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Abstract

Epidemic quorum systems enable highly available agreement even when a quorum is not
simultaneously connected, and are therefore very interesting for mobile networks. Although
recent work has proposed epidemic quorum algorithms, their properties and trade-offs are not
well studied. This paper sheds some light on less known aspects of epidemic quorum systems.
With simple counter-examples and combinatorial exercises, we contradict common misbeliefs
that are often associated with epidemic quorum systems. Our claims advocate the need for a
deeper study of these promising systems.

1 Introduction

Quorum systems are a basic tool for reliable agreement in distributed systems [PW95]. Their
applicability is wide, ranging from data replication protocols, distributed mutual exclusion, name
servers, selective dissemination of data, to distributed access control and signatures [AW96]. Clas-
sical quorum systems (CQS) require agreement on a value to be accepted by a quorum of live
processes, which are typically assumed to be simultaneously connected in the same network par-
tition. This is not adequate in weakly connected networks, e.g. mobile or sensor networks, where
connected quorums may be improbable.

Recent work [Kel99, HSAA03] has proposed epidemic quorum systems (EQS) to eliminate such
a shortcoming by allowing unconnected quorums. An EQS tries to ensure agreement by running
a finite number of elections. Intuitively, on each election, each process may vote for one proposed
value. By epidemic propagation of votes, eventually each process should be able to determine,
from its local state, whether the EQS has agreed on a given value w, or the current election is
inconclusive and, hence, a new one starts. EQSs, hence, seem a powerful tool for coordination in
mobile computing.

A common fallacy that may cross one’s mind is that EQSs behave similarly to CQSs; with
the superficial distinction that the former are better adapted to weakly connected environments
and the latter to strongly connected ones. In fact, the absence of any deep study, either empirical
or formal, of EQSs (to the best of our knowledge) may consistent with such a misbelief: after
all, if both approaches were fundamentally similar, then the extensive studies and results that are
available on CQSs [JM90, CW96, IK01, PW95, JM05] would also apply to the epidemic variant.

This paper exposes such a fallacy. Our contribution comprises a series of counter-examples and
simple exercises that unveil EQS-specific properties and trade-offs which related literature, to the
best of our knowledge, does not document. As corollaries:

1. We show that known, fundamental results for CQSs are not valid with EQSs.

2. We question the environments where EQSs are commonly assumed to be more appropriate
than classical quorums, and vice-versa. In particular, we argue that EQSs may not always
be advantageous over CQSs in mobile networks, while EQSs can outperform CQSs in high-
throughput agreement in strongly-connected environments.

3. We raise open questions that need to be answered before EQSs can be clearly understood.

Section 2 starts by describing epidemic quorum algorithms and coteries, clarifying some less
obvious, yet fundamental, aspects that distinguish EQSs from their classical counterpart. Departing
from such an analysis, Sections 3 to 6 draw and discuss individual, novel statements about the
nature of EQSs, which support our position. Section 7 concludes.
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2 Epidemic and Classical Quorum Systems

We consider a set of distributed processes in an asynchronous system. Processes may fail perma-
nently. Failures are non-byzantine. Transient network partitions may also occur, for instance due
to mobility, restricting communication to processes inside the same partition.

The distributed processes wish to agree on a single value, taken from a set of values, proposed
during the agreement process. For an easier comparison between CQSs and EQSs, we use the
voting metaphor to describe both systems. A quorum algorithm tries to agree on a single value by
having each process vote for a proposed value. Roughly speaking, the algorithm reaches agreement
when it is sure that the system has reached a safe configuration of votes. A coterie defines the set
of such configurations. As we clarify next, the notion of coterie is different from CQSs to EQSs.
The corresponding quorum algorithms are different, too.

