
 An Empirical Model to Predict Security Vulnerabilities
using Code Complexity Metrics

Yonghee Shin
Department of Computer Science

North Carolina State University
Raleigh, NC 27695, U.S.A.
yonghee.shin@ncsu.edu

Laurie Williams
Department of Computer Science

North Carolina State University
Raleigh, NC 27695, U.S.A.

williams@csc.ncsu.edu

ABSTRACT
Complexity is often hypothesized to be the enemy of software
security. If this hypothesis is true, complexity metrics may be
used to predict the locale of security problems and can be used
to prioritize inspection and testing efforts. We performed
statistical analysis on nine complexity metrics from the
JavaScript Engine in the Mozilla application framework to find
differences in code metrics between vulnerable and non-
vulnerable code and to predict vulnerabilities. Our initial results
show that complexity metrics can predict vulnerabilities at a low
false positive rate, but at a high false negative rate.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Complexity measures, Product
metrics

General Terms
Measurement, Reliability, Security.

1. INTRODUCTION
One successful security attack can bring severe damages to
people and organizations by allowing an attacker to access or
modify confidential information or to launch a denial of service
attack. Security attacks occur by exploiting vulnerabilities in a
system. A software vulnerability is a weakness in a software
system that allows an attacker to use the system for a malicious
purpose. Buffer overflow, SQL injection, cross-site scripting are
the representative vulnerabilities [4]. The weakness can come
from design flaws, implementation errors, and configuration
errors [7]. Early detection and mitigation of vulnerabilities in
software artifacts can help to produce higher quality of software,
to prioritize testing efforts, and to reduce the cost of later fixes
[2] and potential damages to finances and trust.

A software fault is a latent error in code that causes a failure
when the fault is executed. Faults and failures are known to be
correlated with software complexity [1, 5]. Software
vulnerability is also presumed to be correlated with software

complexity [4]. Even though software vulnerabilities are
considered a subset of software faults [7], the characteristics of
vulnerabilities that differentiate them from faults in terms of
complexity have not yet been investigated. Knowing the
characteristics may help organizations to distribute time and
resources to improve software security. While static analysis
tools can detect certain patterns of vulnerabilities that those
tools were designed for, complexity metrics can be used as a
complementary way to find vulnerable locations in software
artifacts that static analysis tools cannot detect and to direct
further inspection and testing.

Our research objective is to identify the code complexity metrics
that differentiate vulnerable functions from non-vulnerable
functions and faulty-functions, and to investigate whether code
metrics can be useful for vulnerability prediction.

We conducted a case study on the JavaScript Engine in the
Mozilla application framework1 to identify possible predictors
of software vulnerabilities based on the nine complexity metrics
we collected and to predict vulnerability-proneness using
statistical analysis.

2. STUDY DESIGN
We pursue the answers of the following questions in this study.

Q1: Do the measures for complexity metrics for vulnerable and
non-vulnerable functions demonstrate differences? If so, which
complexity metrics can identify the differences?

Q2: Do the measures for complexity metrics for vulnerable and
faulty-but-non-vulnerable functions demonstrate differences? If
so, which complexity metrics can identify the differences?
Q3: Can we predict vulnerable functions from all functions
using complexity metrics?

Q4: Can we predict vulnerable functions from faulty functions
using complexity metrics?

Answering Q1 and Q3 helps prioritize the security efforts
according to the measures of complexity metrics identified as
best differentiating factors and the code locations predicted as
being vulnerable. Answering Q2 and Q4 helps to determine
whether verification and validation (V&V) teams should have
different prioritization and strategy to find faults and
vulnerabilities.

1 http://www.mozilla.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’08, October 9-10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

315

2.1 Metrics
We collected the following nine code complexity metrics using
a metrics tool, Understand C++ 2 . McCabe’s cyclomatic
complexity [3] counts the number of decision statements plus
one. Modified cyclomatic complexity and strict cyclomatic
complexity are the same as McCabe’s cyclomatic complexity
except for the differences in the way that switch statements
and conditions in decision statements are counted. Essential
cyclomatic complexity measures the structuredness of code by
counting cyclomatic complexity after iteratively replacing all
structured programming primitives to a single statement.
Nesting complexity measures the deepest level of nested control
constructs. Paths are the number of possible paths. SLOC is the
number of lines of source code excluding comments. SLOC_exe
is the number of SLOC excluding declarations. Stmt_exe is the
number of executable statements.

2.2 Project Under Study
We chose the Mozilla Java Script Engine (JSE) open source for
our case study because the source code, faults, and vulnerability
information are publicly available and the amount of faults and
vulnerabilities reported were enough for our initial analysis. The
faults in the Mozilla JSE can be found from the Bugzilla3, a bug
tracking system. The mitigated vulnerabilities in the Mozilla
JSE are posted to the Mozilla Foundation Security Advisories
(MFSA) 4 . The total number of bug reports in Bugzilla was
51370 (as of 29th, February, 2008) and the number of bug
reports linked from MFSAs was 458. The percentage of
vulnerabilities among the total bug reports is around 0.89%.
There were 106 bug reports on JSE linked from MFSAs and 15
of them were not accessible from the bug reports due to the
security policy of Mozilla project, and therefore, could not be
included in our analysis.

