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A number of languages have been developed for specifying XML publishing, i.e., transformations
of relational data into XML trees. These languages generally describe the behaviors of a middle-

ware controller that builds an output tree iteratively, issuing queries to a relational source and
expanding the tree with the query results at each step. To study the complexity and expressive
power of XML publishing languages, this paper proposes a notion of publishing transducers which
generate XML trees from relational data. We study a variety of publishing transducers based on
what relational queries a transducer can issue, what temporary stores a transducer can use during
tree generation, and whether or not some tree nodes are allowed to be virtual, i.e., excluded from
the output tree. We first show how existing XML publishing languages can be characterized by
such transducers, and thus provide a synergy between theory and practice. We then study the
membership, emptiness and equivalence problems for various classes of transducers. We establish
lower and upper bounds, all matching, ranging from ptime to undecidable. Finally, we investigate
the expressive power of these transducers and existing languages. We show that when treated
as relational query languages, different classes of transducers capture either complexity classes
(e.g., pspace) or fragments of datalog (e.g., linear datalog). For tree generation, we establish
connections between publishing transducers and logical transductions, among other things.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases—
Data translation; H.1.m [Information Systems]: Models and Principles—View definition lan-

guages

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: XML publishing, data exchange, transducer, complexity,
expressiveness
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Fig. 1. Example XML publishing

1. INTRODUCTION

To exchange data residing in relational databases, one typically needs to export
the data as XML documents. This is referred to as XML publishing in the litera-
ture [Alon et al. 2003; Benedikt et al. 2002; Fernandez et al. 2002; Krishnamurthy
et al. 2003; Shanmugasundaram et al. 2001], and is essentially to define an XML

view for relational data: given a relational schema R, it is to define a mapping τ
such that for any instance I of R, τ(I) is an XML tree.

A number of languages have been developed for XML publishing, including com-
mercial products such as annotated xsd of Microsoft SQL Server 2005 [Microsoft
2005], dad of IBM DB2 XML Extender [IBM ], dbms xmlgen of Oracle 10g XML DB

[Oracle ], and research prototypes XPERANTO [Shanmugasundaram et al. 2001],
TreeQL [Fernandez et al. 2002; Alon et al. 2003] and ATG [Benedikt et al. 2002;
Bohannon et al. 2004]. These languages typically specify the behaviors of a middle-
ware controller with a limited query interface to relational sources. An XML view
defined in such a language builds an output tree top-down starting from the root:
at each node it issues queries to a relational source, generates the children of the
node using the query results, and iteratively expands the subtrees of those children
in the same way. It may (implicitly) store intermediate query results in registers
and pass the information downward to control subtree generation [Alon et al. 2003;
Benedikt et al. 2002]. It may also allow virtual nodes that are “temporary”,i.e.,
they are eliminated from the final output tree. The usefulness of virtual nodes for
XML publishing is illustrated in [Alon et al. 2003] and [Benedikt et al. 2002].

Just like relational view definition languages, associated with XML publishing
languages are a number of fundamental questions in connection with their com-
plexity and expressiveness. These questions are not only of theoretical interest,
but are also important in practice to both users and designers of XML publishing
languages. Given a variety of XML publishing languages, a user may naturally ask
which language should be used to define an XML view. Is the view expressible in
one language but not in another? How expensive is it to compute views defined in
a language? Furthermore, after the view is defined, is it possible to determine, at
compile time, whether or not the view always yields an empty tree? Is this view
equivalent to another view? To support recursively-defined XML views in a publish-
ing language, database vendors may want to know whether or not certain high-end
DBMS features are a must: is it necessary to upgrade the DBMS to support linear
recursion of SQL’99 [Melton and Simon 1993]?

Example 1.1: Consider a registrar database I0 of a relational schema R0 consisting
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of course(cno, title, dept), and prereq(cno1,cno2) (with keys underlined). The
database maintains a course relation and a relation prereq, in which a tuple (c1, c2)
indicates that c2 is an immediate prerequisite of c1. That is, relation prereq gives
the prerequisite hierarchy of the courses. The registrar office wants to export two
XML views:

—XML view τ1 contains the list of all the cs courses extracted from the database
I0. Under each course are the cno (number) and title of the course, as well as its
prerequisite hierarchy. As shown in Fig. 1(a), the depth of the course sub-tree is
determined by its prerequisite hierarchy.

—View τ2 is a tree of depth three, listing all the cs courses as depicted in Fig. 1(b).
Below each course c is a prereq child, followed by the cno and title of c; under
prereq is the list of all the cno’s that appear in the prerequisite hierarchy of c.

The user may ask the questions mentioned above regarding these XML views. As
will be seen shortly, not all commercial languages are capable of expressing these
views due to the recursive nature of the prerequisite hierarchy.

—XML view τ3 is a tree of depth two, listing all the courses extracted from the
database I0 that do not have db as its immediate prerequisite. Under each
course element, its cno and title are listed.

We will see that most commercial languages can express this view. 2

Answering these questions calls for a full treatment of the expressive power and
complexity of XML publishing languages. The increasing demand for data exchange
and XML publishing highlights the need for this study. Indeed, this is not only im-
portant to the users by providing guidance for how to choose a publishing language,
but is also useful for database vendors in developing the next-generation XML pub-
lishing languages. Despite their importance, to our knowledge no previous work
has investigated these issues.

Publishing transducers. To examine the complexity and expressiveness of XML

publishing languages on a comparative basis, we need a uniform formalism to char-
acterize these languages. To this end, we introduce a formalism of transducers,
referred to as publishing transducers. A publishing transducer is a top-down trans-
ducer that simultaneously issues queries to a relational source, keeps intermediate
results in its local stores (registers) associated with each node, and iteratively ex-
pands XML trees by using the extracted data. As opposed to automata for querying
XML data [Neven 2002], it generates a new XML tree rather than evaluating a query
on an existing tree. In order to encompass publishing languages used in practice,
we parameterize publishing transducers using the following parameters:

—L (logic): the relational query language in which queries on relational data are
expressed; we consider conjunctive queries (CQ), first-order queries (FO), and
(inflationary) fixpoint queries (IFP), all with ‘=’ and ‘6=’;

—S (store): registers that keep intermediate results; we consider transducers in
which each register stores a finite relation versus those that store a single tuple;

—O (output): the types of tree nodes; in addition to normal nodes that remain
in the output tree, we may allow virtual nodes that will be removed from the
output. We study transducers that only produce normal nodes versus those that
may also allow virtual nodes.
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We denote by PT(L, S,O) various classes of publishing transducers, where L, S,O
are logic, store and output parameters as specified above. As we will see later,
different combinations of these parameters yield a spectrum of transducers with
quite different expressive power and complexity.

Main results. We present a comprehensive picture of the complexity and expres-
siveness for all classes PT(L, S,O) as well as for existing XML publishing languages.

Characterization of existing XML publishing languages. We examine several com-
mercial languages and research proposals, and show that each of these languages
can be embedded in some class of publishing transducers. For example, annotated
xsd of Microsoft [Microsoft 2005] is a class of “nonrecursive” PT(CQ, tuple, nor-
mal), the for-xml constructs of Microsoft [Microsoft 2005] correspond to a class
of nonrecursive PT(FO, tuple,normal), dbms xmlgen of Oracle [Oracle ] can be
expressed in PT(IFP, tuple, normal), and sql/xml of IBM [IBM ] is a class of
nonrecursive PT(IFP, tuple, normal). Moreover, relation stores and virtual nodes
are needed to characterize TreeQL [Fernandez et al. 2002; Alon et al. 2003] and
ATG [Benedikt et al. 2002; Bohannon et al. 2004]. Conversely, for many classes
PT(L, S,O) there are existing publishing languages corresponding to them. For a
few there are no corresponding commercial systems. For example, no commercial
language corresponds to PT(IFP, relation, virtual). Our results, however, show that
this class does not increase the expressive power over PT(FO, relation, virtual), and
for the latter a running prototype system [Benedikt et al. 2002] has already been
in place.

Static analysis. We investigate classical decision problems associated with trans-
ducers: the membership, emptiness and equivalence problems. The analyses of
these problems may tell a user, at compile time, whether or not a publishing trans-
ducer can generate a non-empty XML tree (emptiness), whether an XML tree of
particular interest can be generated by a publishing transducer (membership), and
whether a more efficient publishing transducer can in fact generate the same set
of XML trees as an expensive one (equivalence). We establish matching lower and
upper bounds for all these problems, ranging from ptime to undecidable, for all
the classes PT(L, S,O) and for the special cases that contain publishing languages
being used in practice. We also provide data complexity for evaluating various
publishing transducers.

Expressive power. We characterize the expressiveness of publishing transducers in
terms of both relational query languages and logical transducers for tree generation.

We first treat a publishing transducer as a relational query that, on an input
relational database, evaluates to a relation which is the union of the registers as-
sociated to nodes of the output tree with a designated label. We show that each
class PT(L, S,O) captures either a complexity class or a fragment of a well-studied
relational query language, except one for which we leave the characterization open.
For example, the largest class PT(IFP, relation, virtual) captures pspace and the
smallest PT(CQ, tuple, normal) captures linear datalog (see, e.g., [Grädel 1992]).
Along the same lines we characterize the existing publishing languages. For ex-
ample, we show that sql/xml of IBM [IBM ] is in FO and annotated xsd of
Microsoft [Microsoft 2005] is in union of CQ queries.
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For tree generation, we establish connections between certain fragments of PT(L,
S,O) and logical interpretations [Flum and Ebbinghaus 1999] or logical transduc-
tions [Courcelle 1994]. For example, we show that PT(L, tuple, virtual) contain
the L-transducers for L ranging over CQ, FO and IFP, and that regular unranked
tree languages are contained in PT(FO, tuple, normal) but not in PT(CQ, rela-
tion, virtual). Furthermore, we show the ability and inability of certain fragments
of PT(L, S,O) for defining DTDs and specialized DTDs of [Papakonstantinou and
Vianu 2000], and as a result, regular tree languages and MSO definable trees.

In both settings we also provide separation and equivalence results for various
classes of publishing transducers. For example, we show that PT(IFP, relation, nor-
mal) and PT(FO, relation, normal) are equivalent in the relational setting, whereas
for tree generation, PT(FO, relation, normal) is properly contained in PT(IFP, re-
lation, normal) but in contrast, PT(FO, relation, virtual) and PT(IFP, relation,
virtual) have the same expressive power.

To our knowledge, this work is the first to provide a general theoretical framework
to study the expressive power and complexity of XML publishing languages. A vari-
ety of techniques are used to prove the results, including finite model constructions,
indefinite order databases, and a wide range of simulations and reductions.

Related work. As remarked earlier, a number of XML publishing languages have
been proposed (see [Krishnamurthy et al. 2003] for a survey). However, the com-
plexity and expressiveness of these languages have not been studied. There has also
been recent work on data exchange, e.g., [Arenas and Libkin 2005; Fagin et al. 2005].
This work differs from that lines of work in that we focus on (a) transformations
from relational data to XML defined in terms of transducers with embedded rela-
tional queries, not relation-to-relation [Fagin et al. 2005] or XML-to-XML [Arenas
and Libkin 2005] mappings derived from source-to-target constraints, and (b) com-
plexity and expressiveness analyses instead of consistent query answering.

A variety of tree automata and transducers have been developed (see [Gécseg
and Steinby 1996] for a survey), some particularly for XML (e.g., [Ludäscher et al.
2002; Milo et al. 2003; Neven 2002; Neven and Schwentick 2002]). As remarked
earlier, tree recognizers [Gécseg and Steinby 1996] and the automata for querying
XML [Neven 2002; Neven and Schwentick 2002] operate on an existing tree, and
either accept the tree or select a set of nodes from the tree. In contrast, a publishing
transducer does not take a tree as input; instead, it builds a new tree by extracting
data from a relational source. While the k-pebble transducers of [Milo et al. 2003]
return an XML tree as output, they also operate on an input XML tree rather
than a relational database, and cannot handle data values. Similarly, an xsm
of [Ludäscher et al. 2002] takes XML data streams as input and produces one or
more XML streams. Furthermore, the expressive power and complexity of these
XML transducers have not been studied.

There has been a host of work on the expressive power and complexity of re-
lational query languages (and therefore, relational view definition languages; see,
e.g., [Abiteboul et al. 1995; Dantsin et al. 2001] for surveys). While those results
are not directly applicable to publishing transducers, some of our results are proved
by capitalizing on related results on relational query languages.

Logical interpretations or transductions define a mapping from structures to
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structures through a collection of formulas (see e.g., [Courcelle 1994] for a sur-
vey of graph transductions). Recently logical tree-to-tree interpretations are used
in [Benedikt and Koch 2006] to characterize XQuery. We employ transductions to
characterize the tree generating power of publishing transducers.

This paper is an extension of earlier work [Fan et al. 2007] by including (a) proofs
for all the theorems; some of the proofs are nontrivial and the techniques are inter-
esting in their own right; (b) matching lower bounds for the equivalence problem for
two nonrecursive classes of publishing transducers (Section 5); and (c) more detailed
discussions of XML publishing languages being used in practice (Section 4).

Organization. Section 2 reviews XML trees. Section 3 defines publishing trans-
ducers. Section 4 characterizes existing XML publishing languages in terms of these
transducers. Section 5 studies decision problems for a variety of publishing trans-
ducers and existing languages, and Section 6 investigates their expressive power.
Section 7 summarizes our main results and outlines future research directions. Due
to the space limitations some of the proofs are moved to the electronic appendix.

2. XML TREES WITH LOCAL STORAGE

We first review XML trees and then introduce a notion of trees with registers. We
also review relational query languages considered in this paper.

XML trees. An XML document is typically modeled as a node-labeled tree.
Assume a finite alphabet Σ of tags . A tree domain dom is a subset of IN∗ such that
for any v ∈ IN∗ and i ∈ IN, if v.i is in dom then so is v, and in addition, if i > 1
then v.(i−1) is also in dom. A Σ-tree t is defined to be (dom(t), lab), where dom(t)
is a tree domain, and lab is a function from dom(t) to Σ.

Intuitively, dom(t) is the set of the nodes in t, while the empty string ε represents
the root of t, denoted by root(t). Each node v ∈ dom(t) is labeled by the function
lab with a tag a of Σ, called an a-element . Moreover, v has a (possibly empty) list
of elements as its children, denoted by children(v). Here v.i ∈ dom(t) is the i-th
child of v, and v is called the parent of v.i. Note that t is unranked , i.e., there is
no fixed bound on the number of children of a node in t.

In particular we assume that Σ contains a special root tag, denoted by r unless
specified otherwise, such that lab(ε) = r and moreover, for any v ∈ dom(t), lab(v) 6=
r if v 6= ε. To simplify the discussion we also assume a special tag, text, in Σ. Only
leaf nodes can be labeled with text; they carry a string (pcdata) and are referred
to as a text nodes. A node can have both text and non-text nodes as children.

Trees with local storage. We study Σ-trees generated from relational data, in a
context-dependent fashion. To do this one needs to pass information top-down, and
store data values in a local store at each node. We assume a recursively enumerable
infinite domain D of data values which serves both as the domain of the relational
databases and of the local registers at nodes of the generated output tree.

A Σ-tree with local storage, or simply a tree if it is clear from the context, is a
pair (t,Reg), where t is a Σ-tree, and Reg is a function that associates each node
v ∈ dom(t) with a finite relation over D. We refer to Reg(v) as the local register or
the register of v, and use TreeΣ to denote the set of all Σ-trees with local storage.

We consider two classes of trees: for all v ∈ dom(t), (a) either Reg(v) stores a
finite relation over D, (b) or Reg(v) is a single tuple over D. These are referred to
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as Σ-trees with relation registers and tuple registers, respectively. Note that trees
with tuple registers are a special case of trees with relation registers. As will be
seen shortly, the content of Reg(v) is computed via a relational query on a database
over D, and it is used to control how the children of v will be generated.

Relational query languages. A relational schema R is a finite collection of
relation names and associated arities. We consider conjunctive queries over R built
up from atomic formulas including relations in R, equality (=) and inequality (6=),
by closing under conjunction ∧ and existential quantification ∃. We refer to this
class of queries as CQ. First-order queries (FO) are built from these atomic formulas
using conjunction ∧, disjunction ∨, negation ¬, and universal ∀ and existential ∃
quantifications. We also consider inflational fixpoint queries (IFP), an extension of
FO with the following formation rule: If ϕ(S, x̄) is an IFP formula, where S is k-ary,
x̄ are free variables of ϕ and |x̄| = k, and t̄ is a tuple of terms, where |t̄| = k, then
[µ+

S,x̄(ϕ(S, x̄))](t̄) is an IFP formula whose free variables are those in t̄. Given an

instance I of R, I |= [µ+
S,x̄(ϕ(S, x̄))](ā) iff ā is in the inflationary fixed point µ+(Fϕ)

of the mapping Fϕ : P(Dk) → P(Dk). Here, P(Dk) denotes the powerset of Dk

and Fϕ(X) = {ā | I |= ϕ(X/R, ā)} where ϕ(X/R, ā) means that R is interpreted
by X ∈ P(Dk). That is, µ+(Fϕ) is the union of all sets J i where J0 = ∅ and
J i+1 = J i ∪ Fϕ(J i) for i > 0 (see, e.g., [Abiteboul et al. 1995; Libkin 2004] for
detailed discussions).

3. PUBLISHING TRANSDUCERS

Intuitively, a publishing transducer is a finite-state machine that creates a tree from
a relational database in a top-down way. It starts from an initial state and creates
the root of the tree. It then treats the leaf nodes in the tree created so far as current
nodes, and expands the tree by spawning the children of all the current nodes in
parallel, following deterministically a transition based on the current state of the
transducer and the tag and register of each current node. The transition directs
how the children of a node are generated, by providing the tags of the children as
well as relational queries that extract data from the source. The process proceeds
until all current nodes satisfy certain stop conditions. We next formally define
publishing transducers.

Definition 3.1: Let R be a relational schema and L a relational query language. A
publishing transducer for R is defined to be τ = (Q,Σ,Θ, q0, δ), where Q is a finite
set of states; Σ is a finite alphabet of tags; Θ is a function from Σ to IN associating
the arity of registers Rega to each Σ tag a; q0 is the start state; and δ is a finite set
of transduction rules such that for each (q, a) ∈ (Q \ {q0})× (Σ \ {r}) ∪ {(q0, r)}:

(i) if a 6∈ {text}, then there is a unique rule of the form:

(q, a) → (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)).

Here k ≥ 0, and for i ∈ [1, k], (qi, ai) ∈ (Q \ {q0}) × (Σ \ {r}), and φi(x̄i; ȳi) ∈ L
is a query from R and Rega to Regai

, where Rega and Regai
are a Θ(a)- and a

Θ(ai)-ary relation, respectively, and where x̄i and ȳi are disjoint sets of variables.
The different roles of the sets of variables x̄i and ȳi will be explained shortly. The
rule for (q0, r) is referred to as the start rule of τ . We always assume Θ(r) = 0.
Moreover, to simplify the discussion we assume that ai 6= aj if i 6= j.
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(ii) if a = text, then (q, a)→ . That is, its rule has an empty right-hand side (rhs).
2

In a nutshell, τ is a deterministic transducer that generates a tree from a database
I of schema R in a top-down fashion. Initially, τ constructs a tree t consisting of
a single node labeled (q0, r) with an empty storage. At each step, τ expands t by
simultaneously operating on the leaf nodes of t. At each leaf u labeled (q, a), τ
generates new nodes by finding the rule for (q, a) from δ, issuing queries embedded
in the rule to the relational database I and the register Rega(u) associated with u,
and spawning the children of u based on the query results. For each i ∈ [1, k], the
ai children and their associated registers Regai

are produced as follows: The query
φi(x̄i; ȳi) extracts data from a database instance of R and from the parent register
Rega. The result of the query is grouped by the distinct tuples corresponding to
the variables in x̄i, yielding sets of tuples S1, . . . , Sm. For each set Sj , a distinct ai

child is created, carrying Sj as the content of its register Regai
. These ai children

are ordered based on an implicit ordering on the domain of data. If |x̄i| = 0, then
no grouping takes place and the query result is partitioned in one relation S1 (i.e.,
m = 1). If |ȳi| = 0, then the result is grouped by the entire tuple and each Sj

consists of single tuple only (i.e., |Sj | = 1, 1 ≤ j ≤ m). In general, there might
be several sets Sj which might contain more than one tuple. When the result is
grouped by the entire tuple (i.e., |ȳi| = 0), we refer to each register Regai

as a
tuple register. Otherwise Regai

is called a relation register. Hence tuple registers
are a special case of relation registers. The transformation proceeds until a stop
condition is satisfied at all the leaf nodes (to be presented shortly). At the end, all
registers and states are removed from the tree t to obtain a Σ-tree, which is the
output of τ .
Transformations. We now formally define the transformation induced by τ from
a database I. As in [Alon et al. 2003], we assume an implicit ordering ≤ on D,
which is just used to order the nodes in the output tree and, hence, get a unique
output. We do not assume that the ordering is available to the query language L.

We extend Σ-trees with local storage by allowing nodes to be labeled with symbols
from Σ ∪ Q × Σ. We use TreeQ×Σ to denote the set of all such extended Σ-trees.
Then, every step in the transformation rewrites a tree in TreeQ×Σ, starting with
the single-node tree u labeled with (q0, r) and Regr(u) = ∅ (recall that Θ(r) = 0).
More specifically, this is determined by a step-relation.

For two trees ξ, ξ′ ∈ TreeQ×Σ, we define the step-relation⇒τ,I as follows: ξ ⇒τ,I

ξ′ iff there is a leaf u of ξ labeled (q, a) and one of the following conditions holds:

(1) if there is an ancestor v of u such that u, v are labeled with the same state and
tag, and Rega(v) = Rega(u), then ξ′ is obtained from ξ by changing the label (q, a)
of u to a; otherwise,

(2) assume that the rule for (q, a) is
(q, a)→ (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)).

If k > 0, then ξ′ is obtained from ξ by rooting the lists of nodes f1 · · · fk under u. For
each j ∈ [1, k], fj is constructed as follows. Let {d̄1, . . . , d̄n} = {d̄ | I ∪ Rega(u) |=
∃ȳjφj(d̄; ȳj)} and d̄1 ≤ · · · ≤ d̄n with ≤ extended to tuples in the canonical way.
Then fj is a list of nodes [v1, · · · , vn], where vi is labeled with (qj , aj) and its
register Regaj

(vi) stores the relation {d̄i} × {ē | I ∪ Rega(u) |= φj(d̄i; ē)}, where
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Rega and Regaj
denote the registers associated with the a-node u and the aj-node

vi, respectively. If all fi’s are empty, ξ′ is obtained from ξ by labeling u with a.
If k = 0, i.e., the rhs of the rule is empty, then ξ′ is obtained from ξ by labeling u

with a. Moreover, if a is text, then in ξ′, u carries a string representation of Rega(u)
(assuming a function that maps relations over D to strings, based on the order ≤).