We begin with the classical case. A classical coterie is a set of sets of processes (quorums),
Q1, ..Qm, such that, for all Qi and Qj , Qi ∩ Qj 6= ø (intersection property).1 In a CQS, a process
proposing a value tries to make a quorum of processes vote for its value. Such a step must complete
atomically. A common solution is to employ an atomic commit protocol, such as two-phase commit
(2PC), for quorum obtention (e.g. [Gif79]). Taking the example of 2PC, a coordinator (typically
the process proposing the value) requests each other accessible process to vote for the value (or
pre-commit). While having a vote cast (i.e., pre-committed), a process cannot vote for any other
value. Once the coordinator has obtained a quorum of processes that voted for its value, it then
requests each of them commit, hence deciding the value. If, otherwise, the coordinator is not able
to obtain a quorum of votes, it may, at any time, request the processes voting for its value to abort.
Upon abort, a process withdraws its vote and regains the right to vote for any value.

EQSs adopt a radically different strategy to obtain a quorum. Here, processes are no longer
allowed to withdraw votes. Such a restriction has important consequences. A coordinator is no
longer required. Instead, the proposer process votes for its value and propagates information about
such a vote to other processes. Upon receiving vote information about a proposed value, a process
that has not yet voted in the current election casts its vote for the value. Therefore, votes flow
epidemically, and the election decision is taken in a purely decentralized manner. Each process
inspects its local voting knowledge and determines if a vote configuration in the coterie has already
been reached (see below), in which case a value is decided. It may also occur that a process
determines that no configuration in the coterie may ever be reached, even after the missing votes
arrive; in such a case, the process regards the current election as indecisive and starts a new one.

Epidemic coteries (ECs), in contrast to classical coteries, may not only take the set of voters
for a given value (the quorum) into account, but also the set of voters for the competing values
(the anti-quorums2). The reason for this is the impossibility of vote withdrawal. Note that, in
contrast, the coordinator of a CQS, when inspecting its vote knowledge, cannot reason about the
known votes for other values, as those votes may change at any time.

We have proposed a formal definition (and proven it safe), which is out the scope of this paper,
in [BF07]. We instead give an intuitive description. Each configuration of votes in an EC includes
a quorum and a set of anti-quorums. We say that a given vote configuration in the EC has been
reached once its quorum has voted for a value; while all the anti-quorums of the vote configuration
have each voted for a distinct value.

Intuitively, the condition that determines which vote configurations may co-exist in an EC
ensures the following. Consider that, given a set of votes, a vote configuration whose quorum votes
for a value w is reached. No arbitrary assignment of the missing votes may reach another vote
configuration whose quorum votes for a value other than w. This ensures the safety of deciding w.
(Note that other vote configurations may be reached, as long as their quorums vote for w.)

1For simplicity, and without loss of generality, we omit the minimality property from coterie definitions.
2The expression is due to Holliday et al [HSAA03]
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Quorum Anti-Quorums

p1, p2, p3

p1, p2, p4

p1, p2, p5

p1, p3, p4

p1, p3, p5

p1, p4, p5

p2, p3, p4

p2, p3, p5

p2, p4, p5

p3, p4, p5

Quorum Anti-Quorums

p1, p2 {p3}, {p4}
p1, p2 {p3}, {p5}
p1, p2 {p4}, {p5}

p1, p3 {p2}, {p4}
p1, p3 {p2}, {p5}
p1, p3 {p4}, {p5}

p1, p4 {p2}, {p3}
p1, p4 {p2}, {p5}
p1, p4 {p3}, {p5}

p1, p5 {p2}, {p3}
p1, p5 {p2}, {p4}
p1, p5 {p3}, {p4}

Quorum Anti-Quorums

p2, p3 {p1}, {p4, p5}
p2, p3 {p1}, {p4}, {, p5}

p2, p4 {p1}, {p3, p5}
p2, p4 {p1}, {p3}, {, p5}

p2, p5 {p1}, {p3, p4}
p2, p5 {p1}, {p3}, {, p4}

p3, p4 {p1}, {p2}, {, p5}

p3, p5 {p1}, {p2}, {, p4}

p4, p5 {p1}, {p2}, {, p3}

p1 {p2}, {p3}, {, p4}, {, p5}

Figure 1: The plurality EC, EPlur.

