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ABSTRACT 
Complexity is often hypothesized to be the enemy of software 
security.  If this hypothesis is true, complexity metrics may be 
used to predict the locale of security problems and can be used 
to prioritize inspection and testing efforts. We performed 
statistical analysis on nine complexity metrics from the 
JavaScript Engine in the Mozilla application framework to find 
differences in code metrics between vulnerable and non-
vulnerable code and to predict vulnerabilities. Our initial results 
show that complexity metrics can predict vulnerabilities at a low 
false positive rate, but at a high false negative rate. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Complexity measures, Product 
metrics 

General Terms 
Measurement, Reliability, Security. 

1. INTRODUCTION 
One successful security attack can bring severe damages to 
people and organizations by allowing an attacker to access or 
modify confidential information or to launch a denial of service 
attack. Security attacks occur by exploiting vulnerabilities in a 
system. A software vulnerability is a weakness in a software 
system that allows an attacker to use the system for a malicious 
purpose. Buffer overflow, SQL injection, cross-site scripting are 
the representative vulnerabilities [4]. The weakness can come 
from design flaws, implementation errors, and configuration 
errors [7]. Early detection and mitigation of vulnerabilities in 
software artifacts can help to produce higher quality of software, 
to prioritize testing efforts, and to reduce the cost of later fixes 
[2] and potential damages to finances and trust.  

A software fault is a latent error in code that causes a failure 
when the fault is executed. Faults and failures are known to be 
correlated with software complexity [1, 5]. Software 
vulnerability is also presumed to be correlated with software 

complexity [4]. Even though software vulnerabilities are 
considered a subset of software faults [7], the characteristics of 
vulnerabilities that differentiate them from faults in terms of 
complexity have not yet been investigated. Knowing the 
characteristics may help organizations to distribute time and 
resources to improve software security. While static analysis 
tools can detect certain patterns of vulnerabilities that those 
tools were designed for, complexity metrics can be used as a 
complementary way to find vulnerable locations in software 
artifacts that static analysis tools cannot detect and to direct 
further inspection and testing. 

Our research objective is to identify the code complexity metrics 
that differentiate vulnerable functions from non-vulnerable 
functions and faulty-functions, and to investigate whether code 
metrics can be useful for vulnerability prediction.  

We conducted a case study on the JavaScript Engine in the 
Mozilla application framework1 to identify possible predictors 
of software vulnerabilities based on the nine complexity metrics 
we collected and to predict vulnerability-proneness using 
statistical analysis. 

2. STUDY DESIGN 
We pursue the answers of the following questions in this study. 

Q1: Do the measures for complexity metrics for vulnerable and 
non-vulnerable functions demonstrate differences? If so, which 
complexity metrics can identify the differences? 

Q2: Do the measures for complexity metrics for vulnerable and 
faulty-but-non-vulnerable functions demonstrate differences? If 
so, which complexity metrics can identify the differences? 
Q3: Can we predict vulnerable functions from all functions 
using complexity metrics? 

Q4: Can we predict vulnerable functions from faulty functions 
using complexity metrics? 

Answering Q1 and Q3 helps prioritize the security efforts 
according to the measures of complexity metrics identified as 
best differentiating factors and the code locations predicted as 
being vulnerable. Answering Q2 and Q4 helps to determine 
whether verification and validation (V&V) teams should have 
different prioritization and strategy to find faults and 
vulnerabilities. 

                                                                 
1 http://www.mozilla.org 
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2.1 Metrics 
We collected the following nine code complexity metrics using 
a metrics tool, Understand C++ 2 .  McCabe’s cyclomatic 
complexity [3] counts the number of decision statements plus 
one. Modified cyclomatic complexity and strict cyclomatic 
complexity are the same as McCabe’s cyclomatic complexity 
except for the differences in the way that switch statements 
and conditions in decision statements are counted. Essential 
cyclomatic complexity measures the structuredness of code by 
counting cyclomatic complexity after iteratively replacing all 
structured programming primitives to a single statement. 
Nesting complexity measures the deepest level of nested control 
constructs. Paths are the number of possible paths. SLOC is the 
number of lines of source code excluding comments. SLOC_exe 
is the number of SLOC excluding declarations. Stmt_exe is the 
number of executable statements. 

2.2 Project Under Study 
We chose the Mozilla Java Script Engine (JSE) open source for 
our case study because the source code, faults, and vulnerability 
information are publicly available and the amount of faults and 
vulnerabilities reported were enough for our initial analysis. The 
faults in the Mozilla JSE can be found from the Bugzilla3, a bug 
tracking system. The mitigated vulnerabilities in the Mozilla 
JSE are posted to the Mozilla Foundation Security Advisories 
(MFSA) 4 . The total number of bug reports in Bugzilla was 
51370 (as of 29th, February, 2008) and the number of bug 
reports linked from MFSAs was 458. The percentage of 
vulnerabilities among the total bug reports is around 0.89%. 
There were 106 bug reports on JSE linked from MFSAs and 15 
of them were not accessible from the bug reports due to the 
security policy of Mozilla project, and therefore, could not be 
included in our analysis.  