The second condition (2) states how to generate the children of the leaf u via
a transduction rule. As remarked earlier, for each j ∈ [1, k], the aj children are
grouped by the values d̄ of the parameter x̄ in the query ∃ȳjφj(x̄j ; ȳj). That is, for
each distinct d̄ such that ∃ȳjφj(d̄; ȳj) is nonempty, an aj child w is spawned from
u, carrying the result of φj(d̄; ȳj) in its local store Regaj

(w).

Stop condition. The first condition (1), referred to as the stop-condition, states
that the transformation stops at the leaf u if there is a node v on the path from
the root to u such that u repeats the state q, tag a, and the content of Rega(v)
of v. Since the subtree rooted at u is uniquely determined by q, a,Rega(u) and I,
this asserts that the tree will not expand at u if the expansion does not add new
information. This stop condition is the same as the one used in ATGs [Bohannon
et al. 2004].

The transformation stops at the leaf u, i.e., no children are spawned at u, if
(a) the stop condition given above is satisfied; or (b) the query φj(x̄j ; ȳj) turns out
to be empty for all i ∈ [1, k] when it is evaluated on I and Rega(u); in this case all
the forests fj are empty; or (c) the rhs of the rule for (q, a) is empty, i.e., k = 0 in
condition (2) above; this is particularly the case for a = text, as text nodes have no
children. These conditions ensure the termination of the computation. Note that
transduction at other leaf nodes may proceed after the transformation stops at u.

Recursive vs. Nonrecursive transducers. We define the dependency graph Gτ

of τ . For each (q, a) ∈ Q × Σ there is a unique node v(q, a) in Gτ , and there is
an edge from v(q, a) to v(q′, a′) iff (q′, a′) is on the rhs of the rule for (q, a). We
say that the transducer τ is recursive iff there is a cycle in Gτ . As will be seen in
the next section, most commercial systems support only nonrecursive publishing
transducers. Nonrecursive publishing transducers do not necessarily need a stop
condition.

We next illustrate the syntax and semantics of publishing transducers. For ease
of readability, we abuse notation and write ∅ rather than () for the empty sequence
variables.

Example 3.1: The view shown in Fig. 1(a) can be defined by a publishing trans-
ducer τ1 = (Q1,Σ1, Θ1, q0, δ1), where Q1 = {q0, q}, Σ1 = {db, course, prereq, cno,
title, text}, and the root tag is db; we associate six sets of registers Regdb, Regc,
Regp, Reg#, Regt and Regtext with db, course, prereq, cno, title and text nodes, to
which the arity-function Θ1 assigns 0, 2, 1, 1, 1, 1, respectively; finally, δ1 is defined
as follows:

δ1(q0, db) = (q, course, φ1(cno, title; ∅)), where
φ1(cno,title) = ∃ dept (course(cno, title, dept) ∧ dept = ‘CS’)

δ1(q, course) = (q, cno, φ1
2(cno; ∅)), (q, title, φ2

2(title; ∅)), (q,prereq, φ1
2(cno; ∅)), where

φ1
2(cno) = ∃ title Regc(cno, title), and φ2

2(title) = ∃ cno Regc(cno, title)

δ1(q,prereq) = (q, course, φ3(cno, title; ∅)), where
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φ3(c, t) = ∃ c′ d (Regp(c
′) ∧ prereq(c′, c) ∧ course(c, t, d))

δ1(q, cno) = (q, text, φ4(cno; ∅)), where φ4(c) = Reg#(c) /*similarly for δ1(q, title) */

δ1(q, text) = . /* empty rhs */

In each query φ(x̄; ȳ) in the rules, |ȳ| = 0, i.e., ȳ is ∅. Thus Regc, Regp, Reg#,
Regt and Regtext are tuple registers. The semantics of τ1 is as follows: Given an
instance I0 of the schema R0 described in Example 1.1, the publishing transducer
τ1 first generates the root of the tree t, labeled with (q0, db). The register of the
root node is empty by default. It then evaluates the query φ1 on I0, and for each
distinct tuple in the result, it spawns a course child v carrying the tuple in its
register Regc(v). At node v it issues queries φ1

2 and φ2
2 on Regc(v), and spawns its

cno, title and prereq children carrying the corresponding tuple in their registers.
At the cno child, it simply extracts the string value of cno and the transformation
stops; similarly for title. At the prereq child u, it issues query φ3 against both I0
and Regp(u); i.e., it extracts all immediate prerequisites of the course of node v,
for which the cno is stored in Regp(u). In other words, the cno information passed
down from node v is used to determine the children of u. For each distinct tuple
in the result of φ3, it generates a course child of u. The transformation continues
until either it reaches some course for which there is no prerequisite, i.e., φ3 returns
empty at its prereq child; or when a course requires itself as a prerequisite, and at
this point the stop condition terminates the transformation. The final tree, after
the local registers and states are stripped from it, is a Σ-tree of the form depicted
in Fig. 1(a).

Note that the transformation is data-driven: the number of children of a node and
the depth of the XML tree are determined by the relational database I. Note also
that τ1 is recursive: Gτ1

contains the cycle (v(q, course), v(q, prereq)), (v(q, prereq),
v(q, course)). 2

Output. We denote by⇒∗
τ,I the reflexive and transitive closure of⇒τ,I . The result

of the τ-transformation on I w.r.t. ≤ is the tree ξ such that (q0, r)⇒∗ ξ and all leaf
nodes of ξ carry a label from Σ. This means that ξ is final and cannot be expanded
anymore. We use τ(I) to denote the Σ-tree obtained from ξ by striking out the local
storage and states from ξ. We denote by τ(R) the set {τ(I) | I is an instance of R},
i.e., the set of trees induced by τ -transformations on I when I ranges over all
instances of the relational schema R. Note that for any order on the input instance,
a transducer always terminates and produces a unique output tree.

Virtual versus normal nodes. We also consider a class of publishing transducers
with virtual nodes. Such a transducer is of the form τ = (Q,Σ,Θ, q0, δ,Σe), where
Σe is a designated subset of Σ, referred to as the virtual tags of τ ; and Q,Σ,Θ, q0, δ
are the same as described in Definition 3.1. We require that Σe does not contain
the root tag. On a relational database I the transducer τ behaves the same as a
normal transducer, except that the Σ-tree τ(I) is obtained from the result ξ of the
τ -transformation on I as follows. First, the local registers and states are removed
from ξ. Second, for each node v in dom(ξ), if v is labeled with a tag in Σe, we
shortcut v by replacing v with children(v), i.e., treating children(v) as children of
the parent of v, and removing v from the tree. The process continues until no node
in the tree is labeled with a tag in Σe.
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Example 3.2: Suppose that we want to define a publishing transducer for the
XML view shown in Fig. 1(b), and that the query language L is FO. One can show,
via a simple argument using an Ehrenfeucht-Fräıssé (EF)-style game, that this is
not expressible as a normal transducer of Definition 3.1 with FO (see, e.g., [Libkin
2004] for a discussion of EF games). In contrast, this can be defined as a publishing
transducer τ2 with virtual nodes. Indeed, capitalizing on a virtual tag l, we give
some of the transduction rules δ2 of τ2 as follows:

δ2(q0, db) and δ2(q, course) are the same as δ1(q0,db) and δ1(q,course) in Example 3.1

δ2(q, prereq) = (q, l, ϕ1(∅; cno)), where ϕ1(c) = ∃c′ (Regp(c′) ∧ prereq(c′, c))

δ2(q, l) = (q, l, ϕ′
1(∅; cno)), (q, cno, ϕ2(cno; ∅)), where

ϕ′
1(c) = Regl(c) ∨ ∃c

′ (Regl(c
′) ∧ prereq(c′, c)), ϕ2(c) = ϕ′

1(c) ∧ ∀c
′ (Regl(c

′)↔ ϕ′
1(c

′)),

In ϕ1 and ϕ′
1, |x̄| = 0 and thus the result of ϕ1 and ϕ′

1 is put in a single relation,
stored in the register Regl(v) of the l child v. In contrast, |ȳ| = 0 in ϕ2 and thus
its query result is grouped by each distinct tuple. Hence, if the query result is
nonempty, then for each tuple in it, a distinct cno child is generated.

Intuitively, for each course c the transducer τ2 recursively finds cno’s in the
prerequisite hierarchy of c and adds these cno’s to the relation Regl(v) until it
reaches a fixpoint, where v is labeled with the virtual tag l. Only at this point, the
query ϕ2(c) returns a non-empty set Regl(v). For each cno in the set, a distinct
cno node is created. Then, all the nodes labeled l are removed and those cno nodes
become the children of c. Thus τ2 induces the XML view of Fig. 1(b). 2

Fragments. We denote by PT(L, S,O) various classes of publishing transducers.
Here, L indicates the relational query language in which queries embedded in the
transducers are defined. We consider L ranging over conjunctive queries with ‘6=’
(CQ), first-order logic (FO) and (inflationary) fixpoint logic (IFP), all with equality
‘=’. Store S is either relation or tuple, indicating that the Σ-trees induced by the
transducers are with relation or tuple stores, respectively. Observe that transducers
with tuple stores are a special case of those with relation stores. More specifically,
for any transducer τ with tuple stores, |ȳi| = 0 in each query φi(x̄i; ȳi) in τ , as
illustrated in Example 3.1. Output O is either normal or virtual, indicating whether
a transducers allow virtual nodes or not. Thus PT(IFP, relation, virtual) is the
largest class considered in this paper, which consists of transducers that are defined
with fixpoint-logic queries and generate trees with relation stores and virtual nodes.
In contrast, PT(CQ, tuple, normal) is the smallest.

For each class PT(L, S,O), we denote by PTnr(L, S,O) its subclass consisting of
all nonrecursive transducers in it.

For instance, the transducers τ1 and τ2 given in Examples 3.1 an 3.2 are in PT(CQ,
tuple, normal) and PT(FO, relation, virtual), respectively (τ2 is also definable in
PTnr(IFP, tuple, normal); we omit this definition for the lack of space).

4. CHARACTERIZATION OF XML PUBLISHING LANGUAGES

We examine XML publishing languages that are either supported by commercial
products or are representative research proposals (see [Krishnamurthy et al. 2003]
for a survey). We classify these languages in terms of various classes of publishing
transducers with certain restrictions. We do not provide an exact correspondence
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select c.cno as “cno”, c.title as “title”
from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)
for xml path(‘course’), root(‘db’)

Fig. 2. An XML view expressed with the for-xml construct of Microsoft SQL Server 2005

between existing languages and classes of publishing transducers, but instead iden-
tify for each language the smallest class of publishing transducers that can express
them. Furthermore, we make the implicit assumption that SQL and FO coincide
(See [Libkin 2003] for a discussion concerning the differences between SQL and FO),
and similarly that recursive SQL (when supported) can be embedded in IFP. All
examples in this section refer to XML views of a registrar database I0 specified in
Example 1.1.

Microsoft SQL Server 2005 [Microsoft 2005]. Two main XML publishing meth-
ods are supported by Microsoft: for-xml expressions and annotated xsd schema.

The first method extracts data from a relational source via SQL queries, and
organizes the extracted data into XML elements using a for-xml construct. Hier-
archical XML trees can be built top-down by nested for-xml expressions. While
no explicit registers are used, during tree generation information can be passed
from a node to its children along the same lines as the use of tuple variables in
nested SQL queries (i.e., correlation). For example, Figure 2 defines the XML view
of Fig. 1(c) using the for-xml construct. In a nutshell, the view is a tree of depth
two, containing the list of all courses in I0 that do not have db as its immediate
prerequisite, i.e., for any such course c, (c, c′) is not in prereq if the title of c′ is db.

The depth of a generated tree is bounded by the nesting level of for-xml ex-
pressions (although user-defined functions can be recursive, Microsoft imposes a
maximum recursive depth, and thus a bounded tree depth). No virtual nodes are
allowed. Thus for-xml expressions are definable in PTnr(FO, tuple, normal).

The second method specifies an XML view by annotating a (nonrecursive) xsd
schema, which associates elements and attributes with relations and table columns,
respectively. Given a relational source, the annotated xsd constructs an XML tree
by populating elements with tuples from their corresponding tables, and instantiat-
ing attributes with values from the corresponding columns. Information is passed
via parent-child key-based joins, specified in terms of a relationship annotation. An-
notated xsd schema only supports simple condition tests and does not allow virtual
nodes. The depth of the tree is bounded by the fixed “tree template” (xsd). Thus
annotated xsd can be expressed in PTnr(CQ, tuple, normal).

IBM DB2 XML Extender [IBM ]. IBM also supports two main methods, namely,
sql/xml and document access definition (dad).

The first method extends SQL by incorporating XML constructs xmlelement,
xmlattribute, xmlforest, xmlconcat, xmlagg and xmlgen. It extracts
relational data in parallel with XML-element creation. Nested queries are used to
generate a hierarchical XML tree, during which a node can pass information to its
children via correlation. The tree has a fixed depth bounded by the level of query
nesting, and has no virtual nodes. Although only non-recursive XML trees can be
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select xmlelement {name “course”, xmlforest {c.cno as “cno”, c.title as “title”}}
from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)

Fig. 3. An XML view expressed in sql/xml

<sql stmt> select c.cno as “cno”, c.title as “title”
from course c

where not exists (select c’.cno from course c’, prereq p
where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)

</sql stmt>
<element node name=“course” multi occurrence=“yes”>

<element node name=“cno”>

<text node> <column name=“cno”/></text node>
</element node> ... /*similarly for <element node name=“title”>*/

</element node>

Fig. 4. An XML view expressed in terms of sql mapping of IBM DB2 XML Extender

dbms xmlgen.newContextFormHierarchy{
select xmlelement {name “course”, xmlforest {c.cno as “cno”, c.title as “title”}},
from course c
connect by prior course.cno = prereq.cno1}

Fig. 5. An XML view expressed in terms of dbms xmlgen of Oracle 10g XML DB

generated, recursive SQL queries can be used to populate its elements. Indeed, IBM
supports recursive SQL queries by means of Common Table Expressions. Hence,
sql/xml is essentially PTnr(IFP, tuple, normal). For instance, Figure 3 shows the
view of Fig. 2 expressed in sql/xml.

The second method in turn has two flavors, namely, sql mapping and rdb map-
ping. The former extracts relational data with a single SQL query, and organizes
the extracted tuples into a hierarchical XML tree by using a sequence of group by

constructs, one for each tuple column, following a fixed order on the columns. The
depth of the tree is bounded by the arity of the tuples returned by the query. The
view of Fig. 2, e.g., can be expressed in terms of sql mapping as shown in Fig. 4.

The latter embeds nested rdb node expressions in a dad. The dad is basically
a tree template with a fixed depth, and those embedded expressions are essentially
CQ queries for populating elements and attributes specified in the dad.

Neither of these two allows virtual nodes. One can express dad with sql mapping
in PTnr(IFP, tuple, normal), and rdb mapping in PTnr(CQ, tuple, normal).

Oracle 10g XML DB [Oracle ]. Oracle supports sql/xml as described above, and
a PL/SQL package dbms xmlgen. dbms xmlgen extends sql/xml by supporting
the linear recursion construct connect-by (SQL’99), and is thus capable of defining
recursive XML views. Given a relational source, an XML tree of an unbounded
depth is generated top-down, along the same lines as nested sql/xml queries.
Information is passed from a node to its children via connect-by joins. For each
tuple resulted from the joins, a child node is created, whose children are in turn
created in the next iteration of the fixpoint computation. For example, Figure 5
shows a recursive XML view, containing the list of all courses; under each course c
are the cno and title of c followed by the hierarchy of the prerequisite courses of c.
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db → course∗

$course = select cno, title from course
course → cno, title , prereq

$prereq = select cno from $course; similarly for $cno and $title
prereq → course∗

$course = select c.cno, c.title from prereq p, $prereq cp, course c
where cp.cno = p.cno1 and p.cno2 = c.cno;

Fig. 6. An XML view expressed in ATG of PRATA

dbms xmlgen allows neither virtual nodes nor an explicit stop condition. If the
stop condition given in Section 3 is imposed, XML views defined in dbms xmlgen
are expressible in PT(IFP, tuple, normal).

XPERANTO [Shanmugasundaram et al. 2001]. It supports essentially the same
XML views as sql/xml, namely, those definable in PTnr(FO, tuple, normal).

TreeQL [Fernandez et al. 2002; Alon et al. 2003]. TreeQL was proposed for the
XML publishing middleware SilkRoute. Here we consider its abstraction developed
in [Alon et al. 2003]. It defines an XML view by annotating the nodes of a tree
template (of a fixed depth) with CQ queries. It supports virtual tree nodes and
tuple-based information passing via free-variable binding (i.e., the free variables of
the query for a node v are a subset of the free variables of each query for a child of
v). Thus TreeQL views are expressible in PTnr(CQ, tuple, virtual).

ATG [Benedikt et al. 2002; Bohannon et al. 2004]. Attribute transformation gram-
mar (ATG) was proposed in [Benedikt et al. 2002] and revised in [Bohannon et al.
2004], for XML publishing middleware prata. An ATG defines an XML view based
on a (normalized) DTD, by associating each element type with an inherited at-
tribute (register), and annotating each production a→ α in the DTD with a set of
relational queries that access the underlying data source and the register associated
with a. More specifically, for each sub-element type b in the regular expression α,
it defines a query to populate the b sub-elements of an a element with the result
of the query. It supports recursive DTDs and thus recursive XML views, as well as
virtual nodes to cope with XML entities. For example, Figure 6 shows an ATG that
lists all courses in I0 and is required to conform to a DTD d0. It list all productions
of d0, and below each production it specifies the queries for spawning sub-elements.
While the early version of [Benedikt et al. 2002] employs FO queries and tuple
registers, the revised ATGs [Bohannon et al. 2004] adopt relation registers and the
stop condition of Section 3. Thus ATGs are expressible in PT(FO, relation, virtual).

The classification is summarized in Table I, which, for each publishing language
mentioned above, gives the “smallest” class of publishing transducers that can
express all XML views definable in the language. Except dbms xmlgen and ATGs,
these languages do not support recursive XML views of relational data. Indeed, one
can verify, via a simple EF-game argument, that the XML views of Example 3.1
and 3.2 are expressible in dbms xmlgen and ATGs, but not in the other languages.

5. DECISION PROBLEMS AND COMPLEXITY

In this section we first provide tight worst-case complexity for evaluating various
publishing transducers. We then focus on central decision problems associated with
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Language Publishing transducers

Microsoft SQL Server 2005 FOR XML PTnr(FO, tuple, normal)
annotated XSD PTnr(CQ, tuple, normal)

IBM DB2 XML Extender SQL/XML PTnr(IFP, tuple, normal)
DAD (SQL MAPPING) PTnr(IFP, tuple, normal)
DAD (RDB MAPPING) PTnr(CQ, tuple, normal)

Oracle 10g XML DB SQL/XML PTnr(FO, tuple, normal)
DBMS XMLGEN PT(IFP, tuple, normal)

XPERANTO PTnr(FO, tuple, normal)

TreeQL PTnr(CQ, tuple, virtual)

ATG PT(FO, relation, virtual)

Table I. Characterization of existing XML publishing languages

these transducers. As remarked in Section 1, the static analyses of these problems
are important in practice. Consider a class PT(L, S, O) of publishing transducers.

The membership problem for PT(L, S, O) is to determine, given a Σ-tree t and
a transducer τ in this class, whether or not there exists an instance I such that
t = τ(I), i.e., τ evaluated on I returns the tree t.

The emptiness problem for PT(L, S, O) is to determine, given τ in this class,
whether there exists an instance I with τ(I) 6= r, i.e., the tree with the root only.
In other words, it is to decide whether τ can induce nontrivial trees.

The equivalence problem for PT(L, S, O) is to determine, given two transducers
τ1 and τ2 in this class, both defined for relational databases of the same schema
R, whether or not τ1(I) = τ2(I) for all instances I of R, i.e., the two transducers
produce the same Σ-trees on all the instances of R.

We first establish matching upper and lower bounds for these problems, for all
classes of transducers defined in Section 3. We then revisit the decision problems
for nonrecursive transducers that characterize the existing publishing languages
studied in Section 4. Our main conclusion for this section is that most of these
problems are beyond reach in practice for general publishing transducers, but some
problems become simpler for certain existing languages.

5.1 Basic Complexity for Publishing Transducers

We first give some basic complexity bounds for computing the transformations
defined by publishing transducers. As is accustomed, we define the size of a tree as
its number of nodes.

Proposition 1. Let τ be a publishing transducer in PT(L, S, O). Let I be an
instance.

(1 ) The τ-transformation on I always terminates and returns a unique tree τ(I).

(2 ) Computing the output tree τ(I) can be done in time exponential and doubly ex-
ponential in the size of I for the cases where S is tuple and relation, respectively,
and where L is CQ, FO or IFP, and O is normal or virtual.

(3 ) There is a publishing transducer τ1 in PT(CQ,tuple,normal) and a family of
instances (In)n∈N, such that the size of each In is O(n) and the size of τ1(In)
is at least 2n.

(4 ) There is a publishing transducer τ2 in PT(CQ,relation,normal) and a family of
instances (Jn)n∈N, such that the size of each Jn is O(n) and the size of τ2(Jn)
is at least 22n

.
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Proof. The proof is referred to the Appendix.

5.2 Decision Problems for Publishing Transducers

We now turn to the classical decision problems associated with transducers. We
show that when the relational query language L is FO or beyond, all these problems
are undecidable, but some of the problems become decidable when L is CQ.

Proposition 2. The membership, emptiness and equivalence problems are un-
decidable for PT(L, S,O) when L is FO or IFP, no matter whether S is relation or
tuple, and O is virtual or normal.

Proof. We show that these problems are already undecidable for nonrecursive
transducers in PTnr(FO, tuple, normal). From this the theorem immediately follows.

We show the undecidability by reduction from the equivalence problem for rela-
tional FO queries, which is to determine, given any FO queries Q1, Q2 on a rela-
tional schema R, whether or not for any instance I of R, Q1(I) = Q2(I) (denoted
by Q1 ≡ Q2). This problem is known to be undecidable (cf. [Abiteboul et al. 1995]).

Given any FO queries Q1, Q2, we use ∆Q to denote their symmetric difference
(Q1 \Q2) ∪ (Q2 \Q1). Obviously, Q1 ≡ Q2 iff ∆Q(I) = ∅ for all instances I of R.

