N

(

+ 1
2

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

,
d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

,

(13)
where d2

X = ‖x(m) − x(n)‖2 and d2
Y = ‖y(m) − y(n)‖2.

The probabilities of false acceptance PF and correct de-

3The selection of the Gaussian noise is explained by the
largest differential entropy (worst case conditions for the
authentication) among all distributions with the bounded
variance.

tection PD can be now found as:














































PF = Pr[T > γ|H0] = Q
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σ2
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+
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σ2

ZY

)

√

√

√

√
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X
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+
d2

Y

σ2
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,

PD = Pr[T > γ|H1] = Q









γ− 1

2

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

√

√

√

√

d2

X

σ2

ZX

+
d2

Y

σ2

ZY









.

(14)
To determine a threshold γ, we set PF = α, which yields:

γ =

√

d2
X

σ2
ZX

+
d2

Y

σ2
ZY

Q
−1(α) −

1

2

(

d2
X

σ2
ZX

+
d2

Y

σ2
ZY

)

, (15)

where Q(.) is the Q-function, that results in:

PD(α) = Q

(

Q
−1(α) −

√

d2
X

σ2
ZX

+
d2

Y

σ2
ZY

)

. (16)

Let ǭX = 1
2
(ǫX(m) + ǫX(n)) and ǭY = 1

2
(ǫY (m) + ǫY (n)),

which assume equals prior probabilities. Then:
d2

X = ‖x(m) − x(n)‖2 = 2ǭX(1 − κX),

d2
Y = ‖y(m) − y(n)‖2 = 2ǭY (1 − κY ),

(17)

where κX and κY are the coefficients such that |κX | ≤ 1
and |κY | ≤ 1 and defined as:

κX = xT (m)x(n)
1

2
(xT (m)x(m)+xT (n)x(n))

,

κY = yT (m)y(n)
1

2
(yT (m)y(m)+yT (n)y(n))

.
(18)

If κX = 0, xT (m)x(n) = 0 and κY = 0, yT (m)y(n) = 0 and
the corresponding pairs of vectors are orthogonal.

If we also assume that both pairs of signals have the same
energy, i.e., ǫX(m) = ǫX(n) = ǫX and ǫY (m) = ǫY (n) = ǫY

and κX = κY = 0, then:

PD(α) = Q
(

Q
−1(α) −

√

2(ξX + ξY )
)

, (19)

where ξX = ǫX

σ2

ZX

and ξY = ǫY

σ2

ZY

(we also define signal-to-

noise ratios SNRX = 10 log10 ξX and SNRY = 10 log10 ξY ).
The average probability of error is:

Pe = 1
2
PF + 1

2
(1 − PD)

= Q

(

1
2

√

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

= Q
(√

1
2

(ξX + ξY )
)

.
(20)

Therefore, the fusion of independent modalities is beneficial
in terms of increase of overall SNR.

We conclude our analysis by considering the bounds on
error probabilities for the generic distributions and particu-
lar Gaussian assumptions. For this reason, it is important to
establish the impact of modality fusion on the distribution
distances such as Chernoff distance.

We will define the Chernoff distance between two distri-
butions as:

Ds(p(v,w|H1), p(v,w|H0)) =

− log
∫

VNX

∫

WNY
p(v,w|H1)

(

p(v,w|H1)
p(v,w|H0)

)s

dvdw,

(21)

and its first derivative with respect to s as Ḋs(., .). For
the simplicity of notations, we redenote µ(s) = −Ds(p(v,

w|H1), p(v,w|H0)) and µ̇(s) = −Ḋs(p(v,w|H1), p(v,w|H0)).
The Chernoff distance provides an upper bound on both

the probability of false acceptance PF and probability of



miss PM = 1 − PD [21] 4:

{

PF ≤ eµ(s)−sµ̇(s),

PM ≤ eµ(s)+(1−s)µ̇(s),
(22)

for 0 ≤ s ≤ 1 and with η = µ̇(s). The fastest convergence
rate of the exponential terms is achieved for the optimal
selection of s.

For the average probability of error [21]:

Pe ≤
1

2
e

µ(sm)
, (23)

where sm is the value for which µ̇(s) = 0.
For the independent modalities, the Chernoff distance sat-

isfies the additivity property and reduces to:

Ds(p(v,w|H1), p(v,w|H0)) =
Ds(p(v|H1), p(v|H0)) + Ds(p(w|H1), p(w|H0)).