We chose six versions of JSE among 51 available versions.  For 
the variety of our samples, we chose two minor versions from 
each major version; v1.0.2, v1.0.7, v1.5, v.1.5.0.8, v.2.0, and 
v.2.0.0.4.  JSE v1.0.2 has 83 files and 78 KSLOC. JSE v1.5 has 
85 files and 96 KSLOC. JSE v2.0.0.4 has 88 files and 107 
KSLOC. The number of functions in the six versions of JSE is 
between 1352 and 1862. To identify faulty and vulnerable 
functions, we counted the number of functions that were 
changed due to faults and vulnerabilities. We know in which 
version a vulnerability was fixed, however, we do not know 
when the vulnerability was introduced. Therefore, when there is 
a vulnerability fix in a version (e.g. v1.5.0.8), we assumed that 
the same vulnerability existed in all the previous versions (e.g. 
v1.5.0.7, v1.5.0.6, etc.). After all, 0.8% to 17.5% of functions 
were changed due to identified faults, and 0.6% to 9.3% of 
functions due to vulnerabilities. 

2.3 Analysis Methods 
We compared the complexity measures of vulnerable and non-
vulnerable functions to answer Q1 and compared the complexity 
measures of vulnerable and faulty-but-non-vulnerable functions 
to answer Q2. For the comparison, we used the Wilcoxon rank 
                                                                 
2 http://www.scitools.com/ 
3 http://bugzilla.mozilla.org 
4 http://www.mozilla.org/projects/security/known-

vulnerabilities.html 

sum test [6], a non-parametric test that is not sensitive to outliers 
and does not assume any distribution of sample data. 

To answer Q3 and Q4, we performed binary logistic regression 
analysis [6]. Binary logistic regression analysis is a way to 
classify data into two groups depending on the probability of an 
occurrence of an event for given values of independent variables. 
In our case, logistic regression analysis computes the probability 
that a function is vulnerable for given complexity measures. A 
function with probability of vulnerability greater than a certain 
cutoff point (0.5 in our case study) is classified as vulnerable.  

The quality of prediction using a logistic regression model can 
be measured in terms of accuracy, a false positive rate (Type I 
error) and a false negative rate (Type II error). The accuracy 
measures the degree of overall correct classification. The false 
positive (FP) rate measures the rate of falsely classified 
functions as vulnerable among the non-vulnerable functions. 
The false negative (FN) rate measures the rate of falsely 
classified functions as non-vulnerable among the vulnerable 
functions. A high false positive rate indicates that effort may be 
wasted in finding vulnerabilities when there are none. A high 
false negative rate indicates that there is a risk of overlooking 
vulnerabilities. The three quality criteria are defined in the 
following formula: 

 Accuracy = 
FNTNFPTP

TNTP
+++

+ , 

FP rate = 
TNFP

FP
+

 ,   FN rate = 
FNTP

FN
+

  

To measure the efficacy of using complexity metrics in 
predicting vulnerabilities, we performed next version validation. 
Next version validation is performed by testing the version n+1 
using the model trained from the version n. This way, we can 
measure the model’s ability to predict vulnerabilities in the 
current version using the model built from the previous version.   

3. RESULTS & CONCLUSION 
To answer Q1 and Q2, we performed the Wilcoxon rank sum 
test. The results show that the measures of complexity for the 
vulnerable functions and the non-vulnerable functions in JSE 
are significantly different at the 0.05 significance level for all 
the six versions.  The measures of complexity for the vulnerable 
functions and the faulty-but-non-vulnerable functions in the 
three older versions of JSE (v1.0.2, v1.0.7, and v.1.5) were also 
significantly different in the nine complexity metrics.  However, 
in the later versions of JSE (v1.5.0.8, v2.0 and v.2.0.0.4), the 
measures of complexity for the vulnerable functions and the 
faulty-but-non-vulnerable functions were significantly different 
only in the nesting complexity. This result indicates that nesting 
complexity can be a differentiating factor of vulnerable 
functions from faulty functions in JSE. Therefore, giving more 
attention to highly nested functions than to other functions in 
security inspection could be an efficient strategy. 

To answer question Q3 and Q4, we performed the following 
three experiments using logistic regression analysis.  