The membership problem. The reduction consists of a transducer τ0 in PTnr(FO,
tuple, normal) and a tree t0 such that t0 ∈ τ0(R) iff Q1 6≡ Q2. We define t0 to
be r(a) (i.e., a root r with a single a-child), and τ0 = (Q0,Σ0,Θ0, q0, δ0), where
Q0 = {q0, q}, Σ0 = {r, a}, and δ0 is given as follows, from which Θ0 is clear:

δ0(q0, r) = (q, a, φ(x; ∅)), where φ(x; ∅) = ∃s̄∆Q(s̄) ∧ x = ‘c’ and |s̄| is the same
as the arity of the result of Q1 and Q2;

δ0(q, a) = (q, a, φ∅(x; ∅)), where φ∅(x; ∅) = (x = ‘c’) ∧ ¬(x = ‘c’), i.e., it is a query
that returns the empty set on any database instance.

Then obviously, if t0 is in τ0(R) then there must exist an instance I of R such
that φ(I) is nonempty. Hence, ∆Q(I) is nonempty, i.e., Q1 6≡ Q2. Conversely, if
Q1 6≡ Q2, then there exists an instance I of R such that ∆Q(I) is nonempty. As a
result, φ(I) yields a single tuple (c), and hence t0 ∈ τ0(R).

The emptiness problem. It suffices to define τ1 in PTnr(FO, tuple, normal) over
R such that τ1(R) consists of a single-node tree iff Q1 ≡ Q2. We define τ1 =
(Q1,Σ1,Θ1, q0, δ1) to be the same as τ0 except δ1. Here we define δ1(q0, r) =
(q, a, φ(x̄; ∅)), where φ(x̄; ∅) = ∆Q(x̄), and δ1(q, a) to be the same as δ0(q, a). Then
obviously, τ1(R) = {r} iff ∆Q(I) = ∅ for all instances I of R, i.e., Q1 ≡ Q2.

The equivalence problem. Given Q1, Q2, we construct τ1
2 , τ

2
2 in PTnr(FO, tuple,

normal) over R such that for any instance I of R, τ1
2 (I) = τ2

2 (I) iff Q1 ≡ Q2.
For i ∈ [1, 2] we define τ i

2 to be the same as τ0 except δi
2, given as follows:

δi
2(q0, r) = (q, a, φ(x̄; ∅)), where φ(x̄; ∅) = Qi(x̄);
δi
2(q, a) = (q, text, φ1(x̄; ∅)), where φ1(x̄; ∅) = Rega(x̄).

Obviously, for each instance I of R, τ1
2 (I) = τ2

2 (I) iff Q1(I) = Q2(I). This is
because for each tuple in Qi(I), a distinct a child is created under the root r, which
carries the tuple in its register, and the value of the tuple is given in the text-node
child of the a-node. Thus τ1

2 ≡ τ
2
2 iff Q1 ≡ Q2.

The situation gets slightly better when considering conjunctive queries.
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Theorem 1. For PT(CQ, S, O),

(1 ) the emptiness problem is decidable in ptime for PT(CQ, S, normal), but it
becomes np-complete for PT(CQ, S, virtual);

(2 ) the membership problem is Σp
2-complete for PT(CQ, tuple, normal), but becomes

undecidable when either S is relation or O is virtual;

(3 ) the equivalence problem is undecidable.

Proof. The proof is a bit long. In particular, for the membership problem we
provide three proofs: one for the Σp

2-completeness of PT(CQ, tuple, normal), and
two separate proofs for the undecidability of PT(CQ, tuple, virtual) and PT(CQ,
relation, normal); as will be shown by Proposition 5, the latter two classes are
incomparable and thus require different treatments. We assume the presence of
two distinct constants 0 and 1 in the domain D of data values. Most proofs remain
intact in the absence of 6= in CQ, and therefore so do their corresponding results.

(1) The emptiness problem.

PT(CQ, S, normal). We first provide a quadratic time algorithm for testing
emptiness for PT(CQ, S, normal), regardless of whether S is relation or tuple. For
each τ in PT(CQ, S, normal) defined on a relational schema R, consider the start
rule (q0, r) → (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)). It is obvious that τ(R)
contains a nontrivial tree iff one of the φi’s is satisfiable since we only have normal
nodes. The latter can be determined syntactically by first finding the equivalence
class of each variable and constant involved in each φi, based on the equalities in
φi; and then check within each equivalence class whether it contains (i) two distinct
constants, (ii) a constant c and variable x for which x 6= c is in θ, or (iii) two vari-
ables x and y for which x 6= y is in θ. One can show that none of these cases occurs iff
θ, and therefore, φi, are satisfiable. This can be done in O(|φ1|

2 + · · ·+ |φk|
2) time.

PT(CQ, S, virtual). It suffices to show that the emptiness problem for PT(CQ,
tuple, virtual) is np-hard and that it is in np for PT(CQ, relation, virtual).

Lower bound: We show the np lower bound by reduction from the 3sat-problem,
an np-complete problem (cf. [Papadimitriou 1994]). An instance of 3sat is a
well-formed Boolean formula ϕ = C1 ∧ · · · ∧ Cn, in which the variables are X =
{x1, . . . , xm} and each clause Ci, for i ∈ [1, n], is of the form ℓi1 ∨ ℓ

i
2 ∨ ℓ

i
3, where ℓij

is either xs ∈ X or xs. Given such a ϕ, 3sat is to determine the satisfiability of ϕ.
Given ϕ, we define a relational schema R and a transducer τϕ in PT(CQ, tuple,

virtual) over R such that ϕ is satisfiable iff there exists an instance I of R such
that τϕ(I) is non-empty. More specifically, R consists of an m-ary relation RX(A1,
. . . , Am). An instance IX of RX is to encode truth assignments of the variables
in ϕ. The transducer τϕ = (Q0,Σ0,Θ0, q0, δ0,Σe), where Q0 = {q0, q1, . . . , qn, qt},
Σ0 = {r, a, v}, and virtual tag Σe = {v}. The rules in δ0 are given below.

(q0, r)→ (q1, v, ψ0(x̄; ∅) = R(x̄)).

(qi−1, v)→ (qi, v, ψ
1
i (x̄; ∅) = Regv(x̄) ∧ (xj = t

i
1[1] ∧ xk = t

i
1[2] ∧ xℓ = t

i
1[3])),

. . . , (qi, v, ψ
s
i (x̄; ∅) = Regv(x̄) ∧ (xj = t

i
s[1] ∧ xk = t

i
s[2] ∧ xℓ = t

i
s[3])).

(qn, v)→ (qt, a, ψt = Regv(x̄)).
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Here x̄ denotes (x1, . . . , xm). The rule for (q0, r) copies IX to the register of
a v-child of the root r. For i ∈ [1, n], the rule for (qi−1, v) generates a vir-
tual node iff the register of the current node u is a truth assignment that makes
Ci true. For instance, suppose that Ci = xj ∨ x̄k ∨ xℓ and denote by T (Ci)
the set of truth assignments of xj , xk and xℓ that make Ci true, i.e., T (Ci) =
{(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 1), (0, 1, 1), (0, 0, 0)}. Note that there are
at most 8 tuples T (Ci), denoted by ti1, . . . , t

i
s. Then ψi

j checks whether tij is in
IX . If Reg(u) is such a truth assignment, then the rule spawns a v-child of u and
copies the content of Reg(v) to Reg(u). Hence, (qn, v) is reached iff IX is a truth
assignment that satisfies all n clauses of ϕ. The rule for (qn, v) is defined with a
normal tag a. It is easy to see that there exists an instance IX of RX such that
τϕ(IX) is a nontrivial tree iff IX contains a truth assignment satisfying ϕ.

Upper bound: We provide a np algorithm for deciding the emptiness of transducers
τ in PT(CQ, relation, virtual). To do this, we make use of the dependency graph
Gτ of τ (recall from Section 3). Let ρ be a simple path in Gτ and n = |ρ|. Consider
Qn = Qn◦· · ·◦Q1, the CQ query obtained by composing the CQ queries encountered
along the path ρ. Then τ can produce a nontrivial tree iff Qn is satisfiable for one
of such paths ρ. Although |Qn| can be of exponential size, we show below that
the satisfiability of Qn can be decided in ptime by using n new CQ queries Q̄i,
each of them of size polynomial in |τ |, such that Qn is satisfiable iff Q̄i and Qi are
satisfiable for all i ∈ [1, n]. Based on this, given τ , the decision algorithm (i) guesses
a simple path ρ in Gτ that leads to a non-virtual node; (ii) constructs n queries Q̄i;
and (iii) checks whether all Q̄i and Qi are satisfiable, and if so, it concludes that
τ can produce a nontrivial tree. This clearly results in an np-algorithm, provided
that the last two steps can be done in ptime, which we show next.

Let Si be the relation schema of Qi. We assume w.l.o.g, that Qn(x̄) = ∃x̄1 · · · x̄k
∧k1

i=1 R1(x̄i)∧
∧k

j=k1+1 αj(x̄i)∧Hn(x̄)∧Cn(x̄, x̄1, . . . , x̄k), where x̄, x̄i, for i ∈ [1, k],
consist of disjoint variables, αj(x̄j) = Rk(x̄j) for some Rk (k > 1) in Sn, Hn denotes
the conjunction of all (in-)equality constraints on variables in x̄, and Cn denotes the
conjunction of the remaining constraints. Moreover, assume that Qn is obtained by
substituting Qn−1(x̄i) for R1(x̄i) in Qn, for i ∈ [1, k1]. We construct the CQ query
Q̄n(x̄) and the conjunction of constraints H̄n(x̄) (whose purpose is explained below)
inductively. For n = 1 we let Q̄1(x̄) = Q1(x̄) and let H̄1(x̄) be the completion of
H1(x̄) w.r.t. C1. That is, we complete H1(x̄) with all (in-)equalities on x̄ inferred

fromH1 and C1. For n > 1, we define Q̄n(x̄) = ∃x̄1 · · · x̄k

∧k1

i=1(R1(x̄i)∧H̄n−1(x̄i))∧
∧k

j=k1+1 αj(x̄i) ∧ Hn(x̄) ∧ Cn(x̄, x̄1, . . . , x̄k) and let H̄n(x̄) be the completion of

Hn(x̄i) w.r.t. Cn and H̄n−1(x̄i), for i ∈ [1, k1]. Then we have the following.

Claim 1. Qn is satisfiable iff Q̄n and Qn−1 are satisfiable.

Proof. We show the claim by induction on n. Suppose that Qn is satisfiable. we
verify (in the induction) the following additional property, denoted by (an): for any
relation I and tuple t̄, if t̄ ∈ Qn(I) then H̄n(t̄) holds. The case n = 1 is trivial. Let
n > 1. Note that Qn is obtained from Qn by replacing R1(x̄i) by Qn−1(x̄i). By the
induction hypothesis (an−1) we can obtain an equivalent query by replacing R1(x̄i)
by Qn−1(x̄i) ∧ H̄n−1(x̄i). Hence, any t̄ ∈ Qn(I) satisfies all constraints inferred by
Hn(x̄), H̄n−1(x̄i) and Cn, and therefore H̄n(t̄) holds; thus (an) holds. Let I be an
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instance such that Qn(I) 6= ∅. Then clearly Qi is satisfiable for all i ∈ [1, n − 1].
Let J1 = Qn−1(I) be the instance of R1 in Qn and Ji = Ii be the instances of Ri

(i > 1) in Sn (as given by I). By (an−1) we have that Q̄n(J) 6= ∅, as desired.
Conversely, we show another property, denoted by (bn): if Qn and Qn−1 are

satisfiable and H̄n(t̄i) holds for i ∈ [1, ℓ], then there exists an instance I such that
t̄i ∈ Qn(I) for all i ∈ [1, ℓ]. The case n = 1 is trivial. Let n > 1. Since Qn is
satisfiable, for each t̄i that satisfies H̄n(t̄i) we can find k source tuples s̄i

1, . . . , s̄
i
k

such that Cn(t̄i, s̄
i
1, . . . , s̄

i
k) holds, and moreover, H̄n−1(s̄

i
1) holds for i ∈ [1, k1] by

the definition of H̄n. Since Qn−1 is satisfiable, so are Qn−1 and Qn−2. Hence, by
(bn−1) we obtain an instance J1 such that {si

j | j ∈ [1, k1], i ∈ [1, ℓ]} ⊆ Qn−1(J1).

Let Ji = {sj
i | j ∈ [1, ℓ]} and J = (J1, . . . , Jk). Then by the monotonicity of CQ

queries, t̄i ∈ Qn(J) for i ∈ [1, ℓ]; thus (bn) holds. Note that if Q̄n is satisfiable, then
so is Qn, and there exist t̄i’s satisfying H̄n; thus by (bn), Qn is satisfiable.

Note that H̄i is at most of quadratic size in the number of variables in the head
of Qi, and thus |Q̄i| is bounded by O(|Qi|2). Then from the proof of Theorem 1 (1),
it follows that the satisfiability of Q̄i can be decided in ptime.

(2) The membership problem.

PT(CQ, tuple, normal). We first show that the problem is Σp
2-hard, and then

give a Σp
2-algorithm for deciding the membership of PT(CQ, tuple, normal).

Lower bound: We show the Σp
2 lower bound by reduction from the ∃∗∀∗-3sat

problem, which is known to be Σp
2-complete (cf. [Papadimitriou 1994]). The latter

problem is to determine, given ϕ = ∃Y ∀Z C1∧· · ·∧Cr , whether or not ϕ evaluates
to true. Here Y = {y1, . . . , yn} and Z = {z1, . . . , zk}, and ∃Y is a shorthand for
∃y1 . . . ∃yn; similarly for ∀Z. The clauses C1 ∧ · · · ∧Cr is an instance of 3sat given
above, in which each literal is either a variable in Y ∪ Z or a negation thereof.

Given ϕ, we define a relational schema R, a transducer τϕ in PT(CQ, tuple,
normal) and a tree tϕ such that tϕ ∈ τϕ(R) iff ϕ is true.

(a) The relational schema R consists of a unary relation RC(B) and a ternary rela-
tions ROR. We shall use the instance IC = {0, 1} of RC to construct the Cartesian
product IY = ×i∈[1,n]IC , to encode the existential quantification: there exists a tu-
ple tY ∈ IY , i.e., a truth assignment for Y , such that tY satisfy ψ = ∀Z C1∧· · ·∧Cr .
An instance of IOR of ROR consists of {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} and en-
codes disjunction. This is needed since CQ does not allow disjunction.

(b) To define τϕ, observe that ϕ ≡ ∃Y ϕ1 ∧ · · · ∧ ϕr where ϕj = ∀z1 · · · ∀zk Cj , for
j ∈ [1, y]. Hence, given a truth assignment for the variables in Y it suffices to test
whether all ϕj ’s are true. We express ϕ1 ∧ · · · ∧ ϕr as a CQ query ψ(Y ) as follows.
For each j ∈ [1, r], denote by l the number of universally quantified variables in
Cj . For each binary vector b̄ of length l, let ψb̄

j(Y ) = ∃x1, x2, x3, s ROR(x1, x2, s) ∧

ROR(s, x3, 1)∧
∧3

i=1 θ
j
i (xi), where θj

i (xi) = yp (resp. θj
i (xi) 6= yp) if the ith literal in

Cj is yp ∈ Y (resp. ȳp) and θj
i (xi) = b[i] otherwise. Let ψj =

∧

b̄Q
b̄
j , where b̄ ranges

over all possible truth assignments of the universally quantified variables in Cj .
Since l ≤ 3, there are at most 8 such assignments. Now we define ψ(Y ) =

∧r
j=1Qj .

It is easily verified that ψ(Y ) is satisfiable iff ϕ is true.
We now define the tree tϕ to be r(b, d) (a root node with a single b and a single
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d child), and define the transducer τϕ, for which the start rule is:

(q0, r) → (q1, b, φ1(x; ∅)), (q1, c, φ2(x; ∅)), (q1, d, φ3(x; ∅)), where
φ1(x; ∅) ≡ RC(0) ∧RC(1) ∧ ROR(0, 0, 0) ∧ ROR(1, 0, 1) ∧ROR(0, 1, 1) ∧ROR(1, 1, 1) ∧ x = 1
φ2(x; ∅) ≡ RC(x) ∧ x 6= 0 ∧ x 6= 1, φ3(x; ∅) ≡ ∃Y (

Vn

j=1RC(yj) ∧ ψ(Y )) ∧ x = 1

In the rules for (q1, b), (q1, c) and (q1, d), the rhs is empty. Intuitively, φ1(x; ∅)
assures that 0 and 1 are in the instance of RC , and that IOR is contained in the
instance of ROR (which is not necessarily IOR). The formula φ2(x; ∅) checks whether
instances of RC have Boolean values only. By not including a c node in tϕ, φ2 and
φ1 assure that any instance of RC is precisely {0, 1}. The formula φ3(x; ∅) computes
all truth assignment of Y , and checks whether any of these satisfies ψ(Y ). It is easy
to verify that ϕ is true iff there exists an instance I of R such that τϕ(I) = tϕ.

Upper bound: We next provide a Σp
2 algorithm that, given a transducer τ in

PT(CQ, tuple, normal) and a tree t, guesses an instance I and then verifies us-
ing an np-oracle whether τ(I) = t. A crucial observation is that it suffices to guess
an instance I of polynomial size, by the following small model property:

Claim 2. Let τ be a transducer in PT(CQ, tuple, normal) over R and let I be
an instance of R such that t = τ(I). Then there exists an instance I ′ ⊆ I such that
(i) t = τ(I ′); and (ii) |I ′| is of size at most K|t|, where K is the maximal number
of Cartesian products in any of the CQ queries in τ .

Proof. Assume that there exists an instance I such that t = τ(I). To simplify
the discussion assume furthermore that relational schema consists of a single re-
lation schema R. In case the schema consists of more than one relation, one can
simulate these with a single relation, and change the CQ queries in τ accordingly
and obtain in this way an equivalent transducer, albeit on a different schema.

Let v be an arbitrary node in t, and (q, a)→ (q1, a1, φ1(x̄1; ∅)), . . . , (qk, ak, φk(x̄k; ∅))
be the rule in τ that is used to generate v. More specifically, assume that v is gen-
erated by φi and hence has label ai. Since τ has a tuple store, each v is associated
with a distinct tuple (stored in Regai

(v)) from the result of the CQ query φi on I
and Rega(u), where u is the parent of v and Rega(u) is the tuple register of u.

If we express φi as an SPC (selection, projection and Cartesian product) query
in the normal form, it is clear that Regai

(v) comes from the Cartesian product of
at most k tuples in I, where k is the number of R’s (perhaps renamed) involved in
φi and thus is determined by the size of φi. Let us refer to these k tuples as the
source tuples for v. Putting together all the source tuples for all the nodes in t, we
get another instance I ′ of R. One can verify that t = τ(I ′) since all the queries in
τ are CQ queries with ‘6=’ and are thus monotonic. Clearly, |I ′| ≤ K|t| where K is
the maximal number of Cartesian products in any of the CQ queries in τ . 2

Given a transducer τ in PT(CQ, tuple, normal) and a tree t, the following algo-
rithm checks whether there exists an instance I such that t = τ(I):

(1) Guess an instance I consisting of at most K|t| tuples (here K is as in the
statement of Claim 2). The active domain U of I consist of the constants
appearing in any CQ query embedded in the rules of τ plus a set of K|t| other
arbitrary constants. It is easily verified that for any other such domain U′ and
bijective mapping f : U→ U′ such that f(a) = a for any constant a appearing
in queries in τ , τ(I) = τ(f(I)). Hence, we can choose U arbitrarily.
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(2) We then guess |t| tuples, one for the register of each distinct node in t.

(3) Given I and the tree t annotated with the registers, we then use the following
np-oracle for testing whether τ(I) = t as follows. We traverse the tree t top-
down. For each node v encountered, let the rule generating v be (q, a) →
(q1, a1, φ1(x̄; ∅)), . . . , (qk, ak, φk(x̄; ∅)), which is unique as τ is deterministic.

(a) Let [v1, . . . , vℓ] be the list of children(v). Starting from i = 1 and j = 1,
we check whether lab(vi) = aj , and whether Reglab(vi)(vi) is in the query
result φj(I). This can be done in np. If either fails we put j = j + 1 and
continue. Otherwise we move on to the next child, i.e., we put i = i + 1
and continue. If we reach i = ℓ + 1 and j = k + 1 then all children of v
can be generated by the τ on I, and move on to step (b). Otherwise, if for
some vi with i ≤ ℓ we reach j = k + 1, then we reject the guess.

(b) For i ∈ [1, k], we check whether there are more tuples in φi(I) than those
already identified in the previous step. This can be verified in np as well.
If the answer is negative, we accept I, otherwise we reject the input I.

This algorithm can be simulated using a non-deterministic polynomial time Tur-
ing machine with a np-oracle. Hence, this algorithm is in npnp = Σp

2.

PT(CQ, tuple, virtual). We show that the membership problem becomes unde-
cidable in the presence of virtual nodes, by reduction from the emptiness problem
of deterministic finite 2-head automata, which is undecidable [Spielmann 2000].
Our reduction follows closely the reduction presented in [Spielmann 2000, Theorem
3.3.1], which shows that the satisfiability of the existential fragment of transitive-
closure logic, e+tc, is undecidable over a schema having at least two non-nullary
relation schemas, one of them being a function symbol. Although e+tc allows the
negation of atomic expression in contrast to CQ, the undecidability proof only uses
a very restricted form of negation, which we can simulate in PT(CQ, tuple, virtual).

For the readers’ convenience we include the necessary definitions taken from [Spiel-
mann 2000]. A deterministic finite 2-head automaton (or 2-head DFA for short) is
a quintuple A = (Q,Σ,∆, q0, qacc) consisting of a finite set of states Q, an input
alphabet Σ = {0, 1}, an initial state q0, an accepting state qacc, and a transition
function ∆ : Q× Σε × Σε → Q× {0,+1} × {0,+1}, where Σε = Σ ∪ {ε}.

A configuration of A is a triple (q, w1, w2) ∈ Q × Σ∗ × Σ∗, representing that A
is in state q and the first and second head of A are positioned on the first symbol
of w1 and w2, respectively. On an input string w ∈ Σ∗, A starts from the initial
configuration (q0, w, w); the successor configuration is defined as usual. The 2-
head DFA A accepts w if it can reach a configuration (qacc, w1, w2) from the initial
configuration for w; otherwise A rejects w. The language accepted by A is denoted
by L(A). The emptiness problem for 2-head DFA’s is to determine, given a 2-head
DFA A, whether L(A) is empty or not.

Given a 2-head DFAA = (Q,Σ, δ, q0, qacc), we define a schema R, a transducer τA
in PT(CQ, tuple, virtual) and a tree tA such that tA ∈ τA(R) iff L(A) is nonempty.