We exemplify with the plurality EC used by the Deno system [Kel99], which we denote EPlur.
Essentially, plurality determines that a value w is decided when, for each (possibly unknown) rival
value, x, either (a) w is guaranteed to have more votes than those that x may potentially acquire
(with the missing votes); or (b) w is guaranteed to have as many votes as those x may potentially
acquire and a process p that has voted for w has a lower identifier than any of the processes that
may potentially vote for x.

For a system of five processes, Figure 1 enumerates (the minimal) EPlur. To illustrate the safety
of EPlur, assume that a given process is aware that a value x has votes from p1 and p2, value
y has votes from p3 and value z has votes from p4. Clearly, such votes reach vote configuration
〈{p1, p2}|{p3}, {p4}〉, where x is voted by the quorum; hence, the process decides x. If either y or
z obtain the missing vote (from p5) no other configuration where a quorum votes for either y or z
will be reached – this condition ensures that any other process will eventually decide x.

The universe of ECs is larger than the classical one. On the one hand, the former includes
coteries to which CQSs cannot resort to. On the other hand, it is easy to prove that the intersection
property is stronger than the condition for ECs [BF07]. Hence, any classical coterie may also be
used by an EQS, as proposed in [HSAA03]. We designate the EC that directly results from a
classical coterie as the latter’s epidemic-equivalent.

As a final remark before the next sections, it may be helpful to look at EQSs from the perspective
of CQSs. EQSs may be regarded as an enhanced variant of a CQS using One-Phase Commit. In the
absence of faults, a CQS based on 1PC can decide in one round and cannot abort (i.e., withdraw
votes), similarly to EQSs. The advantage of EQSs is the ability to exploit the impossibility of vote
withdrawal, and hence use a wider universe of coteries, with both quorums and anti-quorums.

3 EQSs aren’t always better in mobile networks

CQSs are normally regarded as working in partition-free conditions. However, saying that CQSs
may only decide when the quorum is simultaneously connected is not entirely true. The precise
requirement, in fact, is that, at each phase of the vote obtention stage (e.g. via 2PC), each single
process in the quorum be accessible to the coordinator at some moment. Simultaneous availability
of the quorum as a whole is not necessary. Temporary inaccessibility of any of the processes involved
may indeed happen, with the sole consequence of delaying agreement.

Having observed that, in fact, both options are valid for transiently-partitioned networks, which
one is the best choice? The answer depends on an important trade-off between two distinctive
advantages of each approach. On the one hand, EQSs are truly decentralized, while CQSs base
agreement on interactions with the coordinator. Hence, should the coordinator become inaccessible
from a quorum that has already completed the first 2PC phase, then agreement on any value will
always halt until the coordinator becomes accessible again. That is not the case with EQSs,
where agreement may (although possibly not always) complete in spite of the inaccessibility of any
individual process.
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On the other hand, multiple proposed values, along with the inaccessibility of one or more
processes, may prevent EQSs from deciding in situations where CQSs do decide. This is a direct
consequence of the possibility of vote withdrawal in a CQS and of the corresponding impossibility
on the epidemic side. We illustrate this with an example. Consider a partition that holds 4 of the
5 processes of the system. Let us compare a CQS and an EQS, both using majority coteries (i.e.
a value must obtain 3 votes to be decided). Assume that two values, x and y, have been proposed
and each has obtained 2 votes so far. In this situation, the vote that is missing for a majority of
either proposal is held by the process outside the partition. In fact, the EQS would wait for such a
process to become accessible again, even if that takes a long time or if the process is permanently
failed. We call this situation a tied indecision.

In the classical approach, however, a given coordinator (e.g. x’s proposer) may decide, for
instance once a reasonable timeout expires, to withdraw the votes for x. Having withdrawn such
votes, the coordinator of y may now obtain the missing vote from the free processes, and decide y.