• E1: Predict faulty functions from all functions.  
• E2: Predict vulnerable functions from all functions. 
• E3: Predict vulnerable functions from faulty functions. 
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The dependent variables of our logistic regression models are 
fault-proneness (E1) and vulnerability-proneness (E2 and E3). 
The independent variables were chosen by the stepwise 
regression method [6], a method to systematically select 
independent variables that are highly significant. We built 15 
models in total for five versions of JSE in the three experiments. 
A model was built for each version except the last version 
(v2.0.0.4) in each experiment and then the model was applied to 
the next version to predict vulnerabilities. The training data for 
the model of v1.0.2 were used to test the model because there is 
no previous model for v1.0.2. In all the cases, nesting 
complexity was consistently chosen as an independent variable. 
SLOC complexity was the next frequently chosen variable. 
Table 1 shows the accuracy, false positives rates, and false 
negative rates in the three experiments.  

Table 1. Predictive power of the logistic regression models 

  v1.0.2 v1.0.7 v1.5 v1.5.0.8 v2.0 v2.0.0.4

E1 Accuracy 
FP rates 
FN rates 

84.76 
1.15 

85.40 

85.01 
1.15 

85.20 

83.75 
1.30 

86.73 

89.62 
3.43 

80.39 

90.96
0.42

93.02

98.39
1.03

78.57
E2 Accuracy 

FP rates 
FN rates 

90.98 
0.90 

88.10 

91.36 
0.89 

86.18 

91.13 
0.98 

89.93 

96.34 
1.63 

79.55 

96.81
0.06

95.08

99.52
0.00

81.82

E3 Accuracy 
FP rates 
FN rates 

65.49 
48.00 
23.81 

65.92 
48.00 
22.76 

62.59 
58.62 
16.78 

62.75 
36.70 
38.64 

64.53
1.80

96.72

42.86
0.00

72.73
The prediction results show that the overall accuracies are very 
high for E1 and E2, and fairly high for E3. The low false 
positive rates for E1 and E2 indicate that once our model 
predicts faults and vulnerabilities, those predicted ones are 
likely to be true vulnerabilities. Furthermore, those faults and 
vulnerabilities can be identified at an early development phase 
from code before testing. However, the high false negative rates 
for E1 and E2 indicate that our model can miss a large portion 
of faults and vulnerabilities. Therefore, the current model is 
useful to identify the initial locations for inspecting and testing, 
and should be used as a complementary way of other techniques 
and tools for vulnerability detection. One of the possible reasons 
could be because the complexity is associated with 
vulnerabilities only at above a certain threshold. The other 
possible reason is because we did not differentiate the functions 
changed for the direct reason of vulnerabilities and the functions 
changed as a secondary reason identified from vulnerabilities 
such as an addition of a parameter to several functions with low 
complexity. Giving different weights in the simple changes 
propagated from the main changes due to vulnerabilities might 
lead to more precise results. E3 showed comparatively high 
false positives and low false negatives. This result indicates that 
average complexity measures for the vulnerable functions and 
the faulty-but-non-vulnerable functions are different as 
explained previously, but the difference is not as big as the 
vulnerabilities can be predicted precisely.  

The variations in predictability between v1.0.2, v1.0.7, and v1.5 
were very small. The small variations in predictability between 
versions indicate that a model built from a previous version can 
be reliably used to predict vulnerabilities for the next version. 
The large variations in predictability in the later versions might 
be because the number of vulnerabilities was small to obtain 

statistically significant results. The later versions have less 
vulnerabilities than the older versions because we assumed that 
all the previous versions of a function have the same 
vulnerability when the function has a vulnerability. Another 
reason that the later versions have less vulnerabilities than the 
older versions might be because the vulnerabilities have not 
been discovered yet. However, because vulnerability prediction 
is for a preventive action, not for a reactive action after the 
vulnerabilities are found, performing V&V based on the results 
of our prediction model still can be helpful. Prediction of 
vulnerable functions from all functions provides slightly better 
predictability than prediction of faulty functions from all 
functions, showing that inspecting vulnerabilities using code 
complexity is as good approach as inspecting faults using code 
complexity.   

To conclude, vulnerable functions have distinctive 
characteristics from non-vulnerable functions and from faulty-
but-non-vulnerable functions in code complexity. Nesting 
complexity was the best distinguishing factor among the nine 
complexity metrics in JSE. Prediction of vulnerabilities from 
source code using complexity metrics is a feasible approach 
with low false positives, however, still misses many 
vulnerabilities. We will extend our study to reduce false 
negatives considering the code changes due to the main effects 
of vulnerabilities and the secondary effects of vulnerabilities. 
We will also find better metrics including design level metrics 
for better prediction. As noted in previous studies [5], our 
results might not be generalized to other projects. 
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