(a) The relational schema R consists of three relations: (i) two unary relations
P (A) and P̄ (A) and (ii) a binary relation F (A1, A2). Intuitively, an instance I =
(IP , IP̄ , IF ) of R is to represent a string w such that elements in P represent the
positions in w where an 1 occurs; similarly, P̄ holds those positions where w equals
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0. The relation F encodes a successor relation over these positions.
As before we shall use transduction rules in τA and the tree tA to assure that we

only consider well-formed instances of P , P̄ and F . That is, (i) instances IP and
IP̄ of P and P̄ are disjoint; and any instance IF of F must (ii) be a function, (iii)
contain a tuple of the form (0, i) where 0 represents the initial position and i is
some constant, and (iv) contain a unique tuple of the form (k, k) for some constant
k indicating the final position.

(b) We define the transducer τA and tree tA as follows. First, to assure that in-
stances of P and P̄ are disjoint, we add the rule (q0, r)→ (q, a1, φ1 = ∃xP (x)∧P (x))
and by not including an a-child of the root in tA. Second, we assure the proper-
ties (ii)–(iv) above on instances IF of F . This is achieved by adding (q, a2, φ2 =
∃yF (0, y)), (q, a3, φ3(x, y; ∅) = F (x, y) ∧ x = y) and (q, a4, φ4 = ∃x, y, zF (x, y) ∧
F (x, z) ∧ y 6= z) to the rhs of the start rule given above, and by adding a single
a2 and a3-child to the root of t1. We do not include an a4-child of the root to tA.
Then for τA and tA defined so far, τA(I) = tA iff I is a well-formed instance of R.

Before we continue with the definition of τA and tA we show, following [Spiel-
mann 2000], how non-emptiness of L(A) can be expressed in terms of an e+tc-
formula over R. Consider a transition δ ∈ ∆ of the form δ = (q, in1, in2) →
(q′,move1,move2). This can be encoded by means of the conjunctive query

ϕδ(x, y, z, x
′, y′, z′) = (x = q ∧ x′ = q′ ∧ α1(y) ∧ α2(z) ∧ β1(y, y

′) ∧ β2(z, z
′)),

where αi(x) = ∃yF (x, y)∧x 6= y∧P (x) if ini = 1; αi(x) = ∃yF (x, y)∧x 6= y∧P (x)
if ini = 0; and αi(x) = F (x, x) if ini = ε. Moreover, βi(x, y) = F (x, y) if movei = +1
and βi(x, y) = x = y if movei = 0. Intuitively, αi(x) enforces x to be a position in
the string coded by P and P̄ that has a successor, unless x is the final position where
αi(x) demands F (x, x). Moreover, βi(x, y) ensures that x and y are consecutive
positions when A makes a move (with head i) and x = y otherwise. Then Φ =
∃y1∃y2[TCx,y,z;x′,y′,z′

∨

δ∈∆ ϕδ](q0, 0, 0, qacc, y1, y2) is satisfiable iff L(A) 6= ∅.
The transducer τA simulates the transitive closure (tc) in Φ by means of virtual

nodes and an s-node in output if (q0, 0, 0, qacc, y1, y2) is encountered during its
evaluation on an instance I of R. By including an s-node as a child of the root of
tA we then can test whether Φ is satisfiable, or equivalently, whether L(A) 6= ∅.

To do so, we first initialize the tc-computation by extending the rhs of the start
rule of τA with (q, v, κ0(q, x, y; ∅) = (q = q0 ∧ x = 0 ∧ y = 0)), where v is a virtual
tag. Suppose that ∆ = {δ1, . . . , δm}. For each δi ∈ ∆ we introduce a new state qi
in τA and define κi(q, x, y; ∅) = ∃q′, x′, y′Regv(q

′, x′, y′)∧ϕδi
(q′, x′, y′, q, x, y). That

is, κi encodes a valid transition (given by δi) in the tc-computation starting from
the configuration stored in the current register. We simulate Φ by simultaneously
executing all valid transitions. For each i ∈ [1,m] we define the rule:

(qi, v)→ (q1, v, κ1(q, x, y; ∅)), . . . , (qm, v, κm(q, x, y; ∅)), (q, s, φf = ∃x, yRegv(qacc, x, y)).

As mentioned above, these rules create a (non-virtual) node s iff the final config-
uration is encountered. We remark that since A is deterministic, if the final con-
figuration is encountered (and hence Φ is satisfiable) then this only happens once.
Hence, τA creates a single s-node as a child of the root in its output tree. Thus the
inclusion of a single s-child of the root in tA indicates whether Φ is satisfiable.
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Taken together, it is easily verified that tA ∈ τA(R) iff L(A) 6= ∅. As a result,
the membership problem for PT(CQ, tuple, virtual) is undecidable.

PT(CQ, relation, normal). We show that the problem also becomes undecidable
with relation registers but without virtual nodes, by reduction from the satisfiability
problem for relational algebra, which is undecidable (cf. [Abiteboul et al. 1995]).

Given a relational algebra query Q over a schema S, we define a relational schema
R, a transducer τQ over R in PT(CQ, relation, normal), and a tree tQ such that
tQ ∈ τQ(R) iff Q is satisfiable. We define a non-recursive τQ: it generates trees
of depth bounded by the size of Q. Observe that although PT(CQ, relation, O)
is incapable of expressing FO queries as will be seen in Section 6, its membership
analysis can validate FO-query evaluation as shown by the proof below.

The construction of τQ and tQ is based on a parse-tree parse(Q) of Q, which is a
node-labeled tree in which each interior node is labeled with a relational operator,
i.e., projection (πX), selection (σA=B), renaming (ρA/B), Cartesian product (×),
union (∪) or difference (\). The leaves of parse(Q) are the base relations in S.
Intuitively, each node in parse(Q) indicates a sub-query Q′ of Q.

(a) The schema R consist of all base relations of S and in addition, for each sub-
query Q′ of Q as given by parse(Q), a relation schema RQ′ . The intuition is that in
any instance I of R, the instance IS of S stores the base relations and the instance
IQ′ of RQ′ encodes the query result Q′(IS). To simplify the handling of sub-queries
that return empty set, we add a special attribute A to each relation of R. As
before, we say IQ′ is well-formed if (i) it contains the tuple t0 = (0, 0, . . . , 0), i.e., it
is nonempty; (ii) all other tuples have their A-attribute set to 1; and (iii) the set of
tuples with their A-attribute set to 1 is precisely Q′(IS) (after their A-attributes are
stripped off). That is, a well-formed IQ′ is equal to ({1}×Q′(IS))∪{(0, 0, . . . , 0)}.
We use att(R1) to denote the set of attributes in a relation schema R1 of R. The
schema R also contains auxiliary relations for coding union and set difference, which
will be introduced as they come along.

(b) The transducer τQ and tree tQ are defined such that τQ(I) = tQ iff I is well-
formed and Q is satisfiable. The tree tQ is used for two purposes: by including
certain nodes, it requires some of the queries in the rules of τQ to return a non-empty
answer; in contrast, excluding certain nodes in t either enforces the corresponding
queries to return the empty set or enforces a stop condition to hold.

We define τQ and tQ simultaneously. For each rule in τQ presented below, nodes
produced by the rule will be added to tQ if they have a bold label; otherwise the
nodes will not appear in tQ. We employ different labels in the rules such that each
label a is mapped to a distinct node (i.e., a sub-query) in parse(Q), denoted by
p(a). The rule for nodes labeled a is determined by the structure of the sub-query
represented by the subtree rooted at p(a). We denote by yA a variable coding
attribute A and by x̄ a set of variables, where the size of x̄ will be clear from the
context. To simplify the discussion, the queries in τQ are given in relational algebra,
but can be easily written in CQ. We define τQ and tQ top-down starting from the
root r, inductively following a top-down traversal of parse(Q), as follows.

(0) The start rule of τQ is (q0, r) → (q, a1, φ
0
1(∅; yA, x̄) = RQ(yA, x̄)), (q,b1, φ

0
2 =

πatt(RQ)RQ(1, x̄)). On instances I of R, this rule creates an a1-node w1 such that
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its relation register Rega1
(w1) stores IQ(Is), i.e., the final query result. Moreover,

a b1-node w2 is created provided that IQ(IS) contains tuples with their A-attribute
set to 1. For any well-formed instances this implies that Q(IS) 6= ∅. Note that
both a1 and b1 are shown in bold, and hence tQ is expanded by making w1 and w2

children of r. Clearly, the presence of w2 in tQ indicates non-emptiness of Q(IS).

We next give the rule for (q, ai), where ai corresponds to p(ai) in parse(Q), which
indicates a sub-query Q′ of Q. From the inductive construction we have that for
any ai-node v generated and included in tQ, Regai

(v) stores the relation RQ′ . We
define the rule for (q, ai) and expand tQ, based on the structure of Q′.

(1) Q′ = Q1 × Q2. We can express RQ′ in terms of RQ1
and RQ2

by the query
Qprod = πatt(Q1×Q2)−A′σA=A′(RQ1

× ρA/A′(RQ2
)), where A is the special attribute

mentioned above. We define the rule for (q, ai) to be (q, ai)→ (q, ai+1, φ
i
1(∅; yA, x̄) =

RQ1
(yA, x̄)), (q, ai+2, φ

i
2(∅; yA, x̄) = RQ2

(yA, x̄)), (q, ai, φ
i
3(∅; yA, x̄) = Qprod(yA, x̄)).

The purpose of this rule is two-fold. First, given an instance I of R, the rule gen-
erates an ai+1-child and an ai+2-child of v, containing IQ1

and IQ2
, respectively, in

their registers. These nodes are included in tQ as indicated by their labels (bold).
Second, it assures that if IQ1

and IQ2
are well-formed, then so is IQ′ . Indeed, it

generates an ai-node iff IQ′ 6= Qprod(IQ1
, IQ2

), due to the stop condition. Further,
v does not have an ai-child in tQ (note that ai is not in bold). These ensure that
IQ′ is well-formed as long as IQ1

and IQ2
are.

(2, 3, 4) We omit the construction for the simple cases when Q′ is a selection,
projection or renaming sub-query, due to the space constraint.

(5) Q′ = Q1 ∪ Q2. This case is a bit tricky since CQ does not allow disjunc-
tion. To cope with this we employ an additional relation RQ1+Q2

in R such
that IQ1+Q2

= {0} × IQ1
∪ {1} × IQ2

. In terms of RQ1+Q2
, we can keep track

of tuples in IQ1
, IQ2

and inspect their union. More specifically, we express RQ′ ,
RQ1

and RQ2
as Q+ = πatt(RQ1

)RQ1+Q2
, Q1

+ = πatt(RQ1
)σA′=0(RQ1+Q2) and

Q2
+ = πatt(RQ1

)σA′=1(RQ1+Q2
), respectively, where A′ is the first attribute in

RQ1+Q2
that holds tags 1 or 0. Then as in case (1), we can assure the follow-

ing in the rule for (q, ai). First, IQ′ = Q+(IQ1+Q2
), and Q1

+(IQ1+Q2
) = IQ1

(resp. Q2
+(IQ1+Q2

) = IQ2
), by not including certain nodes in tQ and leveraging

the stop condition. Second, IQ1+Q2
is well-formed as long as IQ1

and IQ2
are. We

omit the details for the lack of space.

(6) Q′ = Q1 \Q2. As in case (5), since CQ does not allow negation, we use two aux-
iliary relations RQ1∩Q2

and RQ1|Q2
in R. For an instance I of R, IQ1∩Q2

is to store
IQ1
∩ IQ2

, and IQ1|Q2
is to store {0} × IQ1∩Q2

∪ {1} × IQ′ . Intuitively, we inspect
set difference by checking whether IQ′ ∩ IQ1∩Q2

= ∅ and IQ′ ∪ IQ1∩Q2
= IQ1

. To do
this, in terms of RQ1|Q2

, we express RQ′ and RQ1
as Qdiff = πatt(RQ1

)σA′=1(RQ1|Q2
)

and Q1 = πatt(RQ1
)RQ1|Q2

, respectively. Furthermore, we express RQ1∩Q2
as

both Q1
∩ = RQ1

∩ RQ2
and Q2

∩ = πatt(RQ1
)σA′=0(RQ1|Q2

). We also define Q∅ =
σA′=1(RQ′ ∩RQ1∩Q2

). Then as in case (1), we can assure the following in the rule
for (q, ai). First, IQ′ = Qdiff(IQ1|Q2

) and IQ1|Q2
is precisely {0}×IQ1∩Q2

∪{1}×IQ′.
by not including certain nodes in tQ. Second, if IQ1

and IQ2
are well-formed then

so are IQ1∩Q2
and IQ1|Q2

. We omit the details for the lack of space.
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(7) Q′ is a base relation Si in S. We need to verify that ISi
contains (0, 0, . . . , 0)

and all other tuples in ISi
have their A-attribute set to 1. To do this, it suf-

fices to use the rule (q, ai) → (q, ai+1, φ
i
1 = RSi

(0, 0, . . . , 0)), (q, ai+2, φ
i
2(∅; x̄) =

RSi
(1, x̄)), (q,di, φ

i
3(yA; ∅) = ∃x̄ πARSi

(yA, x̄)). We include one ai+1-node, one
ai+2-node and two di-nodes to v in tQ. This assures that ISi

is well-formed.

We now show that τQ(I) = tQ iff Q is satisfiable. First, suppose that Q is
satisfiable, let IS be an instance of S such that Q(IS) is nonempty. Then we obtain
an instance I of R by letting RQ′ = ({1}×Q′(IS))∪{(0, 0, . . . , 0)} for any sub-query
Q′ of Q given by parse(Q). Clearly, τQ(I) = tQ. Conversely, by the construction
above we know that all instances I of R such that τQ(I) = tQ are necessarily
well-formed. In particular, σA=1RQ holds the query result Q(IS), where IS is the
instance of base relations S. Then if τQ(I) = tQ, by the definition of the start rule
of τQ together with the presence of a b1-child of the root in tQ, Q is satisfiable.

(3) The equivalence problem. It suffices to show that the equivalence problem for
PT(CQ, tuple, normal) is undecidable, by reduction from the halting problem for
two-register machines (2RM) on the empty input string [Börger et al. 1997].

A two-register machineM has two registers register1, register2, and is programmed
by a numbered sequence I0, I1, . . . , Iℓ of instructions. Each register contains a
natural number. An instantaneous description (ID) of M is (i,m, n), where i ∈
[0, ℓ], m and n are natural numbers. It indicates that M is to execute instruction
Ii (or is at “state i”) with register1 and register2 containing m and n, respectively.

An instruction Ii of M is as follows, which defines a relation →M between IDs.

(a) addition (i, rg, j): at state i, M adds 1 to the content of rg, and then goes to
state j; e.g., when rg = register1 then (i,m, n)→M (j,m+ 1, n).

(b) subtraction (i, rg, j, k): at state i, M tests whether rg is 0; if so it goes to state
j, otherwise subtracts 1 from rg and goes to the state k. When rg = register1,
(i,m, n)→M (j, 0, n) if m = 0, and (i,m, n)→M (k,m− 1, n) otherwise.

Here rg is either register1 or register2, and 0 ≤ i, j, k ≤ ℓ. Similarly, addition and
subtraction are defined when rg = register2,

Assume w.l.o.g, that the initial ID is id0 = (0, 0, 0) and that the final ID is idf =
(f, 0, 0), i.e., a halting state f ∈ [0, ℓ] with 0 in both registers. The halting problem
for 2RM is to determine, given a 2RM M , whether or not id0 ⇒M idf , where ⇒M

is the reflexive and transitive closure of→M . A valid run of M is a sequence of IDs
id0, id1, . . . such that for each i = 0, 1, . . ., we have that idi →M idi+1.

We give a reduction from the halting problem for 2RM’s to the complement of
the equivalence problem. Given a 2RM M , we construct a relational schema R and
two transducers τ1 and τ2 over R in PT(CQ, normal, tuple) such that there exists
an instance I of R such that τ1(I) 6= τ2(I) iff M is halting.

(a) The schema R is a 6-ary relation with attributes prev (for previous), next (for
next), cs (for current state), reg1 (for register 1), reg2 (for register 2), and ns (for
next state). Intuitively, an instance I of R consists of tuples t where t[cs, reg1, reg2]
encodes an ID of M , t[ns] encodes the next state of M ; and t[prev] and t[next]
provide an ordering on the tuples in t. An instance I of R is said to be well-formed
if prev determines next and vice versa, i.e., for any t1, t2 ∈ I, if t1[prev] = t2[prev]
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then t1[next] = t2[next], and vice versa; if this holds we say that prev is a key for next;
similarly, next is a key for prev. Any well-formed instance I of R necessarily contains
a unique sequence σI of tuples t0 = (0, a1, c̄0), t1 = (a1, a2, c̄1), . . . , tn(an−1, an, c̄n),
. . . , coding the numbers (the contents of the registers).

(b) We construct τ1 and τ2 over R such that, when applied to a well-formed instance
I of R, they behave almost the same and both verify whether σI forms a valid run
of M . At each step, both transducers spawn an a-node if the transition between
the two consecutive tuples in σI is valid. If either σI does not form a valid run or σI

forms a valid run but the halting state is not reached, both τ1 and τ2 simply stop.
If σI is a valid run leading to a halting state, τ1 and τ2 exhibit a different behavior.
More specifically, while τ1 creates an extra a-node, τ2 simply stops. Therefore, for
any well-formed instance I of R, τ1(I) and τ2(I) will be the same tree, except for
when M halts. Indeed, in the latter case τ1(I) has one a-node more than τ2(I).

To accommodate instances of R that are not well-formed, we modify τ1 and τ2.
When a halting state is reached by τ1 and τ2, τ1 generates an extra a-node (apart
from the one it already created) iff neither prev is a key for next nor is next a key for
prev. In contrast, τ2 will generate an a-node if prev is not a key for next, and another
a-node if next is not a key for prev. This suffices. Indeed, consider the following
three scenarios when a halting state is encountered: (i) prev is a key for next and
vice versa; in this case τ1 generates a single a-node (because the halting state is
encountered), while τ2 does not generate anything (since both are keys); (ii) prev

is a key for next but not conversely (the symmetric case is analogous); then τ1 will
generate a single a-node and so does τ2; and finally (iii) prev is not a key for next

and next is not a key for prev; in this case, both τ1 and τ2 generate two a-nodes.
These are expressible as rules (with 6= in particular) in PT(CQ, tuple, normal).
Hence, τ1 and τ2 only generate different trees on instances that are well-formed and
that hold a halting sequence of moves of M , as desired.

We now define τ1 and τ2. The transducer τ1 consists of the following rules:

(q, r) → (q1, a, φ0(a1, a2, i,m, n, j; ∅) = R(a1, a2, i, m, n, j) ∧ a1 = 0 ∧ i = 0 ∧m = 0

∧ n = 0 ∧ ∃z1z2z3 R(0, 0, j, z1, z2, z3))

(q1, a) → add to register1, add to register2, subtract from register1, subtract from register2,

(q3, a, φhalt = ∃a1, a2, i, m,n, j Reg(a1, a2, i,m, n, j) ∧ i = f ∧m = 0 ∧ n = 0

∧ j = f), (q4, a, φhalt+nokeys = φhalt ∧ φPnokey ∧ φNnokey),

where φPnokey = ∃a1, a2, b1, b2, x̄, x̄
′R(a1, a2, x̄)∧R(b1, b2, x̄

′)∧a1 = b1∧a2 6= b2, and
similarly, φNnokey = ∃a1, a2, b1, b2, x̄, x̄

′R(a1, a2, x̄)∧R(b1, b2, x̄
′)∧a2 = b2∧a1 6= b1.

The transducer τ2 consists of the same set of rules, except that (q4, a, φhalt+nokeys)
is replaced by (q4, a, φPnokey), (q4, a, φNnokey).

We now explain how to simulate the addition and subtraction. The register
contents of M are stored in the reg1 and reg2 attributes of R. The order induced
by the key constraints on the prev and next-attributes of well-formed instances of
R is used to increment and decrement the register contents. That is, assume that
(a1, a2, i,m, n, j) is a tuple in an instance I of R. Suppose that register1 needs to be
incremented. Then, the next tuple should be of the form (a2, a3, j,m

′, n, k) where
the new content m′ of rg1 is defined such that there exists a tuple in I of the form
(m,m′, x̄). Similarly, when register1 needs to be decremented, m′ is defined such
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that there is a tuple in I of the form (m′,m, x̄) (provided that m 6= 0).
Let A1 (resp. D1) be the set of states that correspond to additions (resp. sub-

tractions) of register1. We explain “add to register1” in the rule for (q1, a) in τ1 and
τ2. For each i ∈ A1, the instruction Ii is fixed (s1, rg1, s2); we add (q1, a, αi) where

αi(a1, a2, s1,m, n, s2; ∅) = ∃b1, b2, s
′
1,m

′
, n

′
, s

′
2 Reg(b1, b2, s

′
1,m

′
, n

′
, s

′
2) ∧ s

′
1 = i

∧R(a1, a2, s1,m, n, s2) ∧ a1 = b2 ∧ s1 = s
′
2 ∧ n = n

′ ∧

(∃c1, c2, s
′′
1 , m

′′
, n

′′
, s

′′
2 R(c1, c2, s

′′
1 ,m

′′
, n

′′
, s

′′
2 ) ∧m′ = c1 ∧m = c2)).

Intuitively, for an instance I of R, it verifies whether for all states in A1 (resp. A2)
there exists a tuple t in I that is the next to the tuple stored in the current register
and constitutes a valid transition. Additions to register2 are encoded similarly.

The ‘subtract from register1”-part in the rule for (q1, a) in τ1 (and τ2) is encoded
in a similar way, and is omitted due to the lack of space. The difference here is that
for each instruction Ii = (s1, rg1, j, s2) ∈ D1, we need to add rules for (q1, a, σ

=0
i )

and (q1, a, σ
6=0
i ) to separate the case when rg1 6= 0 from that when rg1 = 0.

One can verify that τ1 ≡ τ2 iff M does not halt. Thus the equivalence problem
for PT(CQ, S, O) is undecidable. 2

5.3 Complexity of Existing Publishing Languages

The results of the previous section carry over immediately to the existing publishing
languages that support recursion, which are PT(IFP, tuple, normal) (dbms xmlgen)
and PT(FO, relation, virtual) (ATG). Table I shows that, however, most of these
languages are non-recursive: PTnr(IFP,tuple,normal) (sql mapping, sql/xml),
PTnr(FO, tuple, normal) (for-xml), PTnr(CQ, tuple, normal) (annotated xsd,
RDB mapping), and PTnr(CQ, tuple, virtual) (TreeQL). Each of these nonrecur-
sive classes is treated below.