(24)

Therefore, similarly to the exact result for the Gaussian dis-
tributions the presence of the second modality increases the
convergence rate to zero. One can also extend these bounds
to the considered Gaussian case (10) for which:

µ(s) = s(s−1)
2

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

,

µ̇(s) = (2s−1)
2

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

,

(25)

which is maximized for s = sm = 0.5 and that results in:














PF ≤ e
− 1

8

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

= e−
1

4
(ξX+ξY ),

PM ≤ e
− 1

8

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

= e−
1

4
(ξX+ξY ),

(26)

and the average probability of error:

Pe ≤
1

2
e
− 1

8

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

=
1

2
e
− 1

4
(ξX+ξY )

. (27)

To show the link with the previous exact results, we will
demonstrate on the case of Pe (20) the link with the above
bounds. For this purpose, we will use the approximation for

large argument α of Q(α) ≈ 1√
2πα2

e−
α2

2 , which yields for

the exact Pe:

Pe ≈
1

√

π
2

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

e
− 1

8

(

d2

X

σ2

ZX

+
d2

Y

σ2

ZY

)

, (28)

that coincides up to the exponential term with (27).

4. AUTHENTICATION BASED ON RANDOM
PROJECTIONS

In this section, we will consider the impact of the di-
mensionality reduction on the performance according to the
setup shown in Figure 10.

4These bounds are general and applied to any distributions
and vector lengths. While this gives a precise exponential
rate for the convergence of these probabilities to zero, the
result can be improved using asymptotic integral expansion
technique for large N and independent components.
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Figure 10: Multimodal authentication architecture
based on source coding and random projections.

The main difference with respect to the previously con-
sidered setup consists in the usage of key-defined projection
operators Φx and Φy defined as:

x̃ = Φxx,

ỹ = Φyy,
(29)

where x ∈ R
NX , y ∈ R

NY , x̃ ∈ R
LX , ỹ ∈ R

LY , Φx ∈
R

LX×NX , Φy ∈ R
LY ×NY , LX ≤ NX and LY ≤ NY . We

assume that the matrices Φx and Φy are orthoprojectors for
which ΦxΦ

T
x = ILX

and ΦyΦ
T
y = ILY

.
The corresponding hypotheses (7) can be reformulated as:















H̃0 :
ṽ = Φx(x(n) + zX) = x̃(n) + z̃X ,

w̃ = Φy(y(n) + zY ) = ỹ(n) + z̃Y ,

H̃1 :
ṽ = Φx(x(m) + zX) = x̃(m) + z̃X ,

w̃ = Φy(y(m) + zY ) = ỹ(m) + z̃Y ,

(30)

that leads to the test:

Λ(ṽ, w̃) =
p(ṽ, w̃|H̃1)

p(ṽ, w̃|H̃0)
=

p(ṽ|H̃1)p(w̃|H̃1)

p(ṽ|H̃0)p(w̃|H̃0)
≶ η̃, (31)

with the distributions under hypothesis:

p(ṽ, w̃|H̃0) = N (x̃(n), σ2
ZX

Cx)N (ỹ(n), σ2
ZY

Cy),

p(ṽ, w̃|H̃1) = N (x̃(m), σ2
ZX

Cx)N (ỹ(m), σ2
ZY

Cy),
(32)

where Cx = ΦxΦ
T
x and Cy = ΦyΦ

T
y .

Similarly, one can deduce the sufficient statistic t̃:

t̃(ṽ, w̃) := 1
σ2

ZX

ṽT C−1
x (x̃(m) − x̃(n))

− 1
2σ2

ZX

(x̃T (m)C−1
x x̃(m) − x̃T (n)C−1

x x̃(n))

+ 1
σ2

ZY

w̃T (ỹ(m) − ỹ(n))

− 1
2σ2

ZY

(ỹT (m)C−1
y ỹ(m) − ỹT (n)C−1

y ỹ(n)) ≶ γ̃,

(33)

where γ̃ = log η̃, which is characterized by:















H̃0 : T̃ ∼ N

(

− 1
2

(

d̃2

X

σ2

ZX

+
d̃2

Y

σ2

ZY

)

,
d̃2

X

σ2

ZX

+
d̃2

Y

σ2

ZY

)

,

H̃1 : T̃ ∼ N

(

+ 1
2

(

d̃2

X

σ2

ZX

+
d̃2

Y

σ2

ZY

)

,
d̃2

X

σ2

ZX

+
d̃2

Y

σ2

ZY

)

,

(34)

where d̃2
X = (x(m) − x(n))T ΦT

xC−1
x Φx (x(m) − x(n)) and

d̃2
Y = (y(m) − y(n))T ΦT

yC−1
y Φy (y(m) − y(n)).