We chose six versions of JSE among 51 available versions. For
the variety of our samples, we chose two minor versions from
each major version; v1.0.2, v1.0.7, v1.5, v.1.5.0.8, v.2.0, and
v.2.0.0.4. JSE v1.0.2 has 83 files and 78 KSLOC. JSE v1.5 has
85 files and 96 KSLOC. JSE v2.0.0.4 has 88 files and 107
KSLOC. The number of functions in the six versions of JSE is
between 1352 and 1862. To identify faulty and vulnerable
functions, we counted the number of functions that were
changed due to faults and vulnerabilities. We know in which
version a vulnerability was fixed, however, we do not know
when the vulnerability was introduced. Therefore, when there is
a vulnerability fix in a version (e.g. v1.5.0.8), we assumed that
the same vulnerability existed in all the previous versions (e.g.
v1.5.0.7, v1.5.0.6, etc.). After all, 0.8% to 17.5% of functions
were changed due to identified faults, and 0.6% to 9.3% of
functions due to vulnerabilities.

2.3 Analysis Methods
We compared the complexity measures of vulnerable and non-
vulnerable functions to answer Q1 and compared the complexity
measures of vulnerable and faulty-but-non-vulnerable functions
to answer Q2. For the comparison, we used the Wilcoxon rank

2 http://www.scitools.com/
3 http://bugzilla.mozilla.org
4 http://www.mozilla.org/projects/security/known-

vulnerabilities.html

sum test [6], a non-parametric test that is not sensitive to outliers
and does not assume any distribution of sample data.

To answer Q3 and Q4, we performed binary logistic regression
analysis [6]. Binary logistic regression analysis is a way to
classify data into two groups depending on the probability of an
occurrence of an event for given values of independent variables.
In our case, logistic regression analysis computes the probability
that a function is vulnerable for given complexity measures. A
function with probability of vulnerability greater than a certain
cutoff point (0.5 in our case study) is classified as vulnerable.

The quality of prediction using a logistic regression model can
be measured in terms of accuracy, a false positive rate (Type I
error) and a false negative rate (Type II error). The accuracy
measures the degree of overall correct classification. The false
positive (FP) rate measures the rate of falsely classified
functions as vulnerable among the non-vulnerable functions.
The false negative (FN) rate measures the rate of falsely
classified functions as non-vulnerable among the vulnerable
functions. A high false positive rate indicates that effort may be
wasted in finding vulnerabilities when there are none. A high
false negative rate indicates that there is a risk of overlooking
vulnerabilities. The three quality criteria are defined in the
following formula:

 Accuracy =
FNTNFPTP

TNTP
+++

+ ,

FP rate =
TNFP

FP
+

 , FN rate =
FNTP

FN
+

To measure the efficacy of using complexity metrics in
predicting vulnerabilities, we performed next version validation.
Next version validation is performed by testing the version n+1
using the model trained from the version n. This way, we can
measure the model’s ability to predict vulnerabilities in the
current version using the model built from the previous version.

3. RESULTS & CONCLUSION
To answer Q1 and Q2, we performed the Wilcoxon rank sum
test. The results show that the measures of complexity for the
vulnerable functions and the non-vulnerable functions in JSE
are significantly different at the 0.05 significance level for all
the six versions. The measures of complexity for the vulnerable
functions and the faulty-but-non-vulnerable functions in the
three older versions of JSE (v1.0.2, v1.0.7, and v.1.5) were also
significantly different in the nine complexity metrics. However,
in the later versions of JSE (v1.5.0.8, v2.0 and v.2.0.0.4), the
measures of complexity for the vulnerable functions and the
faulty-but-non-vulnerable functions were significantly different
only in the nesting complexity. This result indicates that nesting
complexity can be a differentiating factor of vulnerable
functions from faulty functions in JSE. Therefore, giving more
attention to highly nested functions than to other functions in
security inspection could be an efficient strategy.

To answer question Q3 and Q4, we performed the following
three experiments using logistic regression analysis.

• E1: Predict faulty functions from all functions.
• E2: Predict vulnerable functions from all functions.
• E3: Predict vulnerable functions from faulty functions.

316

The dependent variables of our logistic regression models are
fault-proneness (E1) and vulnerability-proneness (E2 and E3).
The independent variables were chosen by the stepwise
regression method [6], a method to systematically select
independent variables that are highly significant. We built 15
models in total for five versions of JSE in the three experiments.
A model was built for each version except the last version
(v2.0.0.4) in each experiment and then the model was applied to
the next version to predict vulnerabilities. The training data for
the model of v1.0.2 were used to test the model because there is
no previous model for v1.0.2. In all the cases, nesting
complexity was consistently chosen as an independent variable.
SLOC complexity was the next frequently chosen variable.
Table 1 shows the accuracy, false positives rates, and false
negative rates in the three experiments.