We show that the absence of recursion in these publishing languages simplifies
the analyses. Indeed, the evaluation cost of transformations is much lower:

Proposition 3. For publishing transducers τ in PTnr(IFP, tuple, O), the worst-
case data complexity for τ-transformations is in ptime (for O normal or virtual).

Proof. For any transducer τ in PTnr(IFP, tuple, O) over a relational schema R
and for any instance I ofR, the depth of the Σ-tree τ(I) induced by τ -transformation
on I is bounded by a fixed k, which is determined by |τ |. From the proof of Propo-
sition 1 it follows that the size of τ(I) is bounded by O(p(|I|)k), where p is a
polynomial. Since each query evaluated during the transformation takes at most
ptime in |I|, it takes at most ptime in |I| in total to generate τ(I).

The decision problems also become simpler, to an extent.

Theorem 2. (1) The emptiness, membership and equivalence problems are un-
decidable for PTnr(L, tuple, normal) for L = {FO, IFP}. (2) The emptiness prob-
lem is in ptime for PTnr(CQ, tuple, normal), and is np-complete for PTnr(CQ, tu-
ple, virtual). (3) The membership problem for PTnr(CQ, tuple, O) is Σp

2-complete.
(4) The equivalence problem for PTnr(CQ, tuple, O) is Πp

3-complete.

Proof. PTnr(FO, tuple, normal) and PTnr(IFP, tuple, normal). It suf-
fices to prove the undecidability for PTnr(FO, tuple, normal). The proof of Propo-
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sition 2 remains intact for PTnr(FO, tuple, normal). Indeed, all transducers con-
structed in that proof are non-recursive (in fact, they produce trees of depth of at
most 3).

PTnr(CQ, tuple, O). The upper bounds for the emptiness problem for PT(CQ,
tuple, O) (Theorem 1(1)), namely, ptime and np when O is normal or virtual,
respectively, trivially hold for PTnr(CQ, tuple, O). Moreover, the np hardness
proof of the emptiness problem for PT(CQ, tuple, virtual) (Theorem 1(1)) uses a
non-recursive transducer and thus extends to PTnr(CQ, tuple, virtual). From these
follow the complexity bounds for the emptiness problem for PTnr(CQ, tuple, O).

We next focus on the membership and equivalence problems for this class.

The membership problem. The Σp
2-lower bound follows from the proof for PT(CQ,

tuple, normal), which uses a non-recursive transducer (Theorem 1(2)).
We now extend the Σp

2-algorithm for PT(CQ, tuple, normal) to accommodate
virtual nodes. We first establish a small model property. Given any τ in PTnr(CQ,
tuple, virtual) and a tree t, if there exists an instance I such that τ(I) = t, then
there exists an instance I ′ of size at most K ×D× |t|, where K is bounded by the
size of τ (see Claim 2), and D is the depth of τ , i.e., the length of the longest path in
its dependency graph Gτ , which is a dag since τ is nonrecursive. Indeed, suppose
that u and v are nodes in t, u being the parent of v. Then there can be at most D
virtual nodes between u and v. As shown by Claim 2, for each of these normal and
virtual nodes, at most K source tuples are needed to generate necessary tuples in
the registers. Thus at most K ×D × |t| source tuples are needed to generate t.

Based on the small model property, a Σp
2-algorithm is given as follows. (1) Guess

an instance I of at most K ×D × |t| many tuples. (2) Guess a tree t′ as follows:
(a) start with t, (b) between any parent-child pair in t, guess and add at most D
many virtual nodes; (c) for each virtual node introduced, add a chain of depth at
most D consisting of virtual nodes leading to a normal node, Thus t′ consists of at
most (D× |t|)2 many nodes. (3) Guess (D× |t|)2 many tuples, one for the register
of each node in t′, for all nodes in t′. (4) Extend step 3 of the Σp

2 algorithm given for
Theorem 1(2) to check whether t′ is a subtree of a tree induced by the transducer
on the instance, using a np oracle. From this the Σp

2-upper bound follows.

The equivalence problem. It suffices to show that the problem is Πp
3-hard for PTnr(CQ,

tuple, normal), and then give Πp
3 algorithms for checking the equivalence of trans-

ducers in PTnr(CQ, tuple, O). In contrast, the problem was shown to be undecidable
for the recursive counterpart of this class (Theorem 1(3)).

Lower bound: The proof is by reduction from the ∀∗∃∗∀∗-3sat-problem, which
is Πp

3-complete (cf. [Papadimitriou 1994]). The latter problem is to determine,
given ϕ = ∀X∃Y ∀Z C1 ∧ · · · ∧ Cr , whether or not ϕ evaluates to true. Here
∃Y ∀Z C1 ∧ · · · ∧ Cr is an instance of ∃∗∀∗-3sat problem described in the proof of
Theorem 1(2), in which each literal is either a variable in X ∪ Y ∪ Z or a negation
thereof. We assume that X = {x1, . . . , xm}, Y = {y1, . . . , yn}, Z = {z1, . . . , zk},
and ∀X is a shorthand for ∀x1 · · · ∀xm; similarly for ∃Y and ∀Z.

Given ϕ, we define a schema R and transducers τ1 and τ2 over R in PTnr(CQ,
tuple, normal) such that for all instance I of R, τ1(I) = τ2(I) iff ϕ is true.
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(a) The relational schema R consists of RX(A1, . . . , Am) for universal quantifica-
tion, as well as RC(B) and ROR as given in the proof of Theorem 1(2), for coding
existential quantification and disjunction, respectively. An instance IX of RX in-
dicates truth assignments for X . When IX ranges over all truth assignments, we
inspect the equivalence between τ1 and τ2 for each IX . To ensure that the coding
makes sense, we shall use CQ queries to assure that we only consider well-formed
instances of R, i.e., (i) instances of RX contain tuples that are truth assignments
for X ; (ii) instances of RC contain {0, 1}, and (iii) instances of ROR contain IOR.

(b) We next define τ1 in the following steps (τ2 is defined using τ1 later on).
First, we assure that IX is well-formed. This can be enforced as follows:

(q0, r) → (q1, a, φ0(x̄; ∅) ≡ RX(x̄)); (qi, a) → (qi+1, a, φ
0
i (x̄; ∅)), (qi+1, a, φ

1
i (x̄; ∅)),

(qm, a) → (qm+1, b, φ
0
m(x̄; ∅)), (qm+1, b, φ

1
m(x̄; ∅)),

where for i ∈ [1,m − 1] and j ∈ {0, 1}, φj
i (X ; ∅) = Reg(X) ∧ (xi = j), and Reg

denotes the register. These enforce that in an instance IX of RX , only tuples that
do encode a truth-assignment for the variables in X generate an a-chain of length
m. Thus for each well-formed tuple in IX , the transducer reaches the state qm+1.

We then add (qm+1, b)→ (qm+2, c, φm+1(x̄; ∅)) to τ1, where φm+1(X ; ∅)≡ Reg(X)
∧ φ(X ; ∅)∧φ1(x; ∅). Here φ(X ; ∅) ≡ ∃Y (

∧n
j=1 RC(yj)∧

∧r
i=1 ψi(X,Y )), which is φ3

given in the Σp
2-hardness proof of Theorem 1(2), coding ∃Y ∀Z C1∧· · ·∧Cr; and φ1

is also given in that proof, assuring that instances of RX and RC are well-formed.

(c) We define τ2 to be the same as τ1 except that (qm+1, b)→ (qm+2, c, φ
′
m+1(x̄; ∅))

where φ′m+1(X ; ∅) = Reg(X). That is, the b node, if it exists, always has a c child.

To see that the coding is indeed a reduction, observe the following. (i) For the in-
stance IC ofRC and the instance IOR ofROR, ϕ evaluates to true iff τ1(IX , IC , IOR) =
τ2(IX , IC , IOR) when IX ranges over all truth assignments of X . (ii) For any in-
stance I ′C of RC and any instance I ′

OR
of ROR, IC ⊆ I ′C and IOR ⊆ I ′OR

. Then by the
definition of τ1 and τ2, if τ1(IX , IC , IOR) = τ2(IX , IC , IOR), then τ1(IX , I

′
C , I

′
OR

) =
τ2(IX , I

′
C , I

′
OR

) for any instance IX of RX , since CQ queries are monotonic. Thus
if τ1(IX , IC , IOR) = τ2(IX , IC , IOR) when IX ranges over all instances of RX , then
τ1 ≡ τ2. Conversely, if τ1 ≡ τ2, then τ1(IX , IC , IOR) = τ2(IX , IC , IOR) when IX
ranges over all truth assignments of X . Putting (i) and (ii) together, we have that
ϕ evaluates to true iff τ1 ≡ τ2. This completes the proof of the Πp

3-lower bound.

Upper bound: We first provide a Πp
3-algorithm for checking the equivalence of trans-

ducers in PTnr(CQ, tuple, normal), and then extend it to PTnr(CQ, tuple, virtual).

PTnr(CQ, tuple, normal). We first present a characterization of the equivalence
relation and then show that the characterization can be tested by a Πp

3-algorithm.
We start with a characterization of when two CQ queries Q1 and Q2 over a

relational schema R satisfy that |Q1(I)| = |Q2(I)| for any instance I of R. We
assume w.l.o.g, that R consists of a single k-ary relation and that R occurs the same
number of times, say n, in both Q1 and Q2. We represent a CQ query Q by (i) the
set of distinguished variables XQ = {x1, . . . , xp} (the sequence sQ = (x1, . . . , xp) is
called the summary of Q), (ii) the set of non-distinguished variables (existentially
quantified) YQ = {y1, . . . , yq}, (iii) the set RQ of atomic formulas of the form
R(z1, . . . , zk), where zi ∈ XQ ∪YQ, (iv) the set KQ of constants and (v) the set LQ

 



30 ·

of (in-)equality constraints zi θ zj with zi, zj ∈ XQ ∪ YQ ∪KQ and θ ∈ {=, 6=} (we
assume that zi and zj are not both constants and that LQ is consistent).

We denote by EQ the equivalence relation ∼ on XQ ∪YQ induced by the equality
constraints in LQ, and by [z] the equivalence class of variable z in EQ. If z′ ∈ [z]
and z′ = c ∈ LQ then we call c the value of [z]. The inequality constraints induce
a binary relation FQ on EQ as follows: ([z1], [z2]) ∈ FQ iff there exists a z ∈ [z1]
and z′ ∈ [z2] such that z 6= z′ ∈ LQ. If z′ ∈ [z] and z′ 6= c ∈ LQ, then we call c a
non-value of [z]. Let x ∈ XQ. We say that [x] is a constant if (i) [x] has a value c or
(ii) none of the variables in [x] appear in the relations in RQ. We denote by Xc

Q the
set of variables x in XQ for which [x] is constant; Xnc

Q denotes XQ \Xc
Q. We say

that XQ is reduced if (i) for all x ∈ XQ, [x] is not constant and (ii) no two variables
in XQ belong to the same equivalence class. Given XQ we construct a reduced
version, denoted by Xr

Q of XQ in ptime. We define the reduced version of Q,
denoted by Qr, as the query that consists of Xr

Q, Y r
Q = YQ, Kr

Q, i.e., the subset of
KQ that consists of (non-)values of [y] with y ∈ Xr

Q∪Y
r
Q, Rr

Q in which all variables
in x ∈ XQ \Xr

Q are replaced by the variable x′ ∈ Xr
Q such that x ∈ [x′] or is the

value of [x], and Lr
Q is modified similarly. We say that Q1 and Q2 are c-equivalent,

denoted by Q1 ≡c Q2, if Qr
1 ≡ Qr

2. The ≡c relation is needed for characterizing
transducer equivalence as indicated below, and can be tested in terms of ≡.

Claim 3. Q1 ≡c Q2 iff for all instances I, |Q1(I)| = |Q2(I)|.

Proof. Assume that Qr
1 ≡ Q

r
2 and let I be an instance of R. Then, for any t ∈

Qr
1(I) there exists a unique completion t̂ such that t̂ ∈ Q1(I). Indeed, the remaining

attributes are either a constant or are equal to attributes already appearing in t.
Hence, |Q1(I)| = |Qr

1(I)| = |Q
r
2(I)| = |Q2(I)|, from which the result follows.

Conversely, assume that for all I, |Q1(I)| = |Q2(I)| (or equivalently, |Qr
1(I)| =

|Qr
2(I)|). We then show that Qr

1 ≡ Q
r
2. We first show that |XQr

1
| = |XQr

2
|. Assume

that |XQr
1
| < |XQr

2
| (similarly for >). Let ρ1 be a valuation of XQr

1
∪ YQr

1
that is

order-preserving w.r.t. Qr
1, i.e., for all z1 θ z2 ∈ LQr

1
, ρ(z1) θ ρ(z2) holds. Let ρ2 be

any order-preserving valuation that agrees with ρ1 on XQr
1
. Denote by Iρ1

be the
instance {(ρ(z1), . . . , ρ(zk)) | R(z1, . . . , zk) ∈ RQr

1
}; similarly for Iρ2

. Since XQr
1

is
reduced, Qr

1(Iρ1
) = Qr

1(Iρ2
). However, since XQr

2
is reduced too, there must exist a

variable in XQr
2

that is not constant and not equal to any other variable in XQr
2

and
that correspond to a variable in YQr

1
. Hence Qr

2(Iρ1
) 6= Qr

2(Iρ2
). Let I = Iρ1

∪ Iρ2

we then get (by monotonicity) that Qr
1(I) = Qr

1(Iρ1
) while Qr

2(I) strictly contains
Qr

2(Iρ1
). Thus |Qr

1(I)| < |Q
r
2(I)|, contradiction. Hence, |XQr

1
| = |XQr

2
|.

Next, we use the characterization of the equivalence of CQ-queries (with 6=) given
in [Klug 1988]. That is, Qr

1 ⊆ Q
r
2 if for each valuation ρ of XQr

1
∪YQr

1
that is order-

preserving w.r.t. Qr
1 it is the case that ρ(sQr

1
) ∈ Qr

2(Iρ). We show that Qr
1 ⊆ Qr

2

(similarly for Qr
2 ⊆ Qr

1). Denote the tuples in Iρ by ti = (ρ(zi
1), . . . , ρ(z

i
k)), for

i ∈ [1, n]. Here, the zi
j ’s denote the variables in the ith occurrence of R in Qr

1.
Now, for a given ρ we have that ρ(sQr

1
) ∈ Qr

1(Iρ) and therefore Qr
2(Iρ) is nonempty

(because |Qr
1(Iρ)| = |Qr

2(Iρ)|). Let s ∈ Qr
2(Iρ) and assume that s is obtained

by the combination of n tuples s1, . . . , sn such that si = tπ(i) for some mapping
π : [1, n]→ [1, n]. Let h be the mapping from XQr

2
∪ YQr

2
to XQr

1
∪ YQr

1
defined by

h((z′)i
j) = z

π(i)
j . Here, the primed variables correspond to variables in Qr

2. Clearly,
h maps an occurrence of R in Qr

2 to an occurrence of R in Qr
1. We now argue that
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h must also map the summary of Qr
2 to that of Qr

1. From this, it follows that the
valuation ρ◦h of XQr

2
∪YQr

2
gets ρ(sQr

1
) in Q2(Iρ). Since the above argument holds

for any ρ, we then may conclude that Qr
1 ⊆ Q

r
2, as desired.

It remains to show that h(sQr
2
) = sQr

1
. Suppose otherwise, then either there

exists a variable x′ ∈ sQr
2

such that [h(x′)] does not contain any variable from
sQr

1
; or [h(x′)] has more than one variable in common with sQr

1
. Observe that

since Qr
2 is reduced, [h(x′)] cannot have a value. Therefore, valuations can assign

an arbitrary value to the variables in [h(x′)]. Hence, a similar argument as above
shows the existence of an instance I such that |Qr

1(I)| < |Q
r
2(I)|. This contradicts

our assumption and therefore h(sQr
2
) = sQr

1
.

We now continue towards the characterization of equivalence. We introduce some
notations first. Let (q, a) be a state-label pair in τ and let (q, a)→ (q1, a1, ψ1), . . . ,
(qk, ak, ψk) be the corresponding rule in τ . We partition indices [1, k] and associate
Sτ (q, a) = {S1, S2, . . . , Sℓ} of [1, k] with (q, a) such that (i) each Si consists of
consecutive indices in [1, k]; (ii) if s, t ∈ Si then as = at; and (iii) no two Si and
Sj ’s can be merged and still satisfy (i) and (ii). We denote by lab(Si) the (unique)
label as of the indices in Si. Let Gτ be the dependency graph of τ . We define the
type of a node v(q, a) in Gτ as the list [lab(S1), . . . , lab(Sℓ)]. Let ρ be a path in
Gτ starting from the root node of Gτ . Denote by Qρ the composition of all queries
along ρ; assume that ρ ends in v(q, a). We denote by Qi

ρ the CQ query obtained
by composing ψi, i.e., the ith query in the rhs of the rule for (q, a) in τ , with Qρ.
We assume that Gτ does not contain nodes that are not reachable from the root r,
and moreover, that for each path ρ in Gτ , Qρ is satisfiable (note that the latter can
be tested in a similar way as in the proof of Theorem 1 (1)). Two graphs Gτ1

and
Gτ2

are called equivalent, denoted by Gτ1

∼= Gτ2
, if there exists a homeomorphism

h : Gτ1
→ Gτ2

such that its inverse h−1 exists and is also a homeomorphism and
moreover both h and h−1 preserve the labels and types of the nodes. It is natural
to extend the notion of ≡c and Claim 3 to union of CQ queries. We then have the
following characterization of transducer equivalence:

Claim 4. For any two publishing transducers τ1 and τ2 in PTnr(CQ, tuple, nor-
mal) we have that τ1 ≡ τ2 iff (i) Gτ1

∼= Gτ2
and (ii) for all paths ρ in Gτ1

, each
Si ∈ Sτ1

(q, a), Ji ∈ Sτ2
(h(q, a)),

⋃

j∈Si
Qj

ρ ≡c

⋃

j∈Ji
Qj

h(ρ) in case ρ ends in (q, a)

with a not equal to text; and
⋃

j∈Si
Qj

ρ ≡
⋃

j∈Ji
Qj

h(ρ) otherwise. (Here, h is a

homomorphism between Gτ1
and Gτ2

.)

Proof. Suppose that there exists an instance I of R such that τ1(I) 6= τ2(I);
let v be the first node encountered in the depth-first traversal of τ1(I) such that
children(v) is different from children(w), where w is the node in τ2(I) corresponding
to v. Assume that τ1 (resp. τ2) is in state (q, a) (resp. (q′, a)) when reaching v
(resp. w). Such an instance I exists if either v(q, a) and v(q′, a) have different types;
or they have the same type but some labels appear with a different multiplicity in
children(v) and children(w). This clearly implies that either condition (i) or (ii)
does not hold, by Claim 3. Conversely, using the monotonicity of CQ queries and
the assumption that all queries Qρ along paths ρ in Gτ1

and Gτ2
are satisfiable,

it is easily verified that the failure of one of the conditions (i) or (ii) implies the
existence of an instance I on which τ1 and τ2 disagree, again by Claim 3.
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As will be shown in Theorem 3(1), composed CQ queries can be rewritten as a
program in nonrecursive LinDatalog, in ptime. A LinDatalog program consists
of rules of the form: p(x̄)← p1(x̄1), . . ., pn(x̄n), such that at most one pi is an IDB

predicate (i.e., relation name), and we allow some pj to be 6= (see e.g., [Abiteboul
et al. 1995]). Let Q1

ρ ∪ · · · ∪ Q
p
ρ be a union of conjunctive queries as in Claim 4.

It is possible to encode each composed query Qi
ρ = Qi

ni
◦ . . . ◦Qi

1 in LinDatalog

because in each Qi
j, although there may be multiple occurrences of Reg, all of these

indicate the same single tuple since the transducer is in PTnr(CQ, tuple, O); as a
result, for each Qi

j we can define an IDB predicate pi
j, such that pi

j has a unique

rule and in the rhs of the rule there is a unique IDB predicate pi
j−1, which encodes

Qi
j−1. As a consequence, we obtain a LinDatalog program Πi for each Qi

ρ; the
combination of these in a single non-recursive program Π encodes the union of the
Qi

ρ’s.
We call a LinDatalog program deterministic if each IDB predicate p(x̄) has

only one rule (including the initialization rule). For a LinDatalog program Π
consisting of IDB predicates p1, . . . , pn, we define a deterministic sub-query Π′ of
Π to be a deterministic nonrecursive LinDatalog program such that Π′ consists
of p1, . . . , pn and moreover, for each i ∈ [1, n], Π′ contains only a single rule for pi

from Π.
Furthermore, a straightforward induction on n suffices to show the following

claim. We remark that if Π is not linear or not deterministic, the claim does not
hold since some Qj may appear in Qn exponentially many times.

Claim 5. For each nonrecursive deterministic LinDatalog program Π, a CQ

query Q can be computed in O(|Π|) time such that Q and Π are equivalent.

It remains to show that for given transducers τ1 and τ2 we can check the con-
ditions in Claim 4 in Πp

3. We give an algorithm for testing that τ1 and τ2 are not
equivalent, as follows. (a) Guess a mapping h from Gτ1

to Gτ2
. (b) Check whether

h and h−1 make Gτ1

∼= Gτ2
. If not, reject. (c) If Gτ1

∼= Gτ2
, guess a path ρ from

the root of Gτ1
, and compute nonrecursive LinDatalog programs Πi

1 encoding the
union of Qi

ρ’s, and Πi
2 for h(ρ) in Gτ2

, as described in Claim 4. Note that Πi
1’s and

Πi
2’s can be computed in ptime. (d) Check whether all Πi

1 and Πi
2 are (c-) equiv-

alent as described in Claim 4. One can easily verify that ≡c and Claim 3 can be
extended to nonrecursive LinDatalog. By the definition of ≡c, (c-)equivalence
can be checked in terms of equivalence ≡, and thus below we shall focus on ≡ only.
Provided that Πi

1 and Πi
2 are not equivalent for some i, then we can conclude that

τ1 and τ2 are not equivalent. If step (d) is in Σp
2, we can decide whether τ1 and τ2

are not equivalent in Σp
3 = npΣp

2 , and thus its complement, testing the equivalence
of two transducers in PTnr(CQ, tuple, normal), is in Πp

3.
For step (d), it is easy to verify that Πi

1 and Πi
2 are not equivalent iff either there

exists a deterministic sub-query (Πi
1)

′ of Πi
1 that is not contained in Πi

2, or vice
versa. Leveraging this, in step (d) we guess a deterministic sub-query (Πi

1)
′ of Πi

1

and check whether (Πi
1)

′ is not contained in Πi
2, and similarly with the roles of Πi

1

and Πi
2 reversed. By Claim 5, (Πi

1)
′ is ptime definable as a CQ query Q. The next

claim shows that deciding whether Q is not contained in Πi
2 is in Σp

2, as desired.