The probabilities of false acceptance PF and correct de-



tection PD can be now found as:














































P̃F = Pr[T̃ > γ̃|H̃0] = Q
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,

P̃D = Pr[T̃ > γ̃|H̃1] = Q









γ̃− 1

2

(

d̃2

X

σ2

ZX

+
d̃2

Y

σ2

ZY

)

√

√

√

√

d̃2

X
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ZX
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d̃2
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σ2
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.

(35)

Assuming P̃F = α, one obtains:

P̃D(α) = Q

(

Q
−1(α) −

√

d̃2
X

σ2
ZX

+
d̃2

Y

σ2
ZY

)

. (36)

Taking into account the condition of orthoprojection for
Φx and Φy one obtains Cx = ΦxΦ

T
x = ILX

, Cy = ΦyΦ
T
y =

ILY
and for the distances:

d̃2
X = (x(m) − x(n))T ΦT

xΦx (x(m) − x(n)) ,

= ‖Φx (x(m) − x(n))‖2
,

(37)

d̃2
Y = (y(m) − y(n))T ΦT

yΦy (y(m) − y(n)) ,

= ‖Φy (y(m) − y(n))‖2
.

(38)

To introduce the bounds on the distance d̃2 we will use the
results of Johnson-Lindenstrauss lemma [22], which states
that with high probability the geometry of a point cloud is
not disturbed by certain Lipschitz mappings onto a space of
dimension logarithmic in the number of points.

According to Jonhnson-Lindenstrauss result [22]:

(1 − ζ)
√

LX

NX
≤ ||Φxx||

||x|| ≤ (1 + ζ)
√

LX

NX
,

(1 − ζ)
√

LY

NY
≤

||Φyy||
||y|| ≤ (1 + ζ)

√

LY

NY
,

(39)

where 0 < ζ < 1 with high probability.
This allows to use the approximation for the random or-

thoprojectors Φx and Φy as:

(1 − ζ)
√

LX

NX
||x|| ≤ ||Φxx|| ≤ (1 + ζ)

√

LX

NX
||x||,

(1 − ζ)
√

LY

NY
||y|| ≤ ||Φyy|| ≤ (1 + ζ)

√

LY

NY
||y||.

(40)

Thus, with high probability one can approximate (36) as
follows:

P̃D(α) ≈ Q

(

Q
−1(α) −

√

LX

NX

d2
X

σ2
ZX

+
LY

NY

d2
Y

σ2
ZY

)

, (41)

that makes possible to estimate the corresponding loss with
respect to the equation (16). The random projections in-
troduce the loss in the distance between codewords propor-

tional to
√

LX

NX
and

√

LY

NY
for each modality, respectively.

Equivalently to (19) for the equiprobable orthogonal sig-
nals with the same energy, one can rewrite the above ap-
proximation as:

P̃D(α) = Q

(

Q
−1(α) −

√

2

(

LX

NX

ξX +
LY

NY

ξY

)

)

. (42)

Finally, the average probability of error computed for the
direct domain according to (20) can be found for the random
projections domain as:

P̃e = Q





√

√

√

√

1

2

(

ǫ̃X

σ2
ZX

+
ǫ̃Y

σ2
ZY

)



 , (43)

where ǫ̃X = ‖Φxx(m)‖2 = ‖Φxx(n)‖2 and ǫ̃Y = ‖Φyy(m)‖2 =
‖Φyy(n)‖2 with the approximation:

P̃e ≈ Q

(
√

1

2

(

LX

NX

ξX +
LY

NY

ξY

)

)

. (44)

It should be also pointed out that the random projections
reduce the information distances in the corresponding error
exponents due to the data processing inequality [5]:

Ds(p(ṽ, w̃|H̃1), p(ṽ, w̃|H̃0)) ≤ Ds(p(v,w|H1), p(v,w|H0)).
(45)

In particular, for the considered independent modalities:

Ds(p(ṽ, w̃|H̃1), p(ṽ, w̃|H̃0)) =

Ds(p(ṽ|H̃1), p(ṽ|H̃0)) + Ds(p(w̃|H̃1), p(w̃|H̃0)),
(46)

and for the Gaussian case (32) with the orthoprojectors Φx

and Φy, one can rewrite (25) as:

Ds(p(ṽ, w̃|H̃1), p(ṽ, w̃|H̃0)) = −
s(s − 1)

2

(

d̃2
X

σ2
ZX

+
d̃2

Y

σ2
ZY

)

.