Table 1. Predictive power of the logistic regression models

 v1.0.2 v1.0.7 v1.5 v1.5.0.8 v2.0 v2.0.0.4

E1 Accuracy
FP rates
FN rates

84.76
1.15

85.40

85.01
1.15

85.20

83.75
1.30

86.73

89.62
3.43

80.39

90.96
0.42

93.02

98.39
1.03

78.57
E2 Accuracy

FP rates
FN rates

90.98
0.90

88.10

91.36
0.89

86.18

91.13
0.98

89.93

96.34
1.63

79.55

96.81
0.06

95.08

99.52
0.00

81.82

E3 Accuracy
FP rates
FN rates

65.49
48.00
23.81

65.92
48.00
22.76

62.59
58.62
16.78

62.75
36.70
38.64

64.53
1.80

96.72

42.86
0.00

72.73
The prediction results show that the overall accuracies are very
high for E1 and E2, and fairly high for E3. The low false
positive rates for E1 and E2 indicate that once our model
predicts faults and vulnerabilities, those predicted ones are
likely to be true vulnerabilities. Furthermore, those faults and
vulnerabilities can be identified at an early development phase
from code before testing. However, the high false negative rates
for E1 and E2 indicate that our model can miss a large portion
of faults and vulnerabilities. Therefore, the current model is
useful to identify the initial locations for inspecting and testing,
and should be used as a complementary way of other techniques
and tools for vulnerability detection. One of the possible reasons
could be because the complexity is associated with
vulnerabilities only at above a certain threshold. The other
possible reason is because we did not differentiate the functions
changed for the direct reason of vulnerabilities and the functions
changed as a secondary reason identified from vulnerabilities
such as an addition of a parameter to several functions with low
complexity. Giving different weights in the simple changes
propagated from the main changes due to vulnerabilities might
lead to more precise results. E3 showed comparatively high
false positives and low false negatives. This result indicates that
average complexity measures for the vulnerable functions and
the faulty-but-non-vulnerable functions are different as
explained previously, but the difference is not as big as the
vulnerabilities can be predicted precisely.

The variations in predictability between v1.0.2, v1.0.7, and v1.5
were very small. The small variations in predictability between
versions indicate that a model built from a previous version can
be reliably used to predict vulnerabilities for the next version.
The large variations in predictability in the later versions might
be because the number of vulnerabilities was small to obtain

statistically significant results. The later versions have less
vulnerabilities than the older versions because we assumed that
all the previous versions of a function have the same
vulnerability when the function has a vulnerability. Another
reason that the later versions have less vulnerabilities than the
older versions might be because the vulnerabilities have not
been discovered yet. However, because vulnerability prediction
is for a preventive action, not for a reactive action after the
vulnerabilities are found, performing V&V based on the results
of our prediction model still can be helpful. Prediction of
vulnerable functions from all functions provides slightly better
predictability than prediction of faulty functions from all
functions, showing that inspecting vulnerabilities using code
complexity is as good approach as inspecting faults using code
complexity.

To conclude, vulnerable functions have distinctive
characteristics from non-vulnerable functions and from faulty-
but-non-vulnerable functions in code complexity. Nesting
complexity was the best distinguishing factor among the nine
complexity metrics in JSE. Prediction of vulnerabilities from
source code using complexity metrics is a feasible approach
with low false positives, however, still misses many
vulnerabilities. We will extend our study to reduce false
negatives considering the code changes due to the main effects
of vulnerabilities and the secondary effects of vulnerabilities.
We will also find better metrics including design level metrics
for better prediction. As noted in previous studies [5], our
results might not be generalized to other projects.

4. ACKNOWLEDGMENTS
This work is supported in part by the National Science
Foundation Grant No. 0716176. Any opinions expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

5. REFERENCES
[1] Basili, V. R., Briand, L. C., and Melo, W. L., "A Validation

of Object-Oriented Design Metrics as Quality Indicators,"
IEEE Transactions on Software Engineering, vol. 22, no.
10, pp. 751 - 761, October, 1996.

[2] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall Inc., 1981.

[3] McCabe, T. J., "A Complexity Measure," IEEE
Transactions on Software Engineering, vol. 2, no. 4, pp.
308-320, 1976.

[4] McGraw, G., Software Security: Building Security In.
Boston, NY: Addison-Wesley, 2006.

[5] Nagappan, N., Ball, T., and Zeller, A., "Mining Metrics to
Predict Component Failures," in Proceedings of
Proceedings of the 28th international conference on
Software engineering Shanghai, China, May 20-28, 2006,
pp. 452-461.

[6] Ott, R. L. and Longnecker, M., An Introduction to
Statistical Methods and Data Analysis, 5th edition:
Duxbury, 2001.

[7] Viega, J. and Mcgraw, G., Building Secure Software.
Boston, NY: Addison-Wesley, 2002.

317

