
CONFLICTS AND CORRESPONDENCE ASSERTIONS 
IN INTEROPERABLE DATABASES 

S t e f a n o  S P A C C A P I E T R A  

Ecole Polytechnique Frdrrale - DI - LBD 
IN/Ecublens - CH 1015 Lausanne 
spaccapietra@elma.epfl.ch 

C h r i s t i n e  P A R E N T  

Universit6 de Bourgogne - Drp. Informatique 
B.P. 138 - F 21004 Dijon Cedex 

badine@frccub11.bitnet 

1. In troduc t ion  
Irrespective of the approach (integrated, federated, or multibase [5, 8]) taken for the interoperability in 
database systems, the designers are faced with the problem of comparing the information content of 
the various interconnected databases. Two questions arise: 
- how does one know ff and to what extent the databases share related information? 
- if so, how can one instruct the system about comrnonalities, so that the system can manage a global 

schema of the underlying databases? 

It is not possible to produce a definite answer to the first question automatically by searching the 
various schemas and the corresponding databases. Even if a complete match is found (i.e. both at 
schema and instances levels), there is never an absolute guarantee that the match will always be 
verified in the future. Nevertheless, automatic tools may efficiently assist the database administrator 
(DBA) in the task of identifying commonalities among schemas. Several such tools have been 
developed [2, 3, 10]. They act as "investigators", trying to find out which elements from the two 
schemas show enough similarity (in terms of names, domains, components, relationships to other 
elements .... ) to be candidate for a match. The DBA is then prompted to confirm or deny the match. 

An alternative method is to assume that the DBA knows about the commonalities. In this case, the 
DBA directly forwards this information to the system, usually as correspondence assertions: each 
particular assertion states some relationship between two elements and their instances in two 
databases. 

The knowledge expressed by these assertions or by confirmed matches is used by the system either to 
generate mappings between corresponding elements (and the queries upon), or to appropriately merge 
these elements into an integrated schema, (and build the mappings between the resulting schema and 
the input schemas). In the latter case the system acts as an "integrator", achieving a single description 
of the knowledge from the several input schemas 1. 

Correspondence assertions, whether stated by the DBA or found with the help of an investigator, 
should be able to resolve all discrepancies among schemas and among databases. This is not the case 
with current methodologies and tools. The next section proposes a taxonomy that identifies where 
current technology fails to automatically solve conflicts. Extensions needed to overcome these 
limitations are introduced in sections 3 and 4. 

2. A taxonomy for inter-schema discrepancies 

There has been a large amount of work in database interoperability, with some emphasis on schema 
integration issues. Good surveys may be found in [1, 8]. However, the terminology is still somewhat 
confusing. The following taxonomy stems from the various choices that a designer has to make in the 
process of schema definition. 
Let us assume that two designers are looking at overlapping universes of discourse (UoDs). 
Differences may appear at any of the following design steps which give rise to a variety of conflicts. 

1 Alternatively, the DBA may define a program to map each element into the other, or to build the 
integrated schema. The role of the system is then limited to supporting a set of restructuring operations 
the DBA can use [6]. 

SIGMOD RECORD, Vol. 20, No. 4, December 1991 49 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F141356.141379&domain=pdf&date_stamp=1991-12-01


1. Select and classify real world objects from the UoD. 

The two designers may not perceive exactly the same sets of objects, or adopt different classifications. 
This will result in overlapping sets of objects. For instance, a designer can group all students into a 
"Student" object class, while the other designer can identify a "CS-Student" class, grouping students 
majoring in computer science, as the one (s)he is interested in. 
The situation where two elements from two schemas represent sets of UoD objects which are related 
by a set comparison operator other than equafity is called a semantic conflict. 

This kind of conflicts has been extensively dealt with in the literature. The generalization concept is 
used to resolve such conflicts. For instance, the "CS-Student" class will be defined as a subclass of 
the "Student" class. 

2. Attach properties to the selected classes. 

The two designers may not perceive exactly the same set of properties for related classes. For 
instance, let us assume two relational schemas, S 1 and $2, both describing the same set of expensive 
car models: 

S 1: Expensive_car (modelname, manufacturer, maximumspeed, price) 
$2: Car_model (name, horsepower, fuelconsumption, price) 

S 1 and $2 designers selected different items for record keeping, because of their different interest in 
the many forms of the available information on car models in the real world (one designer may have to 
keep data for advertisements in a fine arts journal, while the other is concerned with advertisements in 
a technical journal, for instance). 
The situation where two elements, representing related sets of UoD objects, are described with 
different sets of properties is called a descriptive conflict. 