Summing up, the fully decentralized nature of EQSs removes the need for a distinguished coor-
dinator process (per value proposed) with relatively good connectivity to the remaining processes.
However, should processes with such connectivity conditions exist, tied indecisions may cause EQSs
to halt (possibly forever) when CQSs will not. In mobile networks where a subset of processes has
a sufficiently high probability of having contact with the remaining processes, even if such contacts
are interleaved with periods of lack of connectivity, the classical approach may indeed perform bet-
ter. Both in terms of time to decide and availability. Without a precise analysis of both approaches,
the boundary between the scenarios where each approach is more appropriate remains unclear.

4 Coterie inclusion does not necessarily mean lower availability

It is a known result that, given two classical coteries, C1 and C2, such that C1 ⊂ C2, a CQS
using C1 will have a lower availability than one using C2 [PW95]. As an example, C1 might be
the classical coterie that includes the quorums with more than 65% of processes, while C2 is the
classical majority coterie. It is intuitive that a system using C2 will decide more frequently, as not
only will it obtain a quorum in the same situations as C1, but as well in others.

Perhaps surprisingly, the same reasoning may no longer be valid in the context of EQSs. As
before, an EC, E2, that is a superset of another, E1, will have a superset of opportunities to decide.
However, in the epidemic case, a new phenomenon comes into play, which increases availability as
ECs become smaller.

We illustrate it with the following example. Consider a system of 10 processes in a single
partition, two of which have permanently failed. Further, assume values x and y have been proposed
and each one one has obtained four votes. If we consider an EQS using the epidemic-equivalent
of the majority coterie, then the system is in a tied indecision. Since the missing votes still allow
both candidates to obtain a majority, the system has no choice but to wait (in this case, forever).

Now, consider that the system was, instead, using the epidemic-equivalent of the smaller coterie,
C1 (quorums with more than 65% of processes). In the previous situation, the EQS would then
determine that neither x nor y would ever obtain more than 65% votes from the missing processes.
Hence, the tied indecision would no longer hold. Instead of halting, the EQS can safely conclude
that the current election is indecisive and start a new election. Possibly, a different vote distribution
of the new election would then decide one of the values.

The example above exposes an inherent trade-off of EQSs that is not present in CQSs. On
the one hand, larger ECs leverage availability by increasing the probability of deciding in a single
election. On the other hand, smaller ECs contribute to a higher availability by preventing tied
indecisions (thus repeating indecisive elections). To the best of our knowledge, the previous trade-
off is neither documented nor studied in literature. Precisely determining the total availability that
results from both vectors is a non trivial question that remains open.
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Failure Probability (f)

A
va
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bi

lit
y

0 0 0 0,1111 0,4815 1

0 0 0 0 0 0

0 0 0 0,1111 0,3333 0,6296

0 0 0 0 0 0,3704

0 1 2 3 4 5

decPlur(n)
repPlur(n)

decMaj(n)
repMaj(n)

n=

0 0 0 0,0625 0,3906 1

0 0 0 0 0 0

0 0 0 0,0625 0,2031 0,4141

0 0 0 0 0,0938 0,5859

0 1 2 3 4 5

decPlur(n)
repPlur(n)

decMaj(n)
repMaj(n)

n=

0 0 0 0,04 0,328 1

0 0 0 0 0 0

0 0 0 0,04 0,136 0,2896

0 0 0 0 0,192 0,7104

0 1 2 3 4 5

decPlur(n)
repPlur(n)

decMaj(n)
repMaj(n)

Plurality (3 proposals)

Majority (3 proposals)

Plurality (4 proposals)

Majority (4 proposals)

Plurality (5 proposals)

Majority (5 proposals)
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Figure 2: Availability of EMaj and EPlur in a system with five processes.

5 Optimal classical coteries do not necessarily produce optimal

epidemic coteries

One might be tempted to believe that the epidemic-equivalent of the optimal classical coterie under
a given system model is also the optimal EC. This section contradicts such an hypothesis with a
simple combinatorial exercise. We analyze a system of five processes, p1, p2, p3, p4 and p5, all in
a single partition, with a uniform process failure probability f < 0.5. It is well known that the
optimal classical coterie in this case is the majority coterie [PW95].