Claim 6. It is in Πp
2 time to determine, given a CQ query Q and a nonrecursive

LinDatalog program Π, whether or not Q is contained in Π.
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Proof. Proposition 2.10 of [van der Meyden 1997] shows that the combined com-
plexity of model checking for indefinite order databases and CQ queries, i.e., check-
ing whether an indefinite order database is a model of a CQ query, is ptime equiv-
alent to containment of CQ queries with 6=. We first generalize this and show that
the containment of CQ queries with 6= in nonrecursive LinDatalog programs is
ptime reducible to model checking for indefinite order databases and nonrecursive
LinDatalog. We then show that the combined complexity of the latter is in Πp

2.
Given a CQ query Q = ∃ȳψ(x̄, ȳ) (with 6=) and a nonrecursive LinDatalog

program Π(x̄), we define an indefinite order database D and a nonrecursive Lin-
Datalog program Ψ. As in [van der Meyden 1997], let D consist of atoms in the
conjunction ψ(ā, b̄), where ā and b̄ are fresh constant of appropriate sorts (with
orderings to code 6=), and define Ψ to be Π(ā). Obviously, if Q is contained in Π,
then every model (database) of D satisfies Π(ā). Conversely, suppose that D is a
model of Π(ā). Then every model of D satisfies Π(ā). Since D is the “canonical
database” and model checking ranges over all models of D, Q is contained in Π.
Hence the containment problem is ptime reducible to model checking for indefinite
order databases and nonrecursive LinDatalog programs.

We next give a Πp
2-time model-checking algorithm. Given any indefinite order

database D and nonrecursive LinDatalog program Π, the algorithm guesses a
minimal model M of D, and checks whether M does not satisfy Π (see [van der
Meyden 1997] for discussions of minimal models). One can verify that checking
whether or not M satisfies Π can be done in np. Thus the complement of the model
checking problem is in Σp

2. Hence the combined complexity for model checking of
indefinite order databases and nonrecursive LinDatalog programs is in Πp

2.

PTnr(CQ, tuple, virtual). Given two transducers τ1, τ2 in PTnr(CQ, tuple, vir-
tual), we construct in ptime equivalent τ ′1, τ

′
2 without virtual nodes such that the

Πp
3-algorithm for the equivalence problem of PTnr(CQ, tuple, normal) can be used.
Given a transducer τ in PTnr(CQ, tuple, virtual), we define an equivalent τ ′

such that it contains normal output nodes only but some of its queries may be in
nonrecursive LinDatalog rather than CQ. As above, let Gτ be the dependency
graph of τ extended with an order on the vertices. We refer to nodes labeled with a
virtual tag as virtual nodes, and as normal nodes otherwise. We define a dependency
graph G′

τ by removing virtual nodes from Gτ as follows. For any two normal nodes
n1 = v(q, a), n2 = v(q′, a′) in Gτ , let G(n1, n2) be the largest connected sub-graph
of Gτ such that except n1, n2, it consists of only virtual nodes, and for any virtual
node in the graph, it is on a path from n1 to n2. Since τ is nonrecursive, G(n1, n2)
is a rooted dag in which n1 is the root and n2 is the sink. We say that G(n1, n2)
is nonempty if it has at least one virtual node. The graph G′

τ is obtained from
Gτ by substituting a new edge (n1, n2) for G(n1, n2) in Gτ as long as G(n1, n2) is
nonempty, when (n1, n2) range over all pairs of normal nodes in Gτ . The query
associated with (n1, n2) is equivalent to the union of the composition of CQ queries
along each path from n1 to n2. By treating G(n1, n2) as a dependency graph, n1

as the root and n2 as the output node, Theorem 3(1) gives a method to define the
query in nonrecursive LinDatalog. Then from G′

τ we can derive transducer τ ′ as
follows: for each v(q, a), define the rule (q, a) → (q1, a1, ψ1) . . . (qk, ak, ψn), where
(v(q1, a1), . . . , v(qk, ak)) is the list of children(v(q, a)), as ordered in Gτ , and ψ is
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the query associated with the edge from v(q, a) to v(qi, ai). It is straightforward to
show that τ and τ ′ are equivalent, and that τ ′ can be constructed in ptime.

We now obtain an algorithm for testing the equivalence of τ1 and τ2 as follows.
First, construct equivalence τ ′1 and τ ′2 without virtual nodes, as described above,
in ptime. Then check the equivalence of τ ′1 and τ ′2 by using the Πp

3 algorithm for
PTnr(CQ, tuple, normal) given above. It suffices to observe that the algorithm for
PTnr(CQ, tuple, normal) trivially extends to transducers in which some queries are
in non-recursive LinDatalog rather than CQ.

6. EXPRESSIVENESS OF PUBLISHING TRANSDUCERS

In this section, we characterize the expressive power of publishing transducers
in terms of relations-to-relation mappings (i.e., relational query languages) and
relations-to-tree mappings (i.e., tree generation).

6.1 Tree Generation versus Relational Languages

Although publishing transducers define mappings from relational databases to trees,
they can also be considered as a relational query language mapping relations to
relations. To this end, consider a publishing transducer τ . For the rest of this
section, we fix a designated output label ao, which is not a virtual tag. For any
instance I of R, the τ -transformation on I yields a final tree ξ with local storage in
TreeQ×Σ, from which the output Σ-tree τ(I) is obtained by removing local stores
and states (recall from Section 3). The output relation induced by τ on I, denoted
by Rτ (I), is then defined to be the union of the registers Regao

(v) for all nodes
v labeled ao in ξ. Therefore, we refer to τ as a relational query when τ is viewed
as a mapping from instances I to Rτ (I). When τ is viewed as a relation-to-tree
mapping, we refer to τ as a tree generating mapping.

We want to compare the expressiveness of one class A = PT(L1, S1, O1) with
that of another class B = PT(L2, S2, O2) both as a tree generation and a relational
query language. We say thatA is contained in B as a tree/relational query language,
denoted by A ⊆ B, if for any τ1 in A defined for a relational schema R, there exists
τ2 in B for the same R such that they define the same tree/relational query. The
two classes are said to be equivalent in expressive power, denoted by A = B, if
A ⊆ B and B ⊆ A. We say that A is properly contained in B, denoted by A ⊂ B,
if A ⊆ B but not A = B. These notions extend to comparing PT(L, S,O) versus
other tree generating formalisms, and versus relational query languages.

We also characterize PT(L, S,O) with respect to complexity classes. Treating
PT(L, S,O) as a relational query language, for example, we consider the recognition
problem for its transducers τ : given a tuple ū and an instance I of the schema for
which τ is defined, it is to determine whether ū is in the relation Rτ (I). We say
that PT(L, S,O) captures a complexity class C if the recognition problem for all
transducers in PT(L, S,O) is in C and moreover, for any query q whose recognition
problem is in C, there exists τ in PT(L, S,O) defined on the same schema R as q,
such that q and τ return the same output relation on all instances of R.

Outline. We study the expressive power of all the classes PT(L, S,O) defined
in Section 3 with respect to relational query and tree generation languages, in
Sections 6.2 and 6.3, respectively. We then investigate the expressive power of
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existing XML publishing languages in Section 6.4. The results in this section hold
irrespectively of whether the queries in L have explicit access to the order ≤ on the
domain D, unless explicitly stated otherwise.

6.2 Expressiveness in Terms of Relational Queries

We start by treating publishing transducers as a relational query language. We
characterize some of the fragments in terms of known query languages and com-
plexity classes. From these, we can then compare the expressive power of the
different publishing transducer fragments.

We review three fragments of datalog. One fragment is linear datalog (see e.g.,
[Abiteboul et al. 1995]), denoted by LinDatalog, which we have seen in the proof
of Theorem 2. It consists of datalog programs in which each rule is of the form:
p(x̄)← p1(x̄1), . . . , pn(x̄n), and moreover, at most one pi is an IDB predicate (i.e.,
relation name). We allow some pj to be 6=. We assume an output relation ans

containing the result of the query expressed by the program. Another fragment is
LinDatalog(FO) (see e.g., [Grädel 1992]) which extends LinDatalog by allow-
ing pi to be an arbitrary FO-formula over the EDB predicates. In [Grädel 1992] it
is shown that LinDatalog(FO) captures nlogspace over ordered databases.

Recall from Section 3, that we do not assume an ordering to be available to the
query language at hand.

Theorem 3. When treated as relational query languages,

(1 ) PT(L, S, virtual) = PT(L, S, normal),

(2 ) PT(CQ, tuple, O) = LinDatalog.

(3 ) PT(FO, tuple, O) = LinDatalog(FO) ⊂ nlogspace.

(4 ) PT(FO, relation, O) and PT(IFP, relation, O) capture pspace.

(5 ) PT(IFP, tuple, O) = IFP.

Here the output O can be either virtual or normal.

Proof. The proof is referred to the Appendix.

Proposition 4 relates the different fragments of transducers. While Theorem 3(1)
tells us that virtual nodes do not add expressive power and thus we only need to
consider PT(L, S, normal), Proposition 4 shows that we need to treat publishing
transducers with relation stores and those with tuple stores separately (3, 5, 7).
Moreover, while IFP does not add expressive power over FO in PT(L, relation, O),
it does in PT(L, tuple, O) (4, 2). Moreover, replacing CQ with FO in PT(CQ, S,O)
leads to increase in expressiveness when S is either relation or tuple (1, 6).

Proposition 4. When treated as relational query languages,

(1) PT(CQ, tuple, O) ⊂ PT(FO, tuple, O)
(2) ⊆ PT(IFP, tuple, O)
(3) ⊂ PT(FO, relation, O)
(4) = PT(IFP, relation, O),

(5) PT(CQ, tuple, O) ⊂ PT(CQ, relation, O)
(6) ⊂ PT(FO, relation, O),

(7) PT(CQ, relation, O) 6⊆ PT(FO, tuple, O),
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The containment in statement (2) is proper if nlogspace 6= ptime.

Proof. The proof is referred to the Appendix.

6.3 Tree Generating Power

For tree generation, we provide separation and equivalence results for various classes
of publishing transducers, and establish their connection with logical transduc-
ers [Courcelle 1994] as well as with regular tree languages (specialized DTDs).

Equivalence and separation. As opposed to Proposition 4, Proposition 5 below
shows that when it comes to tree generation, virtual nodes do add expressive power
to publishing transducers. Moreover, if L ⊂ L′, then PT(L′, S, normal) properly
contains PT(L, S, normal) whereas in the relational query setting, PT(IFP, rela-
tion, normal) = PT(FO, relation, normal). The other results in Proposition 5 are
comparable to their counterparts in Theorem 4. In particular, it shows that PT(FO,
relation, virtual) = PT(IFP, relation, virtual).

Proposition 5. For tree generation,

(1) PT(L, S, normal) ⊂ PT(L, S, virtual)

(2) PT(L, S, normal) ⊂ PT(L′, S, normal) if L ⊂ L′

(3) PT(CQ, tuple, virtual) ⊂ PT(FO, tuple, virtual)
(4) ⊆ PT(IFP, tuple, virtual)

(5) PT(CQ, relation, virtual) ⊂ PT(FO, relation, virtual)
(6) = PT(IFP, relation, virtual)

(7) PT(L, tuple, O) ⊂ PT(L, relation, O)

(8) PT(L, relation, normal) 6⊆ PT(L′, tuple, virtual)

(9) PT(L, tuple, virtual) 6⊆ PT(L′, relation, normal) with L′ ⊂ L

(10)PT(CQ, tuple, virtual) 6⊆ PT(CQ, relation, normal)

(11)PT(FO, tuple, virtual) 6⊆ PT(FO, relation, normal)

where L and L′ are in {IFP,FO,CQ }, S is tuple or relation, and O is normal or
virtual. The containment in (5) is proper if ptime 6=nlogspace.

Proof. (1) The inclusion is immediate. To show proper containment it suffices
to show that there is a transducer τ in PT(CQ, tuple, virtual) not expressible in
PT(IFP, relation, normal). Consider the transducer τ1 in the proof of Proposition 1
that unfolds a graph to a tree (the stop condition ensures that the process stops
when cycles are involved). Modify this transducer in such a way that it, using
virtual nodes, outputs a tree of depth one gathering all expanded nodes in in-order
below the root. As shown in Proposition 1(3), there is an input graph In such that
τ1(In) contains 2n nodes (all directly below the root). In contrast, any transducer
in PT(IFP, relation, normal) can only output polynomially many nodes (in the size
of the input graph) below the root. Therefore, it follows that in fact PT(CQ, tuple,
virtual) 6⊆ PT(IFP, relation, normal).

(2) Let q be a Boolean query in L′ \L. We then simply define a transducer τq which
produces a tree r(a) ,i.e., a tree consisting of a root node (labeled with r) with a
single child node (labeled with a), if q evaluates to true on the input database, and
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it produces a single-node tree r otherwise. Clearly, τq is not expressible in PT(L,
S, normal) as q is not definable in L′.

(3) Let q be a Boolean query definable in FO but not in LinDatalog. Such a
query can always be found as LinDatalog only defines monotone queries. De-
fine a transducer τq which produces a tree r(a) if q evaluates to true on the input
database, and it produces a single-node tree r otherwise. Assume there is a trans-
ducer τ in PT(CQ, tuple, virtual) equivalent to τq. Then modify τ into a transducer
τ ′ such that it outputs a node ao with the empty tuple in its register whenever it
outputs an a. In addition, make all virtual nodes non-virtual. Then, τ ′ defines q
which means by Theorem 3(1) that q is definable in LinDatalog. Contradiction.

(4) We show that PT(FO, tuple, virtual) ⊂ PT(IFP, tuple, virtual) if ptime 6=
nlogspace. Let q be a Boolean IFP query over ordered databases (a ptime query)
not in nlogspace. Consider again the transducer τq which produces a tree r(a) if
q evaluates to true on the input database, and it produces a trivial tree r otherwise.
Assume there is an equivalent transducer in PT(FO, tuple, virtual), it could easily
be extended to compute q as a relation query. Indeed, simply output a node labeled
ao with the empty tuple when a is output. This contradicts Theorem 3(3).

(5) Let τ be a transducer in PT(FO, relation, virtual) defining a Boolean relational
query q which is not in PT(CQ, relation, virtual). By Theorem 4(1) and Proposi-
tion 4(6) such a transducer exists. Modify τ into τ ′ as follows. Change the arity of
the register of the output label ao from nullary to unary such that Rτ ′(I) is non-
empty iff q(I) is true. Modify right-hand sides of the rules such that whenever an
ao is output with non-empty register, a b-labeled first-child is output as well. The
latter is clearly definable in FO. Here b is a new label. Denote by q′ the relation-
to-tree query expressed by τ ′. We now argue that q′ cannot be defined in PT(CQ,
relation, virtual). Assume there is such a transducer τ ′′. Then, τ ′′ and τ ′ define
the same relation-to-tree mappings. But, as the non-emptiness of the register of
an ao-labeled nodes is encoded in the tree, both τ ′′ and τ ′ also define the same
relational query q which leads to contradiction.

(6) To simulate a transducer in PT(IFP, relation, virtual) by one in PT(FO, relation,
virtual) it suffices to remark that the evaluation of an IFP-formula can be simulated
by a (possible unbounded) number of iterations of FO-formulas. The simulation is
conducted by constructing a linear tree such that each node in the tree performs
one iteration. Furthermore, each node in the linear tree is virtual.

(7) The containment is proper because transducers in PT(L, relation, O) are capa-
ble of generating trees of exponential depth even when L =CQ (Proposition 1(4))
whereas transducers in PT(L, tuple, O) can only induce trees of polynomial depth
(Proposition 1(2)).

(8) Proof is similar to (7).
(9) Take a sentence ψ ∈ L not definable in L′. Then the publishing transducer
defined by the rule δ(q0, r) → (q, a, ψ) and δ(q, a) → ε. Clearly, the latter is not
definable in PT(L′,relation,normal) without ψ being definable in L′.
(10–11) Take R as a binary relation and let s and t be two constants. Consider the
publishing transducer τ in PT(CQ,tuple,virtual) defined by the rules: δ(q0, r) →
(q, v, R(s, x)) and δ(q, v) → (q, v, ∃yRegv(y) ∧ R(y, x))(q, a, ∃yRegv(y) ∧ y = t).
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Here, v is a virtual label while a is not. Then, τ outputs the tree r(a · · · a
︸ ︷︷ ︸

k

) where k is

the number of simple paths from s to t. As it cannot be checked in CQ or FO whether
there is a (simple) path from s to t, τ is not definable in PT(CQ,relation,normal)
and PT(FO,relation,normal).

Logical transducers. For a logic L, an L-tree-transduction defines a mapping
from relations over a schema R to a tree with a sequence of L-formulas φe, φ<

and (φa)a∈Σ such that on every R-structure I, φe(I), φ<(I) and φa(I) define the
edge relation, the ordering on the siblings, and the a-labeled nodes of the tree,
respectively. To express transformations of exponential size increase (like publishing
transducers can), φe(I) defines a dag, and we consider its unfolding as a tree when
making a comparison with publishing transducers. First-order (resp. second-order)
transductions are those where nodes of the output tree are k-ary tuples (resp. k-ary
relations) over the input structure, for some fixed k. In a way similar to logical
transductions, we can also define C-transductions (both first and second order) for
a complexity class C where there are C-Turing machines to decide the relations φe,
φ< and (φa)a∈Σ. In the sequel, we characterize the expressive power of publishing
transducers in terms of logical first- and second-order transductions and ptime and
pspace transductions which we introduce below.

An immediate mismatch between transducers and transductions arises: logical
first-order transductions of a fixed arity can only increase the size of the output
structure by a polynomial, whereas publishing transducers (even with tuple regis-
ters) can generate output trees of exponential size (see Proposition 1).

Logical first-order transductions. Let R be a relational schema and L a logic over
R. For any instance I of R, we denote by adom(I) the set of constants appearing in
I. For a formula φ(x1, . . . , xk) in L, we denote by φ(I) the relation {d̄ | I |= φ(d̄)}.

For any natural number k, we define an L-transduction of width k as a tuple

T = (φdom(x̄), φroot(x̄), φe(x̄; ȳ), φ<(x̄; ȳ; z̄), φfc(x̄; ȳ), φns(x̄, ȳ), (φa(x̄))a∈Σ) ,

consisting of formulas in L and x̄, ȳ, z̄ are k-ary variables. Moreover, these formulas
satisfy the following constraints. For any instance I of R, we have that

(a) φe(I) defines a directed, singly rooted, acyclic graph over k-tuples, i.e., a dag;

(b) φroot(I) contains one element and this element is the root of the dag;

(c) for all d̄, d̄′, d̄′′ ∈ adom(I)k, if I |= φ<(d̄, d̄′, d̄′′) then (d̄, d̄′) ∈ φe(I), (d̄, d̄′′) ∈
φe(I), and φ<(d̄, ȳ, z̄) is a total order, i.e., φ< defines an ordering on the children
of each x̄;

(d) φfc(I) and φns(I) are the first-child and next-sibling relations induced by φe, φ<;

(e) for every a and a′ in Σ such that a 6= a′, φa(I) ∩ φa′(I) = ∅. That is, every
k-tuple has at most one label; and finally,

(f) φdom(I) defines the domain of the tree; i.e., the projection of any of the above
relations on any column is always a subset of φdom(I). Moreover, φdom(I) =
⋃

a∈Σ φa(I).

In summary, on any instance I of R, the transduction T defines a dag with domain
φdom(I), edge-relation φe(I), ordering on siblings φ<(I), and labels φa(I). Note
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that φroot, φfc, and φns are definable in FO from φe and φ<, but not in CQ.
As described above, we see the dag as a representation of a tree. We define

T (I) to be the tree obtained by unfolding the dag. We remark that we only
consider those nodes that are reachable through the edge relation from the root
node. Unreachable nodes are discarded.

We say that an L-transduction T is fixed-depth if there is an ℓ such that for every
input I, T (I) is a tree of depth at most ℓ.

Logical second-order transductions. For a logic L and a natural number k, we define
a second-order L-transduction of width k as a tuple

T = (φdom(X), φroot(X), φe(X ;Y ), φfc(X,Y ), φns(X,Y ), φ<(X ;Y ;Z)), (φa(X)a∈Σ)

of L-formulas over a schema R extended with (an unbounded number of) second
order variables X , Y , Z, . . . , of arity k. An L-formula φ(X1, . . . , Xn) on an input
structure I then defines the set φ(I) = {(Ā1, . . . , Ān) | I |= φ(Ā1, . . . , Ān)}, where
each Āi has arity k. Similar to logical first-order transductions, the formulas in T
satisfy the following constraints ensuring that the output is a labeled ordered dag.
That is, T defines the dag with domain φdom(I), edge-relation φe(I), ordering on
siblings φ<(I), and labels φa(I),

C-transductions. A first-order C-transduction of width k is defined to be a tuple of
C-TMs (Me,Mroot,Mfc,Mns, M<, (Ma)a∈Σ) such that for every I,

(a) Me(I) = {(d̄, d̄′) | (I, d̄, d̄′) is accepted by Me} defines a dag;

(b) Mroot(I) = {d̄ | (I, d̄) is accepted by Mroot} contains the root of the dag;

(c) M<(I) = {(d̄, d̄′, d̄′′) | (I, d̄, d̄′, d̄′′) is accepted by M<} and for all d̄, d̄′, d̄′′ ∈
adom(I)k, when (d̄, d̄′, d̄′′) ∈ M<(I) then (d̄, d̄′) ∈ Me(I) and (d̄, d̄′′) ∈ Me(I), and
for each d̄, {(d̄′, d̄′′) | (d̄, d̄′, d̄′′) ∈M<} is a total order;

(d) Mfc(I), Mns(I) are the first-child and next-sibling relation induced by Me, M<;

(e) Ma(I) are such defined that each node in the domain has precisely one label.

Second-order C-transductions are defined in a similar way.

Theorem 4. (1 ) When L ranges over CQ, FO and IFP, every L-transduction
is definable in PT(L, tuple, virtual).

(2 ) When L ranges over FO and IFP, every transducer in PTnr(L, tuple, virtual)
is definable as a fixed-depth L-transduction.

(3 ) There is a recursive transducer in PT(FO, tuple, normal) that is not definable
as an FO-transduction.

(4 ) When L ranges over CQ, FO and IFP, over unordered trees, fixed-depth L-
transductions are equivalent to PTnr(L, tuple, O).

(5 ) Over ordered input structures, PT(FO, relation, virtual) and PT(IFP, tuple, vir-
tual) contain the second-order pspace- and first-order ptime-transductions.