Descriptive conflicts include naming conflicts, due to homonyms and synonyms, as well as conflicts 
on attribute domain, scale, cardinalities, constraints, operations, et cetera [4, 9]. 

3. Choose a data model as representation vehicle. 

The two designers may use different data models. For example, one may choose a relational model 
and other an object oriented model. The situation where two schemas are defined with different data 
models is called a data model conflict. 

4. Define data structures representing the UoD. 

Even if the two designers use the same data model, they can choose different constructs to represent 
common UoDs. In object-oriented models, for instance, a designer willing to describe a component X 
of an object type O, may choose between creating a new object type X (and include a reference to X in 
O) or adding an attribute X to O. The situation where two related UoDs are represented using different 
data structures is called a structural  conflict. 

The conflicts defined above are orthogonal and can be cumulated. Indeed, discrepancies between 
schemas usually show a mix of conflict types. Different data models, or different sets of UoD objects 
generate different structures. As an example, consider the following entity-relationship (ER) diagrams 2 
which represent related UoDs: 

$3 I UScustomer~Ordered -~--.[ Product 
[ ~# da~e [" I name quantity P# 

2 diagrams are drawn according to ERC+ rules. A single plain line denotes a 1:1 cardinality. 
Combination of a plain and a dotted line denotes a 1 :N cardinality. ERC+ is an extended ER model 
supporting complex objects and object identity [7]. 

50 SIGMOD RECORD, Vol. 20, No. 4, December 1991 



$4 I Customer ~ Places H Order ~ O r d l i n e H  Product I 
I I I I I 

name O# Odate qty p# 

Both represent some information about customers who can order products from an enterprise. $4 
includes all customers, while $3 only considers a subset of the customers (semantic conflict). 
Customer's attributes differ between $3, $4 (descriptive conflict). The ordering information is given 
in $3 as a direct relationship between a customer and a product (s)he ordered. $4 favoured a more 
detailed representation based on order's materialization as an Order entity type (structural conflict). 

While semantic and descriptive conflicts have been largely investigated in the field of assertion based 
methodologies, data model and structural conflicts remain to be satisfactorily addressed. 
Heterogeneity of data models has been tackled by assuming that in a preliminary step all input schemas 
are translated into some common data model. 
As for structural conflicts, an almost unanimous assumption is that they have to be solved manually by 
the DBA. (S)he is in charge of replacing conflicting structures with equivalent non conflicting ones (a 
schema modification process known as schema conforming). Integration then proceeds with the new 
input schemas. Usually, the original input schemas are lost. 
We believe that better solutions for both conflict types may be achieved by developing a more 
powerful assertional approach. We discuss this in the coming sections. 

3. Correspondence assertions and structural conflicts 
The extent to which structural conflicts may arise depends on the data model in use. The more 
constructs it supports, and the more complex they are, the more potential for conflicts it bears. 
In the ER approach, for instance, the designer is left with the responsibility to decide whether a real 
world object should be represented as an entity, a relationship, or an attribute. In object-oriented 
models, there are at least six possible ways of representing an association between two object classes: 
embedding one class as an attribute to the other, using single or cross referencing, and creating an 
additional object to represent the association. 
The following diagrams ($5 and $6) illustrate two different ERC+ [7] representations compatible with 
the same universe of discourse (a library). 
The viewpoint represented in $5 considers authors as a (multivalued) attribute of the Book entity type. 
Conversely, the viewpoint represented in $6 considers books as a (multivalued) attribute of the Author 
entity type. The two schemas show a structural conflict. 

s,J.OOkak s0 JAuthor k 
f i t  ISt~N ors name birth[date "ks 

name birthdate rifle ISBN 

Correspondence assertions, as currently proposed, are of no help in this particular case. They are only 
able to relate comparable constructs: an entity type from one schema compared to an entity type from 
another schema, a relationship type compared to a relationship type, an attribute compared to an 
attribute. No mixed comparison (an attribute with an entity type, for instance) is supported. The 
consequence is poor interoperability and error-prone techniques, as shown in [11]. 

With current methodologies, there is nothing which can be asserted between $5 and $6. An 
integration process instructed to merge $5 with $6 would produce a schema showing both entity 
types, just as they are. To avoid such an incorrect result, the DBA has to modify the input schemas 
before integration is activated. The DBA may choose to replace $5 with $6 (or $6 with $5). 
Alternatively the DBA may change both schemas, replacing $5 with $5' and $6 with $6'. In both 
cases the initial specifications are abandoned to make the integration possible. 