Let us denote the epidemic-equivalent of the majority coterie by EMaj . EMaj comprises all the
vote configurations with majority quorums (and no anti-quorums). It is easy to show that EMaj is
a subset of EPlur; it consists of the leftmost column of configurations in Figure 1.

Let us now try to determine the availability of EMaj , i.e. the probability that an EQS using
EMaj eventually decides. At each election, an EQS using EMaj in a single partition model with n
correct processes will either (a) decide a value, with probability decEMaj

(n); (b) determine that the
current election is indecisive and start a new one, with probability repE(n); or (c) halt. The values
of decEMaj

(n) and repEMaj
(n) may be obtained by simple combinatorics, depending on the number

of proposed values. Figure 2 presents such probabilities for 3, 4 and 5 values proposed, along with
the resulting availability (1) of EMaj . (We omit the cases of 0, 1 and 2 values proposed since both
ECs behave identically in such conditions.)

Therefore, for each n = 1..5, the probability of an eventual decision corresponds to the probabil-
ity of any finite (possibly empty) sequence of indecisive elections, followed by one decisive election.
Such a probability is the sum of a geometric series, given by decEMaj

(n)
∑

∞

i=0(repEMaj
(n))i =

(decEMaj
(n))/(1 − repEMaj

(n)). Since the probability of having exactly n correct processes (out of

five) is (5n)(1 − f)n f (5−n), then the availability of EMaj is given by:

5
∑

n=0

(

5
n

)

(1 − f)n f (5−n)decEMaj
(n)

1 − repEMaj
(n)

(1)

As an alternative to EMaj , consider the plurality EC, EPlur. Obtaining the availability of an
EQS running EPlur is simpler than for EMaj , since indecisive elections never occur in EPlur (as
repEPlur

(n) is always null). In other words, EPlur either decides in the first election or halts.
Again, by simple combinatorics, we present decEPlur

(n) and the availability obtained by (1)
in Figure 2. A comparison of availability of both ECs shows that, for a system of 5 processes,
EPlur always achieves a higher availability (for 0 ≤ f < 0.5). Hence, EMaj is not the optimal EC
in a single partition model. This evidence raises, of course, the question of whether EPlur is the
optimal epidemic coterie or not; not only in the single partition model, but also in other models.
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6 EQSs may outperform CQSs also in partition-free settings

EQSs have been proposed as a solution to provide higher availability in frequently partitioned en-
vironments such as mobile networks. However, a careful look at EQSs shows that, under certain
circumstances, EQSs are also able to decide faster than CQSs. Most importantly, such circum-
stances include also partition-free settings such as fixed networks.

Consider an EQS using the epidemic majority coterie and a CQS using the classical majority
coterie. Further, assume a situation of no contention (i.e. a single value is proposed) where a
majority of processes is accessible. In an EQS, the process proposing the single value will have
round of contacts with the quorum processes. After such a single round, the proposer will know
that a quorum has voted for the value and will, thus, decide the value. In contrast, the CQS
requires a number of rounds equal to the number of phases of the corresponding vote obtention
protocol (for instance, two with 2PC).

The above argument suggests that the scope of EQSs is wider than the domain of mobile
networks, and therefore one should also consider employing EQSs in strongly-connected networks.
Provided that the probability of contention is low, as happens with many distributed systems that
resort to quorum systems (e.g. write sharing is rare in replicated file systems [LS90]), EQSs are a
faster alternative than CQSs in such networks. Should contention be sufficiently frequent, then the
possibility of tied indecisions can be too high as a penalty, and the choice should return to CQSs.

7 Concluding Remarks

Although recent work has proposed EQSs, they are neither well defined nor well studied. We have
shown evidence of previously undocumented properties and trade-offs that are inherent of EQSs and
are not observable in their classical counterpart. We believe our claims call for a deeper analysis of
this promising field of distributed computing and, in particular, mobile computing. Addressing the
open questions that our discussion exposes is a first step in that direction. Namely, (1) under which
conditions are EQSs effectively advantageous over CQSs; and (2) which are the optimal ECs.
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