(47)
Using the result of Jonhnson-Lindenstrauss (40):

Ds(p(ṽ, w̃|H̃1), p(ṽ, w̃|H̃0)) ≈

− s(s−1)
2

(

LX

NX

d2

X

σ2

ZX

+ LY

NY

d2

Y

σ2

ZY

)

.
(48)

This confirms the data processing inequality result (45) and
demonstrates the decease in the Chernoff distance due to
the random projections.

5. RESULTS OF COMPUTER SIMULATION
In this section we will demonstrate the main results: the

impact of additional possibly noisy modality on the perfor-
mance enhancement of authentication system in terms of
ROC; the impact of dimensionality reduction based on the
random projection and approximation accuracy of authen-
tication performance based on the random projection using
the Jonhnson-Lindenstrauss lemma.

The impact of the second modality Y on the performance
of authentication system based on the modality X is demon-
strated in Figures 11 for various PF without dimensionality
reduction. In all considered cases, the presence of noisy
modality Y increases PD. Contrarily, the impact of the sec-
ond modality reduces to zero as its SNRY → −∞. The
overall performance as the function of SNRX and SNRY

for the fixed PF = 10−5 is shown in Figure 12.
The impact of dimensionality reduction based on the ran-

dom projection and approximation accuracy was investi-
gated using both analytical formulas and Monte Carlo sim-
ulation for Gaussian data of lengths NX = NY = 3500. The
orthoprojectors Φx and Φy are generated from the inde-
pendent realizations of Gaussian random variables Φxi,j

∼

N (0, 1
NX

) and Φyi,j
∼ N (0, 1

NY
). The results of simulation

for the probability PD are shown in Figures 13 and 14. The
dimensionality reduction of modality X for the fixed length
of modality Y in the indicated ranges revealed the loss in
performance about 5 dB for both SNRY s. This loss is rela-
tive small price for the reduced complexity of processing and
memory storage as well as security/privacy enhancement.
Moreover, the random projection approximation based on
the Jonhnson-Lindenstrauss lemma demonstrates quite ac-
curate results and can be used for the estimation of per-
formance. Finally, as in the previous case, the presence of



the second modality with the positive SNR increased the
accuracy of authentication.

6. CONCLUSIONS
In this paper, we have investigated the impact of addi-

tional modality presence on the authentication performance
in terms of ROC and average probability of error. To avoid
the information loss, the authentication setup was based on
the raw data fusion. Even in the case of statistically in-
dependent modalities belonging to the same object, we ob-
served the reduction of the corresponding error probabilities
computed according to the exact formulas for the Gaussian
assumptions and generic error exponent bounds for any dis-
tributions. In the same line, we also investigated the impact
of dimensionality reduction performed using random ortho-
projectors and proposed the corresponding approximations
using the Jonhnson-Lindenstrauss lemma. It was estab-
lished that the orthoprojectors reduce the vector and dis-
tribution distances proportionally to the ratio of the vector
lengths after and before projection. These findings might be
of interest for the design of practical authentication systems.
In future, we plan to consider the security of the presented
setup and study possible attacks.
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Figure 11: Probability of correct detection PD for
PF equals (a) 10−5, (b) 10−10 and (c) 10−20 for LX

NX
=

LY

NY
= 1.
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Figure 12: Probability of correct detection PD:
LX

NX
= LY

NY
= 1, PF = 10−5.
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Figure 13: Probability of correct detection PD for
the fixed PF = 10−10 and various dimensionality X
reduction ratios with LY

NY
= 1 for: (a) SNRY = −10

dB and (b) SNRY = +10 dB. The lines with circles
show the corresponding approximations.
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Figure 14: Probability of correct detection PD for
the fixed PF = 10−10 and SNRY = −10 dB and LY

NY
=

1. The lines with circles show the corresponding
approximations.
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