SIGMOD RECORD, Vol. 20, No. 4, December 1991 51 



$5' I Book ~ BA ~-~-~. Authors I 
I I I I 

title ISBN name birthdate 

$6' I A.t.or Books I 
I I I I 

name birthdate rifle ISBN 

The reason to modifiy the input schemas in case of structural conflicts, is the inadequacy of mapping 
capabilities, between corresponding elements or among input schemas and the integrated schema. If 
more sophisticated mapping capabilities are available (like the ability to transform an object into an 
attribute, and viceversa), the burden of solving structural conflicts can be taken over by the system. 
Consequently we propose to extend the scope of correspondence assertions to support all four kinds 
of conflicts. For instance, if $5 and $6 refer to the same UoD, the following two assertions describe 
the correspondences between their elements: 

Book -= Author.books with corresponding attributes: title=title, ISBN=ISBN 

Book.authors ~ Author with corresponding attributes: name=name, birthdate=birthdate 

These assertions state that: i/there is a structural confict  in the representation of books and authors; 

ii/there is no semantic conflict concerning books and authors (otherwise, instead of ~, the DBA 

would state either one of ~, c . . . . .  n ,  #); iii/there is no descriptive conflict, as books (respectively 
authors) have the same attributes in both schemas, once the conflicting attribute authors (respectively 
books) is transformed into an entity type. 

Generally speaking, stnactural conflicts imply that a correspondence may exist between two schema 
elements whether they are an object class, an attribute, a relationship, et cetera. Assertions may thus be 
classified as: 

- correspondence assertions between elements of the same type (i.e. elements defined with the same 
modelling concept). 

Example ($5'-$6'): Book _-- Books Authors =- Author 
This is the type of assertions currently supported in literature. 

- correspondence assertions between elements of different types. 

Example ($5-$6): Book ~ Author.books Book.authors ~ Author 
These assertions state that the real world represented by the entity type Book in $5 is the same as the 
one represented by the books attribute in $6 (same for authors). 
In schema integration, for instance, the processing of these assertions leads to an automatic schema 
conforming step (equivalent to what a DBA would do manually). This builds the intermediate 
internal representations which are finally merged to produce the integrated schema. Mappings are 
generated among the integrated schema and the original input schemas. Keeping the input schemas 
unchanged is of particular relevance to database integration. 

- correspondence assertions between links. 
The term link is used here to refer to a connection between two elements in a schema, irrespective of 
the data model. Depending on the data model, it may be a connection between an attribute and its 
parent element, a connection between two object types through a reference, or a connection between 
a relationship type and an entity type through a role. 
Element correspondence assertions are not sufficient to completely define commonalities between 
two schemas. For instance, the following correspondence assertions for $5-$6: 

Book =- Author.books Book.authors _= Author 

52 SIGMOD RECORD, Vol. 20, No. 4, December 1991 



do not imply that the association between books and authors is the same. One could perfectly 
assume that $5 talks about authors having written the associated book, while $6 describes for each 
author the books (s)he has reviewed. The integrated schema in this case should be $7: 

~-(~written by~ 
Book h...<~eviewedb~>-i [ Author ] 

$7  [ tilfle ISBIN na~ae birthldate 

This is the schema which could be generated by default based on the two previous assertions 
describing the correspondences between the elements of $5 and $6 (except that relationship names 
would be the standard default names). 
Assume now that for both $5 and $6, the semantics of the book-author link is the same. $5 gives 
for each book its authors, $6 gives for each author the books (s)he has written. This identity has to 
be explicitly stated by an assertion about links: 

Book ~ authors _-- book s ~ Author 

This additional knowledge leads the integrator to produce $8 instead of $7: 

S8 I Book ~-~-~writtenb~-~-~ Author [ 
title IS~N nalme birthldate 

The semantics of correspondence assertions can be defined by refering to the real world counterpart of 
the involved elements. Larson et al [4] defined the real world state of an object class O, RWS(O), as 
"the set of real world instances of object class O at a given moment in time". The RWS concept needs 
to be extended to cover attributes and links. 
The definition of the RWS of an object type may be easily extended to an attribute. We define the 
RWS of an attribute as the set of real world objects that the set of present values of the attribute 
represent (as suggested in [9] this definition abstracts from attribute descriptors). Having similar 
def'mitions allows one to state a correspondence assertion between an object type and an attribute. 
On the other hand, a link X m y is a connection between elements X and Y. Its RWS is made up of 
pairs of real world objects, one from RWS(X) and one from RWS(Y), such that the two objects in the 
real world are bound by an association represented in the database by the X Y link. 