Proof. (1) We need to show that given an L-transduction T , there always exists
a transducer τT in PT(L,tuple,virtual) such that τ(I) = T (I) for any instance I.

Let T = (φdom, φroot, φe, φ<, φfc, φfs, (φa)a∈Σ) be an L-transduction of width k.
Let Σ = {a1, . . . , an}. We then define the transducer τT = (Q,Σ,Θ, q0, δ, Σe),
where Q = {q0, q, q1, q2), Θ(a) = k for all a, and δ consists of the following rules:

 



40 ·

(q0, r)→ (q, a1, φroot(x̄) ∧ φa1
(x̄)), . . . , (q, an, φroot(x̄) ∧ φan(x̄)).

The above rule takes the root node as defined by T and puts it with its associated
label as a child of the (default) root node r. The next rule selects the first and
second child of an already generated node using a virtual tag v:

(q, a)→ (q1, v,∃ȳReg(ȳ) ∧ φfs(ȳ, x̄)), (q2, v,∃ȳ∃z̄Reg(ȳ) ∧ φfs(ȳ, z̄) ∧ φns(z̄, x̄)).

The actual node corresponding to a first child with the correct label is produced by

(q1, v)→ (q, a1, Reg(x̄) ∧ φa1
(x̄)), . . . , (q, an, Reg(x̄) ∧ φan(x̄)).

Finally, the rule (q2, v) → (q, a1, Reg(x̄) ∧ φa1
(x̄)), . . . , (q, an, Reg(x̄) ∧ φan

(x̄)),
(q2, v, ∃ȳ∃z̄Reg(ȳ)∧φns(z̄, x̄)) generates the node corresponding to a non-first-child
and selects the following sibling. Observe that this rule is recursive. One can show
that for any instance I, τ(I) is equal to T (I) rooted under an r-node.

(2) We show that given a non-recursive publishing transducer τ = (Q,Σ,Θ, q0, δ,Σe)
in PTnr(L,tuple,virtual) for L either FO or IFP, there exists an L-transduction Tτ

such that on any instance I, τ(I) = Tτ (I). Moreover, the construction shows that
Tτ can be assumed to be fixed-depth.

We may assume that we have constants for every state in Q and every label in
Σ. Indeed, we can always simulate these by introducing registers with higher arity.
Let k′ be the largest arity of a register in τ and let k = k′ + 2. We now construct
a fixed-depth L-transduction of width k as follows.

First, we observe that the first column and second column of a node (i.e., a
k-tuple) will always refer to a state in Q and a label in Σ, respectively.

We now define the different formulas constituting the L-transduction Tτ . We
define φdom to be simply true. Moreover, for every a ∈ Σ, we let φa(x1, x2, x̄) ≡
x2 = a. The edge relation is computed in two stages.
In the first step, we define

φ
1
e(x1, x2, x̄; y1, y2, ȳ) ≡

_

(q,a)→(q1,a1,φ1),...,(qn,an,φn)∈δ

x1 = q∧x2 = a∧
`

n
_

i=1

y1 = q1∧y2 = ai∧φ
′
i(ȳ)

´

,

where each φ′i is obtained from φi (i.e., the ith formula in the rule in δ under
consideration) by replacing each Reg(z̄) by x̄ = z̄. It is easily verified that the
formula φ1

e defines the correct dag but with virtual nodes.
Therefore, in the second step, we define φe such that it skips all virtual nodes in

the dag defined by φ1
e. For this we define

φe(x1, x2, x̄; y1, y2, ȳ) ≡ ¬
^

a∈Σe

φa(x1, x2, x̄) ∧ ¬
^

a∈Σe

φa(y1, y2, ȳ) ∧ φ
1
e ∗ (x1, x2, x̄; y1, y2, ȳ)

∧¬∃z̄(φ1
e ∗ (x1, x2, x̄; z̄) ∧ φ

1
e ∗ (z̄; y1, y2, ȳ) ∧ ¬

^

a∈Σe

φa(z̄)).

Here, φ1
e∗ denotes the transitive closure of φ1

e which is expressible in FO because
the depth of the output tree depends on τ and not on the input structure (recall
that τ is non-recursive). Moreover, because τ is non-recursive, there can be no path
in the output tree where the same state-label pair appears twice. Hence, no branch
is short-circuited by the stop-condition.

It can be easily verified that for any instance I, τ(I) = T (I).
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(3) We here provide an example of a recursive transducer in PT(FO, tuple, normal)
that is not expressible as an FO-transduction. Let the schema consist of an edge
relation E and two constants s and t. Let τ be the transducer that outputs the
unfolding of E starting from s, and that stops when t or a duplicate node is reached.
When t is reached a b-labeled leaf node is returned. This can indeed be easily
achieved by an PT(FO,tuple, normal)-transducer consisting of the following rules:
(q0, r) → (q, a, x = s), (q, a) → (q, a, ∃yReg(y) ∧ E(y, x)), (q, b, ∃yReg(y) ∧ y = t),
and the rule for (q, b) has an empty rhs. However, suppose that this transformation
is definable by an FO-transduction. Then the FO-sentence “there is a leaf with
label b” expresses over E that there is a path from s to t, which is known not to be
expressible in FO. Hence, there exists no equivalent FO-transduction for τ .

(4) The containment of PTnr(CQ,tuple,O) in fixed-depth L-transduction can now be
verified along the same lines as (2) since we do not need to express the stop condition
for nonrecursive transducers, which is not definable in a monotone language. Be-
cause of this and (2), it is sufficient to show that given a fixed-depth L-transduction
T , there exists an equivalent publishing transducer τT in PTnr(L,tuple,O).

Let T = (φdom, φroot, φe, φ<, φfc, φns, (φa)a∈Σ) be a fixed-depth L-transduction.
Let ℓ be the depth of the transduction. Assume that Σ = {a1, . . . , an}. We then
define the transducer τT = (Q,Σ,Θ, q0, δ), where Q = {q0, q1, . . . , qℓ}, Θ(a) = k
for all a, and δ consists of the following rules. The start rule generates ai nodes:
(q0, r)→ (q, a1, φroot(x̄)∧φa1

(x̄)), · · · , (q, an, φroot(x̄)∧φan
(x̄)). And for all i ∈ [1, ℓ]

and a ∈ Σ, we define the rule (qi, a)→ (qi+1, a1, φ1(x̄)), · · · , (qi+1, an, φn(x̄)), where
φi(x̄) is ∃ȳ(Reg(ȳ)) ∧ φe(ȳ, x̄) ∧ φai

(x̄). It is not hard to see that for every I, τ(I)
equals T (I) rooted under an r-symbol when disregarding the order of siblings.

(5) Let T = (Mdom,Mroot,Me,Mfc,Mns,M<, (Ma)a∈Σ) be a pspace-transduction.
Since we assume that the domain is ordered, for every pspace Turing machineM
there exists a Partial Fixed Point (pfp) sentence ξM over the relational schema ex-
tended with symbols X and Y such that (I,X, Y ) is accepted byM iff (I,X, Y ) |=
ξM [Flum and Ebbinghaus 1999]. Every such sentence can be written as ∃x̄pfp(χ)x̄
where χ is first-order and total, i.e., it always reaches a fixpoint [Flum and Ebbing-
haus 1999]. Although registers in transducers in PT(FO,relation,virtual) can only
contain a single relation, it is easy to encode a finite number of them with one
relation. For instance, all tuples where the first column contains a specific constant
correspond to one relation. Thus we may assume several registers. We can now
simulate in PT(FO,relation,virtual) a formula ∃x̄pfpZ(χ)x̄ where χ is over X , Y ,
the relational schema and the recursion variable Z. Indeed, we start with Z = ∅,
and we associate with each iteration step of χ a transition in the transducer that
outputs a virtual node. When a fixpoint is reached, we test whether it is nonempty.

More specifically, the start rule (q0, r) → (q, v, φ(∅, ȳ)) tries to find the relation
Y for which Y ∈ Mroot. It hence enumerates every relation Y and tests whether
Y ∈ Mroot by simulating the pfp-sentence. If so the current node is output with
the corresponding non-virtual label. Relations (of arity k) can be enumerated by

considering each relation as a number between 0 and 2nk

. When a node has been
output with a non-virtual label and register content X , the transducer tests for
every relation Y whether (X,Y ) ∈Mfc. Similarly for all next-sibling relations.

The proof that PT(IFP,tuple,virtual) contains the first-order ptime-transductions
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on ordered structures is similar, exploiting the correspondence of IFP to ptime.

Regular tree languages. Recall that a DTD d over Σ is a mapping from Σ-
symbols to regular expressions over Σ. A Σ-tree t conforms to d iff for each a-node
v in t, the list of labels of the children of v is a string in d(a). It is known that
DTDs define the set of local tree languages, Relax NG corresponds to the regular
tree languages, and XML Schema lies in between [Martens et al. 2006]. The class of
regular tree languages is conveniently abstracted by specialized or extended DTD

s [Papakonstantinou and Vianu 2000], also referred to as generalized DTDs [Maneth
and Neven 1999]. An extended DTD D over Σ is a triple (Σ′, d, µ), where Σ ⊆ Σ′,
µ is a mapping Σ′ 7→ Σ, and d is a DTD over Σ′. A Σ-tree t conforms to D if there
exists a Σ′-tree t′ that satisfies d and moreover, t = µ(t′), where µ is canonically
extended from labels to trees. We denote by L(D) the set of all Σ-trees conforming
to D. Another characterization of the class of unranked regular tree languages is
in terms of the MSO definable tree languages (e.g., [Neven and Schwentick 2002]).
A tree language L is said to be definable in PT(L, S, O) if there exists a publishing
transducer τ in the class defined for some relational schema R such that L = τ(R).

The next result tells us that PT(FO, S, virtual) is capable of defining all extended
DTDs, and thus all regular unranked and MSO definable tree languages. In contrast,
PT(CQ, S,O) does not have sufficient expressive power to define even DTDs.

Theorem 5. Every extended DTD over Σ is definable in PT(FO, tuple, virtual).
There exist DTDs that are not definable in PT(CQ, relation, virtual).

Proof. We first show that for any normalized DTD d there exists a transducer τ
in PT(FO,tuple,normal) such that L(d) = τ(R). We then modify this construction
for arbitrary DTDs by allowing for virtual nodes in the transducer. We conclude
by showing that a slight modification entails the result for extended DTDs as well.
As a result PT(FO,tuple,virtual) contains the class of regular tree languages.

A normalized DTD d is a DTD in which we only have the following kinds of rules:
d(a) = b1, . . . , bk (i.e., concatenation), d(a) = b1 + · · · + bk (i.e., disjunction), and
d(a) = b∗ (i.e., Kleene star). Clearly, by introducing new virtual element labels
any DTD can be transformed into a normalized one.

Given a normalized DTD d we obtain an equivalent publishing transducer τd in
PT(FO,tuple,normal) as follows. We define a 4-ary relation R consisting of tuples
of the form (v1, a, v2, b), with the meaning that there is an edge between the a-
labeled node v1 and the b-labeled node v2. We assume a special constant root. It
is now straightforward to define an FO-sentence φd that checks whether the graph
rooted at root is a tree and whether it conforms to d. Note that in addition to the
tree rooted in root, R can also contain other graphs disjoint from that tree. If an
instance does not satisfy φd then the transducer will output a constant tree in L(d).
Otherwise, it will use the edge relation in R to construct the encoded tree rooted
at root. We omit the concrete construction of τd. To output the original (i.e., not
necessarily normalized) DTD it suffices to make all newly introduced labels virtual.

Given an extended DTD (Σ′, d, µ), the transducer then first tests whether the
relation R encodes a Σ′-tree in L(d) as before. But if so, it outputs the tree with
labels projected on Σ.

We next exhibit an example of a DTD not definable in PT(CQ,relation,virtual).
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The proof exploits the monotonicity of CQ. Consider the DTD d with P (a) = b1+b2
and P (bi) = ε for i = 1, 2. Suppose by contradiction that there exists a τ in
PT(CQ,relation,virtual) defining L(d). Then, it is easy to argue that the transition
rules in τ must contain transition rules of the form: (q, a) →

(
q1, b1, ϕ1(~x1; ~y1)

)
,

(
q2, b2, ϕ2(~x2; ~y2)

)
where ϕ1 and ϕ2 are CQ queries. Consider the following two

trees in L(d): t1 = a(b1) and t2 = a(b2). By assumption, there exist relational
instances I and I ′ such that ττ (I1) = t1 and ττ (I2) = t2. Since ϕ1 and ϕ2 are
monotonic, ττ (I1 ∪ I2) entails a tree where both a b1 and a b2 child occur below
the root a. This obviously violates the DTD d and contradicts our assumption. We
remark that CQ can be replaced by any monotone query language.

6.4 Expressiveness of Existing Languages

We next study the expressiveness of existing publishing languages in the relational-
query and tree generation settings.

Relational Query Languages. The results of Theorem 4 and Proposition 4
for PT(IFP, tuple, normal) and PT(FO, relation, virtual) also provide insight for
the expressive power of dbms xmlgen and ATG, respectively. The result below
settles the issue for PTnr(IFP, tuple, normal) (sql mapping,sql/xml), PTnr(FO,
tuple, normal) (for-xml, XPERANTO) and PTnr(CQ, tuple, O) (annotated xsd,
RDB mapping, TreeQL).

Denote by UCQ union of conjunctive queries extended with ‘6=’.

Proposition 6. When treated as relational query languages, (1) PTnr(CQ, tu-
ple, O) = UCQ; (2) PTnr(FO, tuple, O) = FO; and (3) PTnr(IFP, tuple, O) =
IFP;

Proof. The proof is referred to the Appendix.

Tree generation. The proof for Proposition 5(1, 2) remains intact for nonrecursive
transducers. As a result, PTnr(CQ, tuple, normal) ⊂ PTnr(FO, tuple, normal) ⊂
PTnr(IFP, tuple, normal) and PTnr(CQ, tuple, normal) ⊂ PTnr(CQ, tuple, virtual).
Theorem 4 tells us that over unordered trees fixed-depth FO-transduction (resp.
IFP-transduction) is equivalent to PTnr(FO, tuple, O) (resp. PTnr(IFP, tuple, O)).

Publishing languages characterized by nonrecursive publishing transducers do
not have sufficient expressive power to define DTDs, due to the bound on the depth
of the trees induced. It is easily verified that specialized DTDs are definable in
ATG [Bohannon et al. 2004].

Proposition 5(6) states that PT(FO, relation, virtual)=PT(IFP, relation, virtual).
From a practical point of view, this implies that one does not need the linear
recursion of SQL’99 to define XML views expressible in PT(IFP, relation, virtual).

7. CONCLUSION

We have proposed the notion of publishing transducers and characterized several
existing XML publishing languages in terms of these transducers. For a variety of
classes of publishing transducers, including both generic PT(L, S,O) and nonrecur-
sive PTnr(L, S,O) characterizing existing publishing languages, we have provided
(a) a complete picture of the membership, equivalence and emptiness problems,
(b) a comprehensive expressiveness analysis in terms of both querying and tree
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Fragments Equivalence Emptiness Membership

PT(FP, S, O) (Prop. 2) undecidable undecidable undecidable

PT(FO, S, O) (Prop. 2) undecidable undecidable undecidable

PT(CQ, tuple, normal) (Th. 1) undecidable PTIME Σp
2-complete

PT(CQ, relation, normal) (Th. 1) undecidable PTIME undecidable

PT(CQ, S, virtual) (Th. 1) undecidable np-complete undecidable

PTnr(FO, tuple, normal) (Th. 2) undecidable undecidable undecidable

PTnr(CQ, tuple, normal) (Th. 2) Πp
3-complete PTIME Σp

2-complete

PTnr(CQ, tuple, virtual) (Th. 2) Πp
3-complete np-complete Σp

2-complete

Table II. Complexity of decision problems (S: relation or tuple; O: normal or virtual)

Fragments Complexity class/Language

PT(IFP, relation, O) (Th. 3(4)) PSPACE

PT(FO, relation, O) (Th. 3(4)) PSPACE

PT(IFP, tuple, O) (Th. 3(5)) IFP, PTIME (ordered database)

PT(FO, tuple, O) (Th. 3(3)) LinDatalog(FO), NLOGSPACE (ordered)

PT(CQ, tuple, O) (Th. 3(2)) LinDatalog

PTnr(IFP, tuple, O) (Prop. 6(3)) IFP

PTnr(FO, tuple, O) (Prop. 6(2)) FO

PTnr(CQ, tuple, O) (Prop. 6(1)) UCQ

Table III. Expressive power characterized in terms of relational query languages

generating power, as well as a number of separation and equivalence results. We
expect these results will help the users decide what publishing languages to use,
and database vendors develop or improve commercial XML publishing languages.

The main results for the static analyses and relational querying power are sum-
marized in Tables II and III, respectively, annotated with corresponding theorems
and conditions (e.g., ordered). These tables show that different combinations of
logic L, store S and output O, and the presence of recursion, lead to a spectrum of
publishing transducers with quite different complexity and expressive power.

The study of publishing transducers is still preliminary. An open issue con-
cerns, when treated as a relational query language, whether or not PT(CQ, rela-
tion, O) captures some relational query language (e.g., a fragment of datalog).
Another interesting topic is the typechecking problem for publishing transducers.
Our preliminary results show that while this is undecidable in general, there are
interesting decidable cases. This issue deserves a full treatment of its own. W.r.t.
expressiveness, we leave the following as open questions: the relationship between
PT(CQ, relation, O) and PT(IFP, tuple, O) (where O= {normal, virtual}) w.r.t. re-
lational expressiveness; and PT(IFP,tuple,vitrual) versus PT(IFP,relation,normal)
w.r.t. their tree generation power.

Further, the relationship between publishing transducers and XML-to-XML trans-
formation languages such as, e.g., xslt, is fully unexplored. In this setting, a
relational database could be regarded as an XML document using a “canonical en-
coding”. Finally, in contrast to XML publishing that deals with a single source,
XML integration extracts data from multiple distributed relational sources and
builds an XML tree with the extracted data. A new challenge of XML integration is
introduced by dependencies on the data extracted from different sources. We plan
to investigate two-way and nondeterministic publishing transducers for studying
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the expressive power and complexity of XML integration languages being used in
practice.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/tods/20YY-V-N/p1-url.
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A. PROOF OF PROPOSITION 1

Proposition 1. Let τ be a publishing transducer in PT(L, S, O). Let I be an
instance.

(1 ) The τ-transformation on I always terminates and returns a unique tree τ(I).

(2 ) Computing the output tree τ(I) can be done in time exponential and doubly ex-
ponential in the size of I for the cases where S is tuple and relation, respectively,
and where L is CQ, FO or IFP, and O is normal or virtual.

(3 ) There is a publishing transducer τ1 in PT(CQ,tuple,normal) and a family of
instances (In)n∈N, such that the size of each In is O(n) and the size of τ1(In)
is at least 2n.

(4 ) There is a publishing transducer τ2 in PT(CQ,relation,normal) and a family of
instances (Jn)n∈N, such that the size of each Jn is O(n) and the size of τ2(Jn)
is at least 22n

.

Proof. (1) We first show that the τ -transformation on I always terminates and
returns a unique Σ-tree τ(I). Assume, by contradiction, that the τ -transformation
on I induces an infinite tree ξ in TreeQ×Σ. Then there exists an infinite path ρ
from the root of ξ, on which each node v is labeled with (q, a) ∈ Q×Σ, carrying a
local store Rega(v). Since Rega(v) is a relation over the data in I and constants in
τ , there are at most exponentially many such relations. Furthermore, both Q and
Σ are finite. Hence on path ρ there must exist two nodes u and v such that u is a
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descendant of v and both are labeled with the same state q, tag a and moreover,
Rega(u) = Rega(v). Then the stop condition of Section 3 tells us that no children
would have been spawned below u, which contradicts the assumption. That is, the
τ -transformation on I terminates.

Moreover, τ is deterministic: for each node u labeled (q, a), there exists at most
one transduction rule that can be applied. Furthermore, the generation of the
children of u is determined by this rule, the database I and the content of Rega(v).
Given an implicit ordering on the domain D, children(u) are uniquely determined
as well. From this it follows that the output τ(I) of the transformation is unique.

(2) First, we note that for a given tree ξ in TreeQ×Σ, a tree ξ′ with ξ ⇒ ξ′ can be
computed in time polynomial in the size of I. Indeed, let u be the node in ξ which
gets expanded and which is labeled with (q, a). Let

(q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk))

be the right-hand side of the rule corresponding to (q, a). Then any formula φi can
be evaluated in time polynomial in the size of I (even for IFP, the largest query
language considered in this paper; see, e.g., [Abiteboul et al. 1995] for a discussion)
and can introduce at most polynomially many new nodes. So, in summary, for any
publishing transducer τ , the width of the tree τ(I) is bounded by a polynomial in
the size of I, as is the time complexity of each rewrite step. If we can show that
the depth of τ(I) is bounded by a polynomial and an exponential in the size of I
for S equal to tuple and relational, respectively, then we are done. To this end,
consider again a node u labeled (q, a) in the result tree ξ in TreeQ×Σ induced by
the τ -transformation. Then Rega(u) is a tuple or a relation over the data in I
and constants in τ . As there are only polynomially many tuples and exponentially
many relations over the latter domain, and the stop condition prohibits duplicate
registers in the same branch of a tree, the just mentioned bounds on the depths of
trees easily follow.

(3) Consider a binary relation R that specifies the edges of a graph. That is,
R(a, b) indicates that there is an edge from a to b. We define τ1 for R such that
given an instance I of R, it expands the graph G specified by I into a tree following
a “top-down” process. More specifically, let τ1 = (Q1,Σ1,Θ1, q0, δ1), where Q1 =
{q0, q},Σ1 = {r, a}, and δ1 is given below. A unary tuple register Rega is associated
with each a-element. The transition rules are given as follow:

δ1(q0, r) → (q, a, φ(x; ∅)), where φ(x; ∅) = ∃yR(x, y); and
δ1(q, a) → (q, a, φ1(x; ∅)), where φ1(x; ∅) = ∃yRega(y) ∧ R(y, x).

Initially, δ1(q0, r) creates a distinct a-child u for root(t) for each vertex g in G that
has outgoing edges, storing g in the register Rega(u). Then δ1(q, a) expands the
tree as follows: for each current leaf node u, each vertex v ∈ Rega(u), and each
vertex w with (v, w) ∈ G, τ1 spawns a distinct a-child of u carrying w in its register.
Since τ1 is recursively defined, the process continues until the graph can no longer
be expanded due to the stop condition. Let In be the graph {(a0, b

0
1), (a0, b

0
2),

(b01, a1), (b02, a1), . . ., (bn−1
1 , an), (bn−1

2 , an)}. That is, a “chain-of-diamond” shape
graph with 4n edges. Then τ1(In) is of size at least 2n for each n ∈ N.