4. Correspondence assertions and data model conflicts 
There is no reason why a correspondence assertion should not relate two elements from heterogeneous 
schemas (assuming the mapping between the underlying data models is known). In our approach to 
schema integration, the semantics of such assertions is properly understood by refering to a generic 
data model, specifically designed to support the reasoning about the integration [12]. Generic 
integration rules have been defined by using the concepts of the generic data model, and then tailored 
to different data models which might support the input schemas. 

For instance, assume the following object-oriented structure of an Author class: 

S9: Class Author tuple < name : • • . ,  birthdate : • • . ,  
books: setof tuple < title: • • . ,  ISBN: • • • >> 

A comparison between the ER schema $5 and the object-oriented schema $9 results in the same 
assertions as before: 

Book _= Author-books with corresponding attributes: title=title, ISBN=ISBN 

Book.authors ~ Author with corresponding attributes: name=name, birthdate=birthdate 

Book - -  authors _= book s - -  Author 

SIGMOD RECORD, Vol. 20, No. 4, December 1991 53 



If an object-oriented result is requested, the integrator generates the following integrated schema: 

Sl0:  Class Author tuple < name : • • . ,  birthdate : • • °, books: setof  Book> 
Class  Book tuple < title: ° • °, ISBN: ° ° o, authors: setof Author> 

5. C o n c l u s i o n  
This short position paper: 
- proposed a taxonomy of conflicts arising from schema comparisons, 
- emphasized the inadequacy of current methodologies to cope with data model and structural 

conflicts, 
- outlined the extensions to correspondence assertions which are needed to cover the above types of 

conflicts, 
- introduced the extensions to the real world state concept needed for proper understanding of the 

correspondence assertions. 

A c k n o w l e d g e m e n t s  

The authors are indebted to Prof. Bharat Bhargava, as well as to the guest editor and the reviewers, 
for helpful suggestions which significantly aided in improving this paper. 

References 
[1] C. Batini, M. Lenzerini, S.B. Navathe: "A Comparative Analysis of Methodologies for Database 

Schema Integration", ACM Computing Surveys, Vol. 15, n°4, December 1986, 323-364 
[2] M. Bouzeghoub ,  I. Comyn-Wattiau: View Integration by Semantic Unification and 

Transformation of Data Structures, Proceedings 9th International Conference on Entity- 
Relationship Approach, Lausanne, October 8-10, 1990, 413-430 

[3] S. Hayne, S. Ram: Multi-User View Integration System (MUVIS): An Expert System for View 
Integration, IEEE 6th International Conference on Data Engineering, Los Angeles, February 1990, 
402-409 

[4] J.A. Larson, S.B. Navathe, R. Elmasri: "A Theory of Attribute Equivalence in Databases with 
Application to Schema Integration", IEEE Transactions On Software Engineering, Vol. SE-15, 
n°4, April 1989 

[5] W. Litwin, L. Mark, N. Roussopoulos: Interoperability of Multiple Autonomous Databases, 
ACM Computing Surveys, September 1990, 267-293 

[6] A. Morro: Superviews: Virtual Integration of Multiple Databases, IEEE Transactions On Software 
Engineering, Vol. SE-13, n ° 7, July 1987, 785-798 

[7] C. Parent, S. Spaccapietra: "ERC+: an object based entity-relationship approach", in Conceptual 
Modelling, Databases and CASE: An Integrated View of Information Systems Development, 
P.Loucopoulos, R.Zicari Eds., John Wiley, 1992 

[8] A.P. Sheth, J.A. Larson: "Federated Database Systems for Managing Distributed, 
Heterogeneous, and Autonomous Databases", ACM Computing Surveys, Vol.22, n°3, September 
1990, 183-236 

[9] A.P. Sheth, S.K. Gala: "Attribute Relationships: An Impediment in Automating Schema 
Integration", Proc. Workshop on Heterogeneous Database Systems, Chicago, December 11-13, 
1989 

[10] A.P. Sheth, J.A. Larson, A. Cornelio, S.B. Navathe: A Tool for Integrating Conceptual 
Schemas and User Views, IEEE 4th International Conference on Data Engineering, Los Angeles, 
February 1-5, 1988, 176-183 

[11] S. Spaccapietra, C. Parent, Y. Dupont: "View integration: a step forward in solving structural 
conflicts", to appear in IEEE Transactions on Knowledge and Data Engineering, October 1992 

[12] S. Spaccapietra, C. Parent, Y. Dupont: "Model Independent Assertions for Heterogeneous 
Schema Integration", LBD research report, EPFL, Lausanne, February 1991, submitted to VLDB 
Journal 

54 SIGMOD RECORD, Vol. 20, No. 4, December 1991 