(4) Intuitively, τ2 mimics an n-digit binary counter by generating chains, at each
step incrementing the counter by 1 and making a duplicate copy of the chain. This
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will yield a tree of depth 2n and size at least 22n

. More specifically, we use a schema
R that consists of three relations:

(a) counter(k, d, c) that gives the initial value of the counter, where k indicates the
k-th digit of the counter (with 0 the least significant), d in {0, 1} is the value of the
digit, and c is the carry from the last addition for the next digit (in {0, 1}). Define
Cn as the instance {(0, 0, 1), (1, 0, 0), . . . , (n− 1, 0, 0)}.

(b) add(d1, d2, d3, d, c) that simulates a full adder circuit: d1 + d2 + d3 yields
d with carry c. Define An as {(0, 0, 0, 0, 0), (0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (0, 1, 1, 0, 1),
(1, 0, 0, 1, 0), (1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 1, 1, 1, 1)}.

(c) next(k, k′) that is used to move from one digit to the next (mod n). Define Nn

as {(0, 1), . . . , (n− 2, n− 1), (n− 1, 0)}.
So, for each n, Jn is the instance (Cn, An, Nn).
On the schemaR we define τ2 = (Q2,Σ2,Θ2, q0, δ2) in PT(CQ, relation, O), where

Q2 = {q0, q}, Σ2 = {r, a}, and δ2 associates a relation register Rega(k, d, c) with
each a-node, where k, d, c have the same meaning as in counter(k, d, c), as follows:

δ2(q0, r) → (q, a, φ(∅; k, d, c)), (q, a, φ(∅; k, d, c)); where φ(∅; k, d, c) = counter(k, d, c).
δ2(q, a) → (q, a, φ1(∅; k, d, c)), (q, a, φ1(∅; k, d, c)); where
φ1(∅; k, d, c) = ∃d1, c1, k

′, d2, c2, d3, c3 (Rega(k, d1, c1) ∧Rega(k′, d2, c2) ∧ next(k′, k)
∧ counter(k, d3, c3) ∧ add(d1, c2, c3, d, c))

Initially, δ2(q0, r) creates two a-children of the root, each carrying a copy of counter

in its register. Then via φ1, δ2(q, a) increments the counter by 1. More specifically,
for the k-th digit (k, d1, c1) ∈ Rega, (k′, d2, c2) is the (k − 1)th digit and c2 is the
carry from the last round of addition. Note that for the initial value (k, d3, c3) of
the k-digit in the counter, c3 = 0 if k > 0 and c3 = 1 only if k = 0. The query
φ1 sets the k-th digit to (k, d, c), such that d1 + c2 + c3 comes up to d with carry
c. Since c3 is 0 for any k > 0, it does not affect d1 + c2 + c3, but it adds 1 when
k = 0. Thus φ1 adjusts the k-th digit by using the carry from the last round, and
adds 1 to the 0th digit. In this way each a-element chain starting from the root
increments the counter, 1 at each time, from 1 to 2n. Furthermore, each node has
two copies of the chains below it. Putting these together, we have that τ2(Jn) is of
size at least 22n

. 2

B. PROOFS FOR SECTION 6.2

We start by treating publishing transducers as a relational query language. We
characterize some of the fragments in terms of known query languages and com-
plexity classes. From these, we can then compare the expressive power of the
different publishing transducer fragments.

We review three fragments of datalog. One fragment is linear datalog (see e.g.,
[Abiteboul et al. 1995]), denoted by LinDatalog, which we have seen in the proof
of Theorem 2. It consists of datalog programs in which each rule is of the form:
p(x̄)← p1(x̄1), . . . , pn(x̄n), and moreover, at most one pi is an IDB predicate (i.e.,
relation name). We allow some pj to be 6=. We assume an output relation ans

containing the result of the query expressed by the program. Another fragment is
LinDatalog(FO) (see e.g., [Grädel 1992]) which extends LinDatalog by allow-
ing pi to be an arbitrary FO-formula over the EDB predicates. In [Grädel 1992] it
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is shown that LinDatalog(FO) captures nlogspace over ordered databases.

B.1 Proof of Theorem 3

Theorem 3. When treated as relational query languages,

(1 ) PT(L, S, virtual) = PT(L, S, normal),

(2 ) PT(CQ, tuple, O) = LinDatalog.

(3 ) PT(FO, tuple, O) = LinDatalog(FO) ⊂ nlogspace.

(4 ) PT(FO, relation, O) and PT(IFP, relation, O) capture pspace.

(5 ) PT(IFP, tuple, O) = IFP.

Here the output O can be either virtual or normal.

Proof. (1) The statement is immediate as the relational query defined by a
transducer remains the same irrespective of the removal of nodes with virtual tags.

(2) First, we establish the inclusion PT(CQ,tuple,normal) ⊆ LinDatalog. Con-
sider a given publishing transducer τ = (Q,Σ,Θ, q0, δ), where Q = {q0, . . . , qn} and
Σ = {ao, a1, . . . , am}; here ao is the designated output tag. We assume the presence
of two constants 0 and 1 which are interpreted by different elements in the domain.
W.l.o.g., we may assume that all registers have the same arity, say k. While we
can easily encode the constants appearing in Q and Σ, for ease of exposition, we
simply assume that we have the constants in Q and Σ at our disposal.

Given τ , we define a (4 + 2k)-ary relation S w.r.t. the instance I as follows:
the tuple (q, a, d̄, q′, a′, d̄′) ∈ S iff there exists a rule in δ of the form (q, a) →
. . . , (q′, a′, φ(x̄; ∅)), . . . such that (I ∪ {Rega = d̄}) |= φ(d̄′). Here, d̄ and d̄′ are in
(adom(I)∪adom(τ))k , where adom(I) denotes the active domain of I, and adom(τ)
is the union of the constants appearing in the queries in rules of δ. Clearly, a tuple
ū now belongs to output relation Rτ (I) of τ when there is a path in S from the root
(i.e., state is q0 and label is r) to (q, ao, ū) for some state q. Actually, we are only
interested in simple paths, that is, paths without cycles. However, in this setting,
whenever there is a path between two nodes there is also a simple one as we can
always remove cycles. We now construct a LinDatalog-program Πτ that defines
the same relation as τ on any instance I. Essentially, Πτ computes (i) all tuples in
the transitive closure of S that are reachable from the root (as explained above);
and (ii) extracts those that correspond to states that are tagged with a0.

More specifically, assume that the initial rule of τ is of the form (q0, r) →
(q1, a1, φ1(x̄; ∅)), . . . , (qm, am, φm(x̄; ∅)). Then, the program Πτ consists of the fol-
lowing initial rules. For each i ∈ [1,m] we have T (x, y, z̄, x′, y′, z̄′)← x = q0 ∧ y =
r∧ z̄ = z̄′ ∧x′ = qi∧ y′ = ai ∧φi(z̄

′). Here, φi(z̄
′) is simply the ith CQ query in the

initial rule of τ . We may assume that φi is a CQ query solely over the relations in
the schema of I. Indeed, if it addresses Regr then we simply omit the corresponding
initial rule in Πτ since it will always return ∅ (recall that Regr = ∅ by default).

Furthermore, for every rule (q, a) → (q1, a1, φ1(x̄; ∅)), . . . , (qm, am, φm(x̄; ∅)), Πτ

contains the following linear recursive rules: for i ∈ [1,m]

T (x, y, z̄, x′
, y

′
, z̄

′) ← ∃x′′
, y

′′
, z̄

′′
T (x, y, z̄, x′′

, y
′′
, z̄

′′) ∧ x′′ = q ∧ y′′ = a

∧ x′ = qi ∧ y
′ = ai ∧ φ

′
i(z̄

′)
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where φ′i is obtained from φi by replacing each occurrence of Rega(ū) by ū = z̄′′.
Finally, the answer query ans is defined as ans(z̄′)← ∃z̄, x′T (q0, r, z̄, x

′, ao, z̄
′).

It remains to show LinDatalog⊆ PT(CQ,tuple,normal). Since we have assumed
the existence of two different constants we can encode all IDB predicates by a single
one by increasing the arity. For instance, the binary relations R1, R2, R3 can be
encoded by the 4-ary relation S as follows: R1(x, y) ≡ S(x, y, 0, 1), R2(x, y) ≡
S(x, y, 1, 0), and R3(x, y) ≡ S(x, y, 1, 1). Then, it is not hard to see that any
program Π in LinDatalog can be written in the following normal form, possibly
by adding some equality conditions on the variables:

S(ȳ) ← φi(x̄i, ȳ) and S(ȳ) ← S(z̄j), ψj(ūj , z̄j , ȳ), and ans(ȳ′) ← α(w̄, ȳ′)

where φi, for i ∈ [1,m] and ψj , for j ∈ [1, n] are CQ queries over the EDB relations.
In contrast α is a CQ query that contains a single occurrence of the IDB relation S
and arbitrarily many occurrences of EDB relations.

Given a LinDatalog-program Π in normal form, we now define an equiva-
lent publishing transducer τΠ in PT(CQ, tuple, O). More specifically, let τΠ =
(Q,Σ,Θ, q, δ) where Q = {q0, q1}, Σ = {r, ao} ∪ {aij | i ∈ [1,m], j ∈ [1, n]}, δ con-
sists of the following rules from which the arity function Θ can easily be determined
(i.e., Θ(r) = 0, Θ(a0) = |ȳ′| and Θ(aij) = |ȳ| for i ∈ [1,m], j ∈ [1, n]):

δ(q0, r) = (q1, a11, ψ11(ȳ; ∅)), . . . , (q1, a1n, ψ1n(ȳ; ∅)), . . . , (q1, am1, ψm1(ȳ; ∅)), . . . ,

(q1, amn, ψmn(ȳ; ∅)), where ψij(ȳ) = ∃x̄iφi(x̄i, ȳ), for i ∈ [1, m], j ∈ [1, n]

δ(q1, aij) = (q1, a11, ψ
′
11(ȳ; ∅)), . . . , (q1, a1n, ψ

′
1n(ȳ; ∅)), . . . , (q1, am1, ψ

′
m1(ȳ; ∅)), . . . ,

(q1, amn, ψ
′
mn(ȳ; ∅)), (q1, ao, βij(ȳ

′; ∅)),

where ψ′
kℓ(ȳ) = ∃z̄ℓ, ūℓRegaij

(z̄ℓ) ∧ ψℓ(ūℓ, z̄ℓ, ȳ), for k ∈ [1, m], ℓ ∈ [1, n], and

where βij(ȳ
′) = ∃w̄α′

ij(w̄, ȳ
′) and α′

ij is obtained from α by replacing the unique
occurrence of S by Regaij

.
Clearly, Rτ (I) equals the result of Π computed on I. We therefore may conclude

the equivalence of PT(CQ,tuple,normal) and LinDatalog.

(3) The proof of equivalence is similar to the proof of (2). As LinDatalog(FO)
captures nlogspace on ordered structures, PT(FO,tuple,O) is in nlogspace. As
the class of all databases with an even domain is definable in nlogspace but not in
IFP [Libkin 2004; Flum and Ebbinghaus 1999], and PT(FO,tuple,O) can be defined
in IFP (see (5) below), it follows that PT(FO,tuple,O) ⊆ nlogspace is strict.

(4) Let τ = (Q,Σ,Θ, q0, δ) be in PT(IFP, relation, output). We first show how
to solve the recognition problem in npspace (recall that npspace =pspace [Pa-
padimitriou 1994]). The main underlying idea is the following. To check whether
a tuple ū belongs to Rτ (I), it suffices to guess a path in the tree τ(I) leading to
an ao-labeled node containing ū in its register. It is therefore not necessary to con-
struct the complete output tree. For ease of exposition, we assume that all registers
have the same arity. As before, the latter can easily be achieved extending to the
largest arity and padding.

During computation the tape contains the tuple (q, a,R). Here, q, a, and R
are the current state, label, and contents of the local store of the current node,
respectively. On input I, the algorithm starts by writing (q0, r, ∅) on its tape, that

 



App–6 ·

is, the left-hand side of its start rule together with the current contents of the local
store, which is empty at the beginning. The algorithm now operates as follows:

(1) remove the triple (q, a,R) from the tape;

(2) if a = ao and ū ∈ R, then accept;

(3) otherwise let (q, a) → (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)) be a rule in δ.
Non-deterministically pick an i ∈ [1, k] and write (qi, ai, φi(I, R)) on the tape. Here,
φi(I, R) is the result of evaluating φi over I with the local store interpreted by R.
Note that the latter can be done in pspace [Libkin 2004]. Go to step (1).

It remains to argue the correctness of the algorithm. Suppose the algorithm ac-
cepts. Then we need to show that there is a node in the output tree labeled ao with ū
in its register. Assume the algorithm guesses the tuples (q1, a1, R1), . . . , (qn, an, Rn)
with an = ao. A problem is that this sequence can not appear as such in the branch
of the output tree as there can be i and j with i < j and qi = qj , ai = aj , and Ri =
Rj which stops the computation of the transducer at step j. However, in this case
the sequence (q1, a1, R1), . . . , (qi, ai, Ri), (qj+1, aj+1, Rj+1), . . . , (qn, an, Rn) would
also lead to acceptance of the algorithm. We can repeat this argument and remove
all duplicate triples ending up with a sequence without repeated triples which is
realizable in a branch in the output tree. Conversely, when ū is in the relation
computed by τ , there is a branch in the output tree leading to an a-labeled node
containing ū. The algorithm can now guess the sequence of triples leading to this
node. In addition, the algorithm uses only space polynomial in the size of I.

We next sketch how every pspace computable query can be defined by a trans-
ducer in PT(FO,relation,O). First, it is instrumental to be more precise about
what it means for a recognition problem to belong to a complexity class for un-
ordered databases. Indeed, every encoding of the database on the input tape of
a Turing Machine induces an ordering. Actually, it is more accustomed to first
determine an ordering of the elements of the database and then use this ordering
in obtaining a unique encoding. A pspace Turing Machine accepting a recognition
problem is therefore independent of the ordering at hand and is order-invariant (cf.
Ebbinghaus and Flum [Flum and Ebbinghaus 1999], Definition 7.5.12 and preced-
ing discussion). The outline of the proof is as follows. We show that a transducer
can compute a total order on the domain of the input database. Then, we make
use of the known result that on ordered databases, partial fixpoint logic captures
pspace [Vardi 1982]. The simulation of partial fixpoint logic with a transducer is
straightforward and is therefore omitted. By the discussion above, it does not mat-
ter which ordering we use. Actually, the transducer does not define a single order
but, instead, defines all possible orderings in parallel. Intuitively, the transducer
starts by making every element the smallest element of a particular ordering. Then
it continues by adding new elements which are always larger than elements already
present in the ordering. We use a 3-ary relation, in which the last two columns
contain the ordering relation, and the first column is used to pick a new element
from the domain. The following formula then computes all orderings in parallel:

ϕ(x; y1, y2) ≡ ψ1 ∧ (ψ2 ∨ ∃z1∃z2(ψ3 ∨ ψ4)), where ψ1 ≡ ¬∃z1∃z2Reg(z1, z2, x),
ψ2 ≡ y1 = x ∧ y2 = x, ψ3 ≡ Reg(z1, y1, y2), ψ4 ≡ y2 = x ∧Reg(z1, y1, z2).

The formula says the following: (ψ1) x does not occur in the ordering up to now;
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(ψ2) x is less than or equal to itself; (ψ3) the new ordering extends the previous one;
and (ψ4) all elements in the ordering are smaller than the new element x. At this
point, every leaf node contains an ordering of the domain and now starts simulating
the partial fixpoint logic formula corresponding to the given pspace TM. As the
machine is order-independent, every branch ends up with the same relation.

(5) Clearly, PT(IFP,tuple,O) can simulate IFP. The proof of the other direction is
similar to the proof of (2). Indeed, it only needs to be observed that PT(IFP,tuple,O)
can be defined in LinDatalog(IFP) (the extension of LinDatalog(FO) that al-
lows arbitrary IFP-formulas over edb predicates in the body of the rules) which in
turn can be defined in IFP itself. The latter holds as LinDatalog(IFP) is essen-
tially the transitive closure of an IFP-definable relation and transitive closure can
easily be defined in IFP itself. 2

B.2 Proof of Proposition 4

Proposition 4. When treated as relational query languages,

(1) PT(CQ, tuple, O) ⊂ PT(FO, tuple, O)
(2) ⊆ PT(IFP, tuple, O)
(3) ⊂ PT(FO, relation,O)
(4) = PT(IFP, relation, O),

(5) PT(CQ, tuple, O) ⊂ PT(CQ, relation, O)
(6) ⊂ PT(FO, relation, O),

(7) PT(CQ, relation, O) 6⊆ PT(FO, tuple, O),

The containment in statement (2) is proper if nlogspace 6= ptime.

Proof. (1) This follows from the inclusion of LinDatalog in LinDatalog(FO)
and the equivalence of those to PT(CQ, tuple, O) and PT(FO, tuple, O), respectively
(Theorem 3(2,3)). Strictness follows as LinDatalog can only express monotone
queries.

(2) This holds as PT(FO, tuple, O) equals LinDatalog(FO) (Theorem 3(3)) and
PT(IFP, tuple, O) is IFP (Theorem 3(5)), and LinDatalog(FO) ⊆ IFP. The con-
tainment is proper if ptime 6= nlogspace since on ordered structures PT(FO,
tuple, O) captures nlogspace whereas PT(IFP, tuple, O) captures ptime.

(3,4) Statements (3) and (4) follow as PT(IFP, tuple, O) is IFP (Theorem 3(5)) and
both of PT(FO, relation,O) and PT(IFP, relation,O) equal pspace (Theorem 3(4)),
respectively. In addition, the containment is proper since on unordered databases,
the parity query even is expressible in pspace but it is not definable in IFP.

(5) It suffices to give a publishing transducer τ in PT(CQ, relation, O) such that
there exists no τ ′ in PT(FO, tuple, O) that is equivalent to τ when they are con-
sidered relational queries. The query expressed by τ is over a directed graph E
with three distinguished nodes c1, c2 and c3. It computes the pair (c1, c3) whenever
there is a path from c1 to c3 which passes through c2 and returns the empty set
otherwise. The transducer consists of the rules:
δ(q0, r) = (q, a, φ(∅; y1, y2)), where φ(∅; y1, y2) = E(y1, y2) ∧ y1 = c1,
δ(q, a) = (q, a, φ1(∅; y1, y2)), (q, ao, φ2(∅; y1, y2)), where

φ1(∅; y1, y2) = ∃y (Reg(y1, y) ∧E(y, y2)),
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φ2(∅; y1, y2) = Reg(c1, c2) ∧Reg(c2, c3) ∧ y1 = c1 ∧ y2 = c3

We next argue that the above query cannot be expressed in LinDatalog(FO)
and therefore not in PT(CQ, tuple, O) or PT(FO, tuple, O). The proof is similar
to the proof of Theorem 7 in [Grädel 1992] showing that graph connectivity is not
in LinDatalog(FO) via an Ehrenfeucht-Fräıssé game (EF-game) for transitive
closure logic. The initial databases I1 and I2 are different but the rest of the
argument is the same. Therefore, we only explain how to construct these and refer
for the concrete EF-game to [Grädel 1992]. Assume that the query is definable in
LinDatalog(FO) and let ξ be the corresponding transitive closure logic formula.
Let k be the arity of ξ plus the quantifier-rank. Let p(ℓ) be a chain of length ℓ.
Let I1 be the graph c1p(2

k+2)c2p(2
k+2)c3p(2

k+2) that is a chain starting with c1
followed by a path of length 2k+2 to c2, followed in turn by a path of length 2k+2

to c3 ended by a final path of length 2k+2. Similarly, let I2 be the graph obtained
from I1 by exchanging c2 and c3, that is, I2 = c1p(2

k+2)c3p(2
k+2)c2p(2

k+2). Note
that I1 satisfies the query whereas I2 does not.

(6) The inclusion is immediate. To obtain strictness it suffices to show that every
query expressed by a transducer τ in PT(CQ,relation,O) is monotone, whereas FO
is not. That is, whenever I1 is an extension of I0, meaning that every tuple in a
relation in I0 also belongs to the corresponding relation in I1, Rτ (I0) ⊆ Rτ (I1). By
induction on the depth of the output tree, it can be shown that there is a mapping µ
from nodes in τ(I0) to nodes in τ(I1), such that for each node u ∈ τ(I0), u and µ(u)
carry the same label and Reg(u) ⊆ Reg(µ(u)). It then follows thatRτ (I0) ⊆ Rτ (I1).

(7) The proof of (5) already gives a publishing transducer that is in PT(CQ, relation,
O) but is not expressible in PT(FO, tuple, O). 2

C. PROOF OF PROPOSITION 6

Proposition 6. When treated as relational query languages, (1) PTnr(CQ, tu-
ple, O) = UCQ; (2) PTnr(FO, tuple, O) = FO; and (3) PTnr(IFP, tuple, O) =
IFP;

Proof. (1) For any UCQ query ϕ = ϕ1 ∪ . . . ∪ ϕn, where for i ∈ [1, n], ϕi is a
CQ query without union, we can define an equivalent transducer τϕ in PTnr(CQ,
tuple, normal) with a single rule (q0, r)→ (q, ao, ϕ1(x̄; ∅)), · · · , (q, ao, ϕn(x̄; ∅)).

Conversely, for each transducer τ in PTnr(CQ, tuple, virtual) we show that it is
equivalent to a UCQ query. Let Gτ be the dependency graph of τ as defined in
Section 3. We denote by P(ao) all paths in Gτ starting from v(q0, r) and leading
to a node v(q, ao) for some q ∈ Q, where ao is the designated output tag. For each
path ρ ∈ P(ao), we define CQ query λ(ρ) that is the composition of the CQ queries
along ρ, along the same lines as in the proof of Theorem 2. Then for any instance
I, the relation induced by τ on I is equal to

⋃

ρ∈P(ao) λ(ρ).

(2) The inclusion FO⊆ PTnr(FO,tuple,normal) is straightforward. Similar to case (1)
we can verify that PTnr(FO,tuple,virtual) ⊆ FO. More specifically, given a trans-
ducer τ in PTnr(FO,tuple,virtual) with designated output tag ao, we obtain that τ
and the FO-query

⋃

ρ∈P(ao) λ(ρ) define the same relation on any instance I.

(3) The proofs of the inclusions IFP ⊆ PTnr(IFP,tuple,normal) and PTnr(IFP, tu-
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ple,virtual) ⊆ IFP are completely analogous to those of case (1). 2